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Objectives: The primary objectives of this research are to develop and implement a Fuzzy-based
Direct Torque Control (DTC) scheme for Induction Motor (IM) drives in Electric Vehicles (EVs),
specifically designed to overcome the limitations of conventional DTC methods. This entails
achieving a significant reduction in torque ripple, a common issue in traditional DTC, which
directly impacts the smoothness and efficiency of the EV's operation. Furthermore, the research
aims to enhance the dynamic response of the IM drive system, enabling faster and more precise
control of the motor's torque and speed, crucial for the dynamic driving conditions experienced
by EVs. Ultimately, the successful implementation of the Fuzzy DTC scheme should lead to an
overall improvement in the efficiency and robustness of the IM speed control within the EV
system, ensuring reliable and high-performance operation across all driving scenarios, including
acceleration, deceleration, and constant speed maintenance.

Methods: The methodology employed in this research centers around the development and
implementation of a Fuzzy-based Direct Torque Control (DTC) scheme for Induction Motor (IM)
drives. Departing from traditional DTC, which relies on hysteresis bands and a switching table,
this approach integrates a Fuzzy Logic Switching Controller (FLSC) to optimize inverter
switching decisions. The FLSC takes as inputs the torque error, stator flux error, stator flux angle,
and the count of switching updates, providing a more refined control mechanism. A Mamdani
fuzzy inference system (FIS) is utilized, employing triangular and trapezoidal membership
functions to fuzzify these input variables. The output of the fuzzy controller dictates the switching
state, selected from seven possible states represented by crisp triangular membership functions.
This fuzzy logic-based approach allows for a more nuanced and adaptive control strategy,
enabling the system to respond effectively to the nonlinearities and uncertainties inherent in IM
drives. The fuzzy rules, developed based on engineering expertise and practical experience, guide
the selection of the optimal switching state. The research leverages simulations using
MATLAB/Simulink to model the IM drive system and evaluate the performance of both
conventional and Fuzzy DTC schemes under various operating conditions. This allows for a
comparative analysis of torque ripple, dynamic response, and overall efficiency, validating the

effectiveness of the proposed fuzzy-based control strategy.

Results: The simulation results presented in this paper demonstrate the superior performance
of the proposed Fuzzy-based Direct Torque Control (DTC) scheme compared to conventional
DTC methods for Induction Motor (IM) drives in Electric Vehicles (EVs). Across various
operating conditions, including different load and speed combinations, the Fuzzy DTC
consistently exhibited a significant reduction in torque ripple. This reduction translates to a
smoother and more efficient motor operation, crucial for enhancing the driving experience and
overall performance of EVs. Furthermore, the Fuzzy DTC showed improved dynamic response,
characterized by lower overshoot and faster settling times. These findings indicate that the fuzzy
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logic-based control strategy enables more precise and rapid control of the IM's torque and speed,
effectively addressing the limitations of traditional DTC. Specifically, the data presented in Table
3 and Figures 18, 19, and 20 highlight the quantifiable improvements in parameters such as
torque ripple percentage, slew rate, and overshoot. The comparative analysis consistently
favored the Fuzzy DTC scheme, validating its effectiveness in achieving robust and efficient IM

speed control under the dynamic operating conditions typical of electric vehicles.

Conclusions: This paper has investigated the application of fuzzy based DTC to induction
motor (IM) drives in electric vehicles (EVs). The proposed Fuzzy DTC approach addresses the
limitations of conventional technique of DTC, including high ripple of torque by integrating fuzzy
logic into the control scheme. Simulation results show the proposed Fuzzy DTC effectively
achieves precise and robust speed control under various EV operating conditions. The approach
optimizes switching decisions based on fuzzy rules, resulting in improved performance
compared to traditional DTC methods. The proposed Fuzzy DTC scheme offers reduced torque
ripple, improved efficiency, enhanced dynamic performance, and a smoother driving experience.

