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This paper proposes a novel scheme to improve the performance metrics of machine learning 

(ML) models for the classification of the short circuit fault (SCF) on electric power transmission 

line (TL) by enhancing the quantity and quality of dataset. The dataset consists of 24 features 

and 55289 observations, where each observation represents the maximum and minimum 

values of the signals during the fault and post fault conditions. A comparative analysis is 

conducted against several ML to showcase the efficacy of proposed dataset. The ability to 

classify the faults using proposed dataset is also compared with Phasor Measurement Unit 

(PMU) based dataset on Kundur two-area four-Machine Power System. The various 

simulations, dataset collection and ML algorithm have been performed in MATLAB 

environment. The performance metrics such as accuracy, precision, recall and F1-score and 

training time of various ML algorithm trained by proposed dataset is much superior than PMU 

based dataset for the classification of short circuit fault on Transmission Line. 

Keywords:  ML Algorithm, Alpha-dataset, Beta-dataset, Short Circuit Fault, Fault 

Classification, Phasor Measurement Unit, Performance Metrics. 

 

1.  INTRODUCTION  

The electrical fault causes disturbance and destabilization, resulting in very serious problems for the proper and 

real functioning of the power system. The transmission system interconnects all major generating stations and 

main load centres in the system, which forms the backbone of the integrated power system and operate at higher 

voltage levels [1]. In transmission lines, occurrence of power outages is significantly attributed to unpredictable and 

irregular faults [2], [3], [4]. The electrical faults on transmission line should be detected and classified accurately as 

fast as possible so that the stability of the system must be maintained [5]. Rapid fault classification can also 

accelerate the restoration process, reduces the duration of outages, and help the working personnel to repair faulty 

transmission line as quickly as possible.  

In recent years ML techniques have shown significant promise in fault detection and classification in transmission 

line [6]. As a branch of artificial intelligence, ML enables computers to learn rules and patterns automatically from 

massive data by training and optimizing algorithms [7]. The major bottleneck in ML is data collection, and it has 

been an active research topic in multiple communities. The recent research in collection and handling of large data 

comes not only from ML, natural language, and computer vision, but also from the data management community 

[8]. As big data continues to grow in scale and influence, the quality of datasets has become a key factor in 

determining the effectiveness of machine learning models. Reliable and well-structured data is vital for extracting 

meaningful insights and ensuring the accuracy of model prediction [9]. The attention of researchers and 

practitioners has gradually shifted from advancing model design to enhancing the quality and quantity of data [10]. 

Jamil et. al. applied feedforward neural network along with back propagation algorithm on 300 km TL using 8712 

data samples by measuring three phase voltage and current for fault classification [5]. Tong et. al. applied Graph 

Convolutional Neural Network (GCNN) on IEEE-39 bus system using 11900 data samples by measuring graphical 

based fault signals for detection and classification of faults [11].Nikhil et. al. employed KNN, SVM using 12000 

kaggle dataset to classify the types of shunt faults [12]. Harish et. al. employed Weighted extreme ML algorithm on 
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IEEE-39 bus system using 24654 data samples by measuring PMU based voltages to classify the faults [13]. 

Elmasry et. al. applied anomaly-based fault detection on Kaggle dataset using 8712 data samples by measuring 

three phase voltage and current for fault identification and classification [14]. Fornas et. al. applied Time Domain 

Reflectometry (TDR) methodology on complex distribution network modelled in PSCAD using 200 simulated 

signals collected by impedance measurement to identify the faults [15]. Roy et. al. applied Long Short-Term 

Memory (LSTM), combination of LSTM network and Feed-Forward NN(FFNN) with back-propagation on 

Microgrid model by measuring three phase voltage and current to classify the faults [16]. Abed et. al. employed 

KNN using 12000 kaggle dataset to classify the faults [17]. Joythula et. al. applied Linear, Logistic, Polynomial, 

Naïve Bayes, DT using 12000 Kaggle dataset to detect and classify the faults [18]. Bouaziz et. al. applied RF, KNN, 

SVM on grid connected Doubly Fed Induction Generator based Wind Turbine using 48001 data samples by 

measuring three phase voltage and current for fault classification [19]. Najafzadeh et. al., applied Fuzzy Logic, 

Adaptive Fuzzy Neural Network (AFNN), Random Forest (RF), and Decision Tree (DT) on 600 Km TL using 1100 

data samples by measuring three phase voltage and current for fault classification [20]. Alhanaf et. al., employed 

CNN, LSTM, Hybrid CNN-LSTM on IEEE-6 and IEEE-9 bus system using 62501 data samples by measuring three 

phase and current [6]. Kanwal et. al. applied discrete wavelet transform (DWT), Google Net, and probabilistic 

Neural Network (PNN) on Vietnam 220-500 kV, 8302 Km line using colour image with size 224×224×3 by 

measuring three phase voltage and current waveform for fault classification [21]. 

