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Introduction: Accurate electric load forecasting is essential for power companies to ensure 

efficient load scheduling and avoid excessive electricity production. However, developing a 

reliable forecasting model remains a complex task due to the need for training multiple models, 

selecting the most effective one, engineering informative features, and determining optimal time 

lags for time series forecasting. 

Objectives: This research aims to address the challenges of long-term electric load forecasting 

by proposing a hybrid model that combines Long Short-Term Memory (LSTM) neural networks 

with Genetic Algorithms (GA). The objective is to enhance forecasting accuracy through optimal 

feature selection, time lag determination, and LSTM architecture configuration. 

Methods: The methodology involves building baseline models using both linear and non-linear 

machine learning algorithms. Feature selection is conducted using wrapper and embedded 

methods to identify the most relevant predictors. Genetic Algorithms are applied to optimize 

time lags and the number of LSTM layers. The model is trained and evaluated using electricity 

consumption data from the Sharjah Emirate.  

Results: The optimized LSTM-GA model significantly outperforms traditional machine 

learning models. It achieved a Mean Absolute Error (MAE) of 10 MW and a Root Mean Square 

Error (RMSE) of 12 MW, compared to 20 MW MAE and 25 MW RMSE from the Random Forest 

model. Feature selection reduced MAE by 33.3% and RMSE by 40%, demonstrating the 

effectiveness of GA-based optimization. Temperature analysis revealed that every 1°C increase 

beyond 30°C results in a 900 MW rise in electricity load, highlighting the importance of 

incorporating weather data.  

Conclusions: The results confirm that the proposed LSTM-GA framework effectively captures 

the dynamics of long-term electric load forecasting. The integration of feature engineering, 

optimization algorithms, and weather data enhances prediction accuracy, making it a promising 

tool for power system planning and management. 

Keywords: electric load forecasting, LSTM, genetic algorithm, time series, feature selection, 

optimization. 

 

INTRODUCTION 

Accurate electricity load forecasting (ELF) is vital for the planning, operation, and management of power systems, 

particularly in the context of increasing energy demands and the integration of renewable energy sources. Load 

forecasting not only ensures economic optimization of generation and distribution but also enhances public safety 

and supports the stable operation of society [1]. Misestimations, whether overestimation or underestimation, can 

lead to costly inefficiencies, blackouts, or resource misallocations, as illustrated by events such as the 2003 Northeast 

blackout in North America, which affected over 50 million people and resulted in losses exceeding USD 6 billion [2], 

[3]. 
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Traditional statistical methods such as Autoregressive Integrated Moving Average (ARIMA) and Exponential 

Smoothing have been widely used in load forecasting due to their simplicity and effectiveness in short-term, linear, 

and stationary data contexts [4]. However, these methods often fail to capture non-linear dependencies, seasonal 

trends, and external factors such as temperature and economic activity, especially in long-term scenarios. The 

evolving complexity of energy systems necessitates more advanced forecasting tools that can handle large, dynamic 

datasets and uncover hidden temporal relationships [5]. 

In response, machine learning (ML) and deep learning techniques, such as Support Vector Machines (SVM), Random 

Forests, and Artificial Neural Networks (ANN) have been adopted for their superior performance in handling non-

linear and high-dimensional data. These models also consider external variables such as weather or holidays to 

improve prediction accuracy [6]. Among these, Long Short-Term Memory (LSTM) networks, a variant of Recurrent 

Neural Networks (RNN), have shown promising results in time-series forecasting due to their ability to capture long-

range temporal dependencies [7]. LSTM networks maintain memory over time, allowing them to learn complex 

patterns across various time scales, including daily, weekly, and seasonal variations [8]. 