Keywords: : Induction Motor (IM), Electric Vehicles (EVs), Direct Torque Control (DTC),

Fuzzy Logic

1. INTRODUCTION

However, with the increasing global awareness of climate change and the rise in fossil fuel usage and an unavoidable
preference for sustainable transportation, the practicality of successfully running electric vehicles (EVs), regardless
of gasoline-powered internal combustion vehicles, becomes more viable with efficiencies and cleaner modes of
operation. [1] However, the problem is to control the electric motor needed for proper real-time functionality of the
EV at a consistently high output. Then, traditional control techniques are not without mistakes; for example, Field
Oriented Control (FOC) and Direct Torque Control (DTC) are vulnerable to parameter fluctuations, and torque ripple
is excessively high.[2] These mistakes decrease efficiency and quality of operation, which increases operating costs
for maintenance purposes. Thus, to alleviate such mistakes, many powerful control techniques have been studied and
proposed as solutions for implementation. [3] These include neural network-based speed control, fuzzy rules-based
speed control and model predictive speed control. This research proposes a Fuzzy DTC scheme for IM drives of an
electric vehicle. The contribution is that using fuzzy logic on the DTC scheme for better switch control and reduced
torque ripple allows the scheme to possess better speed control precision, increased efficiency, and reduced torque
ripple. Multiple control strategies are required to maintain optimal operation of EVs and ensure adequate power flow
regulation between the battery, motor, and other vehicle components. Induction motors have been widely used as
the motor in an EV setting because they are trustworthy and low-cost.[4] Yet, the challenge with controlling speed in
an EV that uses an induction motor is that this type of system is not easily controllable because of uncertainties and
nonlinearities. Thus, this project will investigate the concept and realization of a Fuzzy DTC scheme for automotive
IM drives. The superiority of the new approach over conventional control methods will be validated via simulation
and experimental results.[5][6][7]

2. METHODOLOGY

2.1 Direct Torque Control (DTC)

DTC is a common approach to control of IM Drive.In this scheme,the stator flux and torque are controlled directly.
While other control methods manage current, DTC functions in the torque-flux plane to achieve faster transient
response and improved dynamics. Direct torque control operates by sensing voltage and current fed to the motor and
determining what the motor torque and flux of stator should be.[8] Once the actual motor torque comparison and
flux of stator torque, derived from estimations, versus the expected reference values is established, appropriate
inverter switching actions are selected based upon the error values generated to maintain torque and flux at desired
levels. This is essentially a controllable closed-loop system that facilitates rapid, decoupled control of torque and
speed.[9]
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Block Diagram of Conventional method of DTC
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Fig. 1. Block Diagram of Conventional method of DTC

Effective DTC Estimation The proposed Direct Control of Torque scheme will be applied based on effective
electromagnetic flux and torque estimation of the induction motor, which occurs through a Simulink dynamic
simulation model of the induction motor. Induction motor dynamics are state-space defined by the coupled
differential equations of its operation. In other words, the characteristics of the motor are transferable from a 3-phase
stationary reference frame to a 2-phase— with the two-phase a,  stationary reference frame being more optimal.[10]
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Speed Error and Reference Torque Generation As per Figure 1, this is the block diagram of the Closed-Loop
conventional DTC of an IM. The flux and torque are controlled directly via selection of voltage vector, where the stator
flux rotates through the proper angle to create the appropriate (post speed error created) torque that needs to be
generated, thus creating the torque reference. The actual induction motor speed is determined relative to rated speed,
meaning a speed offset is created which is given to a PI type of controller. The controller's output is the reference
torque (Te*) given to the motor to achieve the attempted operating speed. Stator Flux Reference Generation The
reference frame of stator flux is generated to guarantee that the motor runs with the expected value of reference
torque.[10][11][12] This is accomplished through Equation (3).
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CDTC Control Principle

The vector of voltage is created from error of flux, the error of torque, and calculated flux angle so that the stator
flux is rotated to produce the generated electromagnetic torque (Te), where |ps| is the calculated flux of stator
amplitude and Os is flux angle of the stator. Hysteresis Band Control. A double-level hysteresis band is implemented
in order to having the flux between certain limits. An error is created in a binary fashion relative to the expected upper
and lower limits. The stator flux space is sectioned off into 60° increments, creating a total of six to create the required
voltage vector.