In this paper, unlike earlier works, instead of focusing on the algorithms, the quantity and quality of dataset are 

enhanced to improve the performance metrics of ML models to detect and classify SCF on TL. To achieve this aim, 

the following objectives are accomplished: 

1) Simulation of various types of SCF on TL in a Two-area Four-Generator System for different values of fault 

resistance and different locations using MATLAB Simulation and m-file code. 

2) Collection of 55,289 samples and 8 features using PMU based data named as Beta-dataset and 55,289 

samples and 24 features by adding three phase voltage, three phase current, zero sequence voltage, zero sequence 

current to Beta-dataset named as Alpha-dataset. 

3) Training and testing of various available ML model using Beta-dataset and Alpha-dataset.  

4) Finding of Confusion Matrix (CM) of the trained and tested ML model. 

5) Comparison of the ability of classifying the faults of various ML model when trained and tested by both the 

dataset. 

6) Comparison of the accuracy of the proposed dataset with the existing works. 

This study comprises five sections. Section 2 describes the modelling of power system. Section 3 presents the 

Machine Learning Approach. The process of fault classification is presented in section 4. Section 5 concludes this 

study. 

2. MODELING OF POWER SYSTEM 

The sub-transient model of machines with four rotor coils in each machine, known as Model 2.2 [23] has been used 

to study power system dynamics. Model of static voltage regulator and power system stabilizer are also included 

with the model of each machine. Also, all the loads in the system are assumed to be modelled as constant 

impedance loads. The dynamic equations are given as follows [24] (where  refers to the system’s th machine, 

). 

 
(1) 

 

(2) 
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(9) 
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(11) 

 
(12) 

 (13) 

 (14) 

 (15) 

 (16) 

 

(17) 

 

The bus voltages (  (total number of buses are ), can be obtained by the power flow equations 

(18) and (19). Equation (20) gives the network equations. 

 

 

(18) 

 

(19) 
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(20) 

 

Here,  is column vector of bus voltages,  is column vector of current injections with  element equal to  if is 

a machine bus, else it is equal to zero;  is network admittance matrix;  is diagonal matrix of machine 

admittances with   diagonal element is equal to  if  is a machine bus, else it is equal to zero; similarly 

 is a diagonal matrix of load admittances.  and  are augmented matrices of admittance and impedance 

respectively. 

3. MACHINE LEARNING APPROACH: 

In this section, the steps for model design and performance have been carried out. The problem statements 

encountered during the model construction are as follows: 

3.1 Data Set Creation 

G1_Area1

G3_Area2

G2_Area1 G4_Area2

C1 C2

25 Km 25 Km10 Km10 Km

110 Km 110 Km

9 10

3 4

5 67
1

8
211

L1 C1 L2 C2

 

Figure 1: Kundur 2-Area Power System 

The 2-area, 4-machines, 11-bus system is used as a case study in this paper. This case study system is publicly 

available in MATLAB and it is a well-known benchmark for conducting power system studies which is detailed in 

[1]. The system as shown in Figure 1 consists of two fully symmetrical areas connected by double circuit 220 Km 

transmission line. The synchronous generators are represented by their detailed models. For the analysis of 

classification of shunt fault, the faults are applied at different locations at a step of 2 Km between Bus 1 and Bus 2. 

The fault resistance in ohm is varied as [0.001 0.005 0.01 0.05 0.1:0.2:20] to collect the large data. The different 

types of SCF and its representation in m-file is shown in Table 1.  