Nevertheless, the performance of LSTM models heavily depends on appropriate feature selection and optimal tuning 

of hyperparameters, such as the number of neurons, learning rate, and time lags. Improper configuration can lead to 

overfitting or poor generalization. Effective feature selection strategies, such as wrapper and embedded methods have 

been shown to enhance forecasting accuracy by focusing only on the most relevant predictors  [9], [10]. To address 

the challenge of hyperparameter tuning, heuristic optimization techniques such as Genetic Algorithms (GA) offer 

robust solutions. GA simulates natural evolutionary processes to search for optimal parameter configurations, 

enabling efficient tuning of LSTM architectures and improving forecasting accuracy [11], [12]. 

This study focuses on enhancing long-term electricity load forecasting in the Sharjah Emirate by integrating LSTM 

networks with GA-based optimization. The model leverages historical electricity consumption data, weather 

variables, and selected feature subsets to develop a predictive framework. By optimizing time lags and network 

parameters through GA, the proposed approach aims to outperform conventional forecasting methods and provide 

a more accurate, scalable, and practical solution for energy system planning [13], [14]. 

OBJECTIVES 

The main objective of this work is to enhance the accuracy and reliability of electricity load forecasting (ELF) through 

the integration of advanced deep learning techniques and intelligent optimization algorithms. In light of the growing 

demand for sustainable energy solutions and the increasing complexity of electricity consumption patterns, this 

research aims to address the limitations of conventional forecasting models by leveraging the strengths of Long Short-

Term Memory (LSTM) Recurrent Neural Networks (RNN) and Genetic Algorithms (GA). 

This research is based on the belief that a proper forecast model is fundamental to efficient energy planning and 

market stability. By embedding feature selection strategies and optimization procedures into the forecast pipeline, 

this research aims to provide a robust, scalable and intelligent system capable of adapting to diverse data scenarios. 

In addition, an evaluation framework is designed to rigorously validate model performance through comprehensive 

statistical and performance metrics. 

METHODS 

This research outlines a comprehensive methodology for electricity load forecasting using a Long Short-Term 

Memory (LSTM) model enhanced with a genetic algorithm (GA). The process begins with the acquisition of historical 

electricity load data from SEWA Electric Company (for 2020, 2021, 2023, and 2024), as well as climatological data 

including temperature, humidity, and other weather parameters.  

The next stage is data pre-processing. This step involves merging electricity consumption data with weather data and 

time-lagged variables. These time-lagged variables are created to capture temporal dependencies, such as how past 

electricity consumption or weather conditions influence future consumption. The data is then cleaned by handling 

missing values using imputation techniques (e.g., filling with mean values), and scaled to a [0, 1] range to standardize 

features and improve the model's training phase. Subsequently, the data is divided into 80% for training and 20% 

for testing, while maintaining temporal order. Time series stationarity is also checked using the Dickey-Fuller test. 
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Feature engineering and feature selection are crucial subsequent steps. New features are created from previous time 

steps to help the model predict future electricity consumption. External variables like weather and holidays are also 

included as time-lagged features due to their influence on consumption patterns. To optimize feature selection and 

time-lag, a Genetic Algorithm (GA) is employed. The GA identifies the most relevant features and optimal time-lags 

to minimize forecasting errors. Additionally, Recursive Feature Elimination (RFE) is used to gradually remove less 

relevant features. 

The benchmark model is then selected by evaluating the performance of various machine learning algorithms such 

as ANN, gradient boosting, random forest, and others. Models are evaluated using Mean Absolute Error (MAE) and 

Root Mean Square Error (RMSE). The LSTM model enhanced with GA was found to provide the best results and is 

therefore chosen as the benchmark model. 

After the benchmark model is selected, the design and training of the LSTM model are carried out. The LSTM 

architecture is designed with an input layer for time-lagged features and external variables, one or more LSTM layers, 

and a dense layer for forecasting. LSTM model hyperparameters, such as the number of layers, neurons per layer, 

activation function (tanh is used), and optimizer (Adam is used), are tuned to optimize prediction accuracy. Model 

training is performed using Backpropagation Through Time (BPTT). Early stopping is applied during training to 

prevent overfitting. Hyperparameters are further tuned using grid search and random search. 