Switching Table-Based Control

The utilization of the active or zero voltage source inverter (VSI) vector switching happens based upon the response
of the flux band hysteresis and torque band hysteresis as well as the identified flux sector. A switching table is
presented in Table 1 to determine the necessary switching vector needed. The VSI has six active and two zero
switching states, providing flexibility for motor operation.. Relative to the CDTC Method of the Active Switching
Vector Application Relative to the active switching vector application in the CDTC method, once the active switching
vector is used, it does not change for the rest of the sampling time. Hence, this method successfully regulates flux and
torque.[13]

Table 1:Switching Logic of Conventional DTC

Sector 1 I 111 v Vv VI
Flux Torque

F= T= Vs V3 \ Vs Vs Vi

T=0 Vs Vo Vs Vo Vs Vo

=-] Ve Vi Va V3 V4 Vs

F=0 T= Vs Vi Vs Vs Vi Va2

T=0 Vo Vs Vo Vs Vo V7

=-1 Vs Vs Vi Va Vs Vi

2.2 Fuzzy Logic-Based Direct Torque Control (FLDTC) of Induction Motor

Conventional DTC methods suffer from high ripple of flux , high ripple of torque and low-speed transient response
deficiencies. Therefore, a DTC method that incorporates fuzzy logic would solve these issues. FDTC Method The fuzzy
direct torque control (FDTC) method uses a fuzzy logic switching controller (FLSC) to determine switching instead
of hysteresis bands and alogic table of switching. The FLSC inputs are error of torque, error of flux, flux angle of stator
and the count of switching updates to determine the optimal switching state. The fuzzy logic controller is based on a
Mamdani fuzzy inference system (FIS). The input variable joins the fuzzy variables through triangular and trapezoidal
membership functions. Unlike other methods, the fuzzy controller output uses seven switching states with crisp
triangular membership functions. Figures 3(a), 3(b), and 3(c) show the membership function distributions for error
of torque, error of stator flux and the error of stator flux angle, respectively. Such membership functions enable a
softer and softer control output. The fuzzy controller selects one of seven switching states (represented by a crisp
triangular membership function shown in Fig. 3) as its output.[14]
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Table 2 :Fuzzy switching logic rule base.
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The optimal switching state is selected using fuzzy rules after fuzzification. Fuzzy rules are developed based on
engineering expertise and experience with the process to meet controller objectives. For example, obtain the sector
of the stator flux from the stator flux angle, and subsequently, obtain the switching state according to the obtained
sector to boost flux and motor torque to obtain their reference values. With three inputs (3 x 5 x 12) fuzzified, 180
fuzzy AND rules are generated, selecting the minimum membership degree of er, ey, and 6.

4.Simulations,Results and Discussion

Power: 102 kW (137 hp)Voltage(RMS):312 V,Frequency:50 Hz,Ploe:4,

Stator Resistance:0.435 Q, Rotor Resistance:0.216 Q,Rated Speed:1440 RPM
Torque base:671.5 Nm

Base Torque at 50 % Load=335.75 Nm,Base Torque at 120% Load=805.8 Nm
Torque Reference signal is given at 0.5 s

Speed reference signal is given at 0.1s

E fspeed| I
Direct Look-Up

Table (n-D)1

@

Torque Ref

Speed Regulator Display3
{+ ) 3D TN
Sa Ua Mz w —@
2D T_[IE i, v
) > Ua >
i » Lplsb ub _l-p Fluxm ﬂ Scope2
— ub
Direct Lock-Up thetas Scopes
Tsble (n-D) 5 ve ol 1
I i 14
'—| Inverter makpr Scopel
sector |4

Fig:4: Simulink model of DTC
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Fig:5: Simulink model of Fuzzy-DTC
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Fig:6: Stator Current, Torque Speed in DTC Control Scheme at 100% load and 100% Speed
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Fig:8: Stator Current, Torque Speed in DTC Control Scheme at 120% load and 100% Speed