Table 1: Type of SCF and its representation in m-file 

Fault Fault type Details 
Representation in m-file 

A B C G 

1 

Single Line-to-Ground 

Phase A to Ground 1 0 0 1 

2 Phase B to Ground 0 1 0 0 

3 Phase C to Ground 0 0 1 0 

4 

Double Line-Ground 

Phase A, B to Ground 1 1 0 1 

5 Phase B, C to Ground 0 1 1 1 

6 Phase C, A to ground 1 0 0 1 

7 Line-Line Fault Phase A, B 1 1 0 0 
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8 Phase B, C 0 1 1 0 

9 Phase C, A 1 0 1 0 

10 Three phase Fault Phase A, B, C 1 1 1 0 

11 Three phase to Ground Fault Phase A, B, C-Ground 1 1 1 1 

12 No Fault No phase involved 0 0 0 0 

 

For the implementation of classification algorithms, two datasets  with 24 parameters 

 and 8 parameters  respectively 

were created for all SCF (11 types) and No-Fault conditions. 

 

 

 

 

 

 

 

 

 The peak positive voltage values observed for phases A, B, and C respectively during the fault 

condition  

                           are recorded and analyzed. 

= Peak negative values of voltage of phases A, B, and C respectively during the fault 

Maximum positive values of current in phases A, B, and C respectively during the fault 

= Peak negative values of current in phases A, B, and C respectively during the fault 

 Peak and minimum values of zero sequence voltage respectively during the fault  

 Maximum and minimum values of zero sequence voltage respectively during the fault  

= Peak and minimum value of voltage of PMU during the fault 

= Maximum and minimum value of voltage angle of PMU during the fault 

= Maximum and minimum value of current of PMU from during the fault 

= Maximum and minimum value of current angle of PMU during the fault 

Algorithm: Pseudocode for dataset creation  

1. Simulate 2-area, 4-Generator, and 11 Bus system as shown in Figure 1 in MATLAB Simulink environment 

2.  

3.  

4.  

5.  

6.  

7.  

8. simulate the fault 

9.   

10. 0.001 0.005 0.01 0.05 0.1:0.2:20]  

11. ; replace the value of ABCG by 0 or 1 depending on type of fault as shown in Table 1 

12.  
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13.  

14. counter=counter+1 

15. add measured values to above zero vector 

16.  

17.  

18. Run above code for every fault 

19. Tabulate all dataset to train and test the MLA 

3.2 Multi-class classification ML model 

Fault classification of SCF on TL using and its comparison is the main objective of this work. 

To do so the 25 ML models have been trained and tested using training and testing datasets in the proportion of 

80:20. Figure 2 describes the process flow of training and testing of MLA.  

 

 

Figure 2: Process flow diagram to train and test the ML Model 

4. RESULTS AND DISCUSSION 

This section presents the results, organized into three distinct categories. The first category involves the simulation 

of various fault types using MATLAB. The second focuses on the classification of Single Circuit Faults (SCF) 

through the application of machine learning algorithms (MLA). The third category provides a comparative analysis 

of different models based on their performance when trained and tested using the proposed dataset. 

4.1 Simulation of Various Types of Faults in MATLAB 

To begin the fault analysis, a load flow study is conducted using the Newton-Raphson method. This approach is 

used to calculate key system parameters such as bus voltages, phase angles, generated power, and load demand 

under normal operating conditions—prior to the occurrence of any faults. The computed values are summarized in 

Table 2. 

Faults may occur at any point of power system components such as transmission lines, transformers, generators, 

HVDC Convertors etc. The faults have been applied at different location with different combinations of fault 

resistance. The faults have been applied at 0.2 second and removed at 0.3 second. The three phase measurement 

block is used to measure the three-phase voltage & current, sequence analyser block is used to measure zero 

sequence voltage and current, and PMU (PLL based, positive sequence) block is used to measure voltage magnitude 

and its angle, current magnitude, and its angle. To workspace “structure with time” block is used to store data in the 

workspace. The three outputs of the PMU block return the magnitude, the phase (in degrees relative to the PLL 

phase), and the frequency. For the data collection purpose only the magnitude and phase outputs are used. The 

simulation results for different types of faults (11 SCF and 1 No Fault) are shown in Figure 3-14 for the setting of 

fault resistance as 0.001 ohm and length of transmission line as 20 km. Moreover, it can be observed from Figure 3-

14 that the magnitude of fault current is maximum for three phase fault and minimum for single phase to ground 

fault.  Such simulation results were obtained 4992 times for every SCF and 377 times for No Fault as shown in 
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Table 3. Maximum and minimum values of voltage, current and angle are measured during the fault which is in 

between 0.2 to 0.3 second. It can be observed from the Table 3 that 55289 times simulation were run and 442312 

data samples are collected for  and 1326936 data samples are collected for .