Finally, the model is thoroughly evaluated. Model performance is assessed using MAE and RMSE, which provide a 

measure of average error and give higher weight to significant errors. The model is tested on 20% of the dataset, not 

used during training, to ensure its generalization capability and effectiveness. Cross-validation is also performed to 

verify the model's robustness across different data splits. The final output of the proposed LSTM-RNN model is 

electricity load forecasting, which considers weather conditions to accurately predict peak consumer loads. The 

proposed research framework for the LSTM-RNN forecasting model with GA and best features selection is shown in 

Figure 1. 

 

Figure 1. Proposed Research Framework for LSTM-RNN Forecasting Model with GA and Best Features Selection 

RESULTS 

The experimental setup in this research was designed using a systematic approach that encompassed data collection, 

preprocessing, feature selection, model training, and performance evaluation. As the study did not involve the 

development of a physical prototype, the entire experimental process relied solely on historical electricity load data 

obtained from SEWA.  

 The dataset consists of Electric Load Data (hourly or daily electricity consumption records collected from SEWA), 

Weather Data (Temperature, humidity, and wind speed), and Calendar Data (Public holidays, weekdays vs. 

weekends, and seasonal variations 
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Feature Selection 

Preliminary feature selection, incorporating statistical and machine learning techniques like correlation analysis, 

mutual information, Recursive Feature Elimination (RFE), Principal Component Analysis (PCA), and feature 

importance from machine learning models, was performed to filter redundant or unimportant features.  

Time Lag Selection and Optimization 

Time lag selection is important for GA optimization, maintaining important past observations for forecasting. The 

study utilized ACF, PACF, RFE, and cross-validation to select appropriate time lags, as listed in Table 1, including 

short-term (1, 3, 6, 12, 24 hours), daily (24, 48 hours), and weekly (168 hours/7 days) intervals. Genetic Algorithm 

(GA) was employed to fine-tune the hyperparameters of the LSTM model, specifically identifying the optimal number 

of layers and time lags. This optimization process significantly reduced forecasting errors and enhanced the model's 

overall performance. As illustrated in Figure 2 and Figure 3, GA-optimized lags notably reduce forecasting errors 

during peak periods in terms of both timing and magnitude, as further demonstrated in Figure 4 which shows the 

impact of lag optimization on peak predictions. This confirms their critical role in capturing complex electricity load 

dynamics for reliable peak prediction and effective grid management, with the quantified improvement shown in 

Figure 5. 

Table 1. Selected Time Lag before GA 

Category Selected Time Lags 

Short-term Lags 1-hour, 3-hour, 6-hour, 12-hour, 24-hour 

Daily Lags 24-hour, 48-hour 

Weekly Lags 168-hour (7 days) 

 

 

Figure 2. Actual vs Predicted Load (GA-Optimized LSTM) 

 

Figure 3. Daily Patterns Captured by Time Lags 
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Figure 4. Impact of Lag Optimization on Peak Predictions 

  

Figure 5. Comparison of MAE and RMSE for Optimized vs Non-Optimized Peak Predictions 

Model Training and Evaluation 

The experimental framework involved an 80% training and 20% testing data split to maintain sequence integrity. 

Model optimization using GA parameters for LSTM was evaluated using Mean Absolute Error (MAE) and Root Mean 

Square Error (RMSE). 

Impact of Feature Selection on Model Performance 

Feature selection significantly improved model performance across all evaluated models. The improvements are 

quantified in Table 2 as different models' improvements after feature enhancements and visually represented in 

Figure 6. For Linear Regression, MAE improved by 20% (from 50 to 40) and RMSE by 21.4% (from 70 to 55). Decision 

Trees saw a 20% improvement in both MAE (from 35 to 28) and RMSE (from 45 to 36). Random Forest's MAE 

decreased by 20% (from 25 to 20), and RMSE improved by 20% (from 30 to 24). The Optimized LSTM model showed 

the most significant improvements, with MAE decreasing to 10 (33.3% improvement from 15) and RMSE reducing 

by 40% (from 20 to 12). This highlights feature selection's crucial role, especially for complex architectures like LSTM, 

by enabling better visualization of temporal and environmental dependencies. 