Fig:6,Fig:7 and Fig:8 shows the Stator Current, Load Torque and Rotor Speed response of conventional DTC at

different operating conditions.
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Fig:9: Stator Current, Torque Speed in FLC- DTC Control Scheme at 100% load and 100% Speed
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Fig:10: Stator Current, Torque Speed in FLC- DTC Control Scheme at 50% load and 50% Speed
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Fig:11: Stator Current, Torque Speed in FLC- DTC Control Scheme at 120% load and 100% Speed

Fig:9,Fig:10 and Fig:11 shows the Stator Current, Load Torque and Rotor Speed response of Fuzzy DTC at different

operating conditions.
The MATLAB simulation is carried out for induction motor having ratings listed below:

Power:2.2 kW(3 HP),Voltage(RMS):220 V,Frequency:50 Hz,Ploe:4,
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Stator Resistance:0.435 (2, Rotor Resistance:0.216 QRated Speed:1440 RPM
Torque base:14.5 Nm

Torque Reference signal is given at 0.5 s

Speed reference signal is given at 0.1s
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Fig:12: Stator Current, Torque Speed in DTC Control Scheme at 100% load and 100% Speed
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Fig:12,Fig:13 and Fig:14 shows the Stator Current, Load Torque and Rotor Speed response of conventional DTC at

different operating conditions.
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Fig:15: Stator Current, Torque Speed in FLC- DTC Control Scheme at 100% load and 100% Speed
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Fig:17: Stator Current, Torque Speed in FLC- DTC Control Scheme at 120% load and 100% Speed
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Fig:15,Fig:16 and Fig:17 shows the Stator Current, Load Torque and Rotor Speed response of Fuzzy DTC at different

operating conditions.

Sr Number | Parameters DTC Fuzzy-DTC
1 Overshoot (%) 18.9 16.02
2 Settling Time (s) 0.66 0.2
3 Rise Time (ms) 123.61 122.13
4 Slew Rate(Nm/ms) | 272.86 | 5.7
5 Torque Ripple(%) 24.14 20.11
Operating Condition:2:50% Load and 50 % Speed
Sr Number | Parameters DTC Fuzzy-DTC
1 Overshoot (%) 14.64 12.24
2 Settling Time (s) 0.172 0.25
3 Rise Time (ms) 115.52 123.14
4 Slew Rate(Nm/ms) | 77.98 7.14
5 Torque Ripple(%) 31.72 15.33
Operating Condition:3:120% Load and 100 % Speed
Sr Number | Parameters DTC Fuzzy-DTC
1 Overshoot (%) 80.9 19.17
2 Settling Time (s) 0.63 0.2
3 Rise Time (ms) 118.13 88.16
4 Slew Rate(Nm/ms) | 8.77 3.89
5 Torque Ripple(%) 27.44 15.33

% Torque Ripple Slew Rate(Nm/ms)

Table 3 :Analysis of Results

Operating Condition:1:100% Load and 100 % Speed

20
15
10
5
0

Operating Condition:1:100% Operating Condition:2:50% Operating Condition:3:120%

Load and 100 % Speed

Load and 50 % Speed

WDTC mFuzzy DTC

Load and 100 % Speed

Fig:18:Torque Ripple(%) Comparison
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Fig:19:Slew Rates(Nm/ms) Comparison
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The comparison between Torque ripple(%),0ver shoot(% and slew rate (Nm/ms) is illustrated in fig 18,fig 19 and fig
20.The comparison shows that the Fuzzy based DTC Control scheme is better in all operating conditions with respect
to conventional DTC.

Conclusion

This paper has investigated the application of fuzzy based DTC to induction motor (IM) drives in electric vehicles
(EVs). The proposed Fuzzy DTC approach addresses the limitations of conventional technique of DTC, including high
ripple of torque by integrating fuzzy logic into the control scheme. Simulation results show the proposed Fuzzy DTC
effectively achieves precise and robust speed control under various EV operating conditions. The approach optimizes
switching decisions based on fuzzy rules, resulting in improved performance compared to traditional DTC methods.
The proposed Fuzzy DTC scheme offers reduced torque ripple, improved efficiency, enhanced dynamic performance,
and a smoother driving experience.
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