 

Table 2: Power flow analysis for Kundur 2-area system, NR Method (Converged in 4 iterations) 

Bus No. 
Voltage 

mag. (p.u.) 

Voltage 

angle (deg) 

Generation 

(MW) 

Generation 

(MVAr) 

Demand 

(MW) 

Demand 

(MVAr) 

1.  0.991 15.03 - - 950.3372 -282.053 

2.  1.003 -11.59 - - 1776.536 -439.355 

3. (Swing 

Bus) 
1.000 0.00 703.2315 108.8019 2.800011 -8.20001 

4. (PV Bus) 1.000 -26.71 700 72.69255 2.800011 -8.20001 

5.  0.992 33.45 - - 0 0 

6.  0.994 7.02 - - 0 0 

7.  0.987 23.21 - - 0 0 

8.  0.993 -3.43 - - 0 0 

9. (PV Bus) 1.000 -16.08 700 82.00615 2.800011 -8.20001 

10. (PV Bus) 1.000 10.17 719 72.05932 2.800011 -8.20001 

11.  0.987 12.60 - - 0.056534  

Total 2822.232 335.5599 2738.129 -754.208 

Table 3: Number of simulations data 

Fault Type Simulations run No. of observations Total No of data samples 

A B C G   
(8 features) 

 
(24 features)   

0 0 0 0 377 377 377 3016 9048 

1 0 0 1 4992 4992 4992 39936 119808 

0 1 0 1 4992 4992 4992 39936 119808 

0 0 1 1 4992 4992 4992 39936 119808 

1 1 0 1 4992 4992 4992 39936 119808 

0 1 1 1 4992 4992 4992 39936 119808 

1 0 1 1 4992 4992 4992 39936 119808 

1 1 0 0 4992 4992 4992 39936 119808 

0 1 1 0 4992 4992 4992 39936 119808 

1 0 1 0 4992 4992 4992 39936 119808 

1 1 1 0 4992 4992 4992 39936 119808 

1 1 1 1 4992 4992 4992 39936 119808 

Total 55289 55289 55289 442312 1326936 
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Figure 3: Phase A to Ground Fault 

 

Figure 4: Phase B to Ground Fault 
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Figure 5: Phase C to Ground Fault 

 

Figure 6: Phase A-phase B to Ground Fault 
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Figure 7: Phase B-phase C to Ground Fault 

 

Figure 8: Phase C-phase A to Ground Fault 
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Figure 9: Phase A-phase B Fault 

 

Figure 10: Phase B-phase C Fault 
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Figure 11: Phase C-phase A Fault 

 

Figure 12: Phase A-phase B-phase C Fault 
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Figure 13: Phase A-phase B-phase C to Ground fault 

 

Figure 14: No Fault 

 

4.1 Performance Indicators 

During the analysis phase, several evaluation metrics are employed to measure the performance of the model 

trained on the proposed dataset. The confusion matrix, presented in Table 4, serves as a key tool for this 

assessment. In the matrix, True Positives (TP) refer to correctly identified positive instances, while True Negatives 
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(TN) are correctly identified negative instances. False Positives (FP) are negative instances incorrectly classified as 

positive, and False Negatives (FN) are positive instances incorrectly labeled as negative. To further evaluate the 

model, metrics such as Accuracy, Precision, Recall, and F1-Score are utilized, providing a comprehensive 

understanding of its effectiveness during training. 

Table 4: Confusion matrix 

Confusion Matrix 
Predicted Values 

Positive Negative 

Actual 

values 

Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

 

 
(21) 

 
(22) 

 
(23) 

 
(24) 

4.2 Test Results 

In this paper, the effectiveness of fault classification was verified using the dataset as listed in Table 3 for training 

and testing the various MLA. The confusion matrix of both dataset for Fine Tree MLA is shown in Figure 15 and 16. 

The confusion matrix of other ML model is also found and the performance metrics are also calculated.  Figure 15 

and 16 represent the confusion matrix of Fine Tree when tested and trained by  for multiclass 

fault classification. The values of TP, FP, FN, TN are calculated from confusion matrix and listed in Table 5. When 

the model is trained through , it is observed that the values of FP and FN for NF, AG, BG, CA, and CG faults 

are zero respectively which indicate that these types of faults are accurately predicted. The other remaining type of 

faults are not predicted accurately as the values of FP and FN are not zero. For example, if the case of AB fault 

classification is considered then it is observed that out of 3986 faults only 3832 faults classified correctly as AB 

fault, 14 faults misclassified as ABG fault and 140 faults misclassified as CAG fault. The value of FP is 124 which 

indicates that these were not the AB fault, but mistakenly predicted as AB fault. The value of FN is154 which 

indicates that these were AB fault but mistakenly predicted as other types of faults. The value of TN is 40121 which 

indicates that these were not the AB fault and correctly classified as not the AB fault. When the same model is 

trained through the proposed dataset then it is observed that the values of FP and FN for all type of faults are zero, 

which indicate that all type of faults are accurately classified and none of the faults are misclassified. 