Table 2. Different Models Improvements after Features Enhancements 

 MAE Values in MW RMSE Values in MW 

Model Baseline 

With 

Feature 

Selection 

Improvement 

(%) 
Baseline 

With 

Feature 

Selection 

Improvement 

(%) 

Linear Regression 

[15] 

50 40 20% 70 55 21.4% 
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Decision Trees [16] 35 28 20% 45 36 20% 

Random Forest [17] 25 20 20% 30 24 20% 

Optimized LSTM + 

best selection + GA 

(LRSG) 

15 10 33.3% 20 12 40% 

 

 

 

Figure 6. Baseline VS Features Selection Error Rate 

Summary of Findings 

This research comprehensively analyzed contemporary approaches to electric load forecasting, identifying a gap in 

the application of deep learning methods specifically tailored for the Sharjah environment. To address the first 

objective, data was gathered and preprocessed, and the proposed deep-learning model was developed. The Long 

Short-Term Memory (LSTM) model, optimized with a Genetic Algorithm (GA), was chosen due to its remarkable 

performance in modeling sequential data and its ability to memorize long-term dependencies and optimize, which is 

essential for precisely forecasting electric load demand. As highlighted in the second objective, the outcome revealed 

significant precision improvements compared with other forecasting models. By incorporating weather conditions, 

time indicators, and historical load data inputs, the LSTM model helped identify several factors that affected load 

demand. The final objective of this research, achieving low Root Mean Square Error (RMSE) and Mean Absolute 

Error (MAE) values, indicates a high level of prediction accuracy. 

Theoretical Implications 

Theoretically, this research advances the electric load forecasting knowledge base by demonstrating the effectiveness 

of LSTM networks in this field. It challenges the traditional understanding of statistical models, showcasing the 

ability of deep learning to replicate real-world electric load patterns more accurately. Furthermore, an examination 

of data preprocessing and feature engineering revealed their potential to enhance model performance, thereby 

expanding our understanding of the effective application of machine learning in energy forecasting. 

Practical Implications 

From a practical standpoint, the outcomes of this research hold significant potential for enhancing energy 

management in Sharjah. The higher level of prediction accuracy of the LSTM model could improve the engineering 

of energy systems for efficient distribution, increase the level of renewable energy integration, and aid in planning 

for high demand periods. It also has the potential to reduce operational costs for energy suppliers and improve the 

stability and sustainability of energy for consumers. The study also highlights the need to focus on the data foundation 

and develop analytic capacity to derive value from sophisticated prediction systems. 

CONCLUSION  

Limitations and Future Directions 

Nevertheless, it is important to fully acknowledge the limitations of the current study. Although the model 

outperforms traditional practices, its performance depends directly on the quality and granularity of the data it 
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receives. As with any model, future research could incorporate additional variables, such as socio-economic 

characteristics or finer weather data, to further enhance the predictive model. Furthermore, there is a relatively low 

level of knowledge regarding the model's ability to generalize to other regions or contexts. Future studies may refine 

this method to include distinct locations or distribute load forecasts in commercial or industrial settings where usage 

is likely to differ from residential use. Future research could also explore using deep learning in conjunction with 

other classical statistical or machine learning paradigms. Such models could offer a more balanced approach between 

statistical methods, ensuring easy-to-understand results without sacrificing the predictive power of deep learning 

techniques, thereby enhancing the versatility of the study. 

Concluding Remarks 

This research is a step toward using deep learning to forecast electric load demand in Sharjah, UAE. Through the 

application of LSTM network capabilities, this study provides a more reliable, effective, and possibly revolutionary 

technique for regulating energy demand. The research has successfully addressed a significant gap and provides a 

strong base for subsequent research. Future research suggests that combining an energy management approach with 

the next generation of advanced analytics can significantly enhance the sustainability, reliability, and efficiency of 

energy solutions. 
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