Figure 17 represents the accuracy of every type of faults when the fine tree model is trained and tested through both 

the dataset. 100% accuracy is achieved only for NF, A-G, B-G, C-A and C-G fault and for other type of faults is less 

than 100%. When the same model is trained through proposed dataset the accuracy of every fault classification is 

100%. Figure 18, Figure 19, and Figure 20 represent the Precision, Reall, and F1-Score comparison of every types of 

faults for Fine Tree Model only. Similar procedures adopted for every SCF and 25 ML algorithm to find the 

accuracy comparison as shown in Figure 21. It can be observed that 21 ML algorithm gives 100% accuracy for 

. 
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Figure 15: Confusion Matrix for validation of Fine Tree using  

 

Figure 16: Confusion Matrix for validation of Fine Tree using  

Table 5: TP, FP, FN, TN of every fault for Fine Tree Model 

Fault type 

 

Performance indicators 

Beta-dataset Proposed Alpha-dataset 

TP FP FN TN TP FN FP TN 

NF 281 0 0 43950 290 0 0 43941 

AB 3832 124 154 40121 4027 0 0 40204 
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ABC 1628 586 2381 39636 3988 0 0 40243 

ABCG 3419 2380 588 37844 3988 0 0 40243 

ABG 3800 359 224 39848 3984 0 0 40247 

AG 4001 0 0 40230 4044 0 0 40187 

BC 2778 156 1209 40088 4006 0 0 40225 

BCG 3820 1315 143 38953 3970 0 0 40261 

BG 3971 0 0 40260 3996 0 0 40235 

CA 4019 0 0 40212 3938 0 0 40293 

CAG 3427 368 589 39847 4029 0 0 40202 

CG 3967 0 0 40264 3971 0 0 40260 

 
Figure 17: Accuracy comparison of every fault 

 
Figure 18: Precision comparison of every fault 
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Figure 19: Recall comparison of every fault 

 
Figure 20: F1-Score comparison of every fault 

 
Figure 21: Accuracy Comparison of various ML Algorithm 

Table 6 represents the accuracy comparison of SCF on TL between the previous work and the present work. The 21 

ML model gives 100% accuracy due to good quality and large dataset.   

Table 6: Accuracy Comparison with Previous Work 

Ref. Year Methodology 
No. of  

Data Samples 

Accuracy 

(in %) 

[12] 2021 Long Short-Term Memory 4380 96.77 

[11] 2021 Graph Convolutional Neural Network 11900 98.28 
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[14] 2022 
Anamoly based One-Class SVM 8712 94.42 

Anamoly based One-Class SVM PCA 8712 95.78 

[13] 2022 Weighted Extreme Learning Machine 22451 97 

[17] 2023 KNN 12000 93.2 

[16] 2023 CNN 20000 99.73 

[21] 2024 Hybrid CNN-LSTM 62501 99.86 

This  

work 
- 

FT, MT, GNB, KNB, LSVM, QSVM, CSVM, FGSVM, 

MGSVM, CGSVM, FKNN, MKNN, CKNN, CoKNN, 

CuKNN, WKNN, BaT, SD, SKNN, NNN, MNN, WNN, 

BNN, TNN 

1326936 

(Alpha data set), 

100 % from 

21 ML 

Models 

5. CONCLUSION 

This paper proposed a novel scheme to improve the accuracy for SCF classification using Classification Learner APP 

in MATLAB by enhancing the quality and quantity of the dataset. The various SCF characteristics were observed on 

Kundur Two-Area System at different locations for various combination of fault resistance. 1326936 data samples 

were collected by measuring maximum and minimum values of three phase voltage, current, zero sequence voltage 

and current, PMU based voltage, current and its angle during the fault and no-fault conditions. The accuracy of 21 

ML models is found to increase to 100% when 25 available ML models are trained and tested using such huge data 

samples. 
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