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While adversarial training enhances model robustness against input perturbations, it
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propose a unified defense framework that combines adversarial training with weight-only
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capacity through quantization-aware fine-tuning, reducing overfitting and narrowing the
confidence gap between training and non-training samples. We further introduce a posterior
flattening regularizer to suppress membership-specific signals. Experimental results on
benchmark datasets demonstrate that our approach significantly lowers attack success rates
while maintaining competitive accuracy, offering an effective and efficient solution for deploying
secure and privacy-preserving DNNs in real-world settings.
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INTRODUCTION

Deep learning has achieved remarkable success across a wide range of applications, from image recognition and
medical diagnosis to autonomous driving and natural language processing. The growing availability of data and
compute resources has enabled deep neural networks (DNNs) to outperform traditional machine learning models in
both accuracy and scalability. These models, empowered by their ability to learn rich hierarchical representations,
have become central components in mission-critical systems across both commercial and academic domains.

Despite these advances, the rapid and widespread deployment of DNNs has surfaced a range of security and privacy
vulnerabilities, particularly when models are trained on or exposed to sensitive data. Examples include patient health
records, biometric identifiers, financial transactions, and other forms of personally identifiable information (PII). In
many real-world use cases, models not only need to perform well but must also operate under strict privacy
guarantees, especially in regulated industries such as healthcare, finance, and defense.

One major category of risk arises from the overexposure of training data properties. Even when the data itself is never
directly accessible, trained models can inadvertently reveal information about individual samples through their
prediction behavior. Membership inference attacks (MIAs) have emerged as a prominent class of privacy threats,
wherein an adversary seeks to determine whether a specific data point was part of a model's training set. The ability
to successfully conduct such an inference attack undermines the confidentiality of training datasets and raises serious
ethical and legal concerns. Compounding this issue is the growing focus on adversarial robustness—the development
of models that are resistant to adversarial examples, i.e., perturbed inputs crafted to mislead predictions. Adversarial
training, a widely used defense technique, enhances robustness by retraining models on adversarially modified
inputs. However, it has been observed that such robustness often comes at the cost of increased model memorization,
which in turn makes models more susceptible to MIAs. This creates a conflict between two critical objectives in
modern Al systems: securing the model against malicious inputs and safeguarding the privacy of its training data. To
deploy DNNs responsibly in high-stakes environments, it is therefore essential to simultaneously address both
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adversarial and privacy vulnerabilities, rather than treating them as isolated challenges. Achieving this balance is
particularly urgent for systems deployed on edge devices or in resource-constrained settings, where data privacy,
inference speed, and model robustness must be maintained concurrently. One of the most well-known threats to deep
learning models is the adversarial example—carefully crafted inputs that cause a model to make incorrect predictions
with high confidence, even though the perturbations may be imperceptible to humans. These inputs expose
weaknesses in a model’s decision boundaries and raise serious concerns in safety-critical domains such as healthcare,
finance, and autonomous systems. To counteract such threats, adversarial training has been developed as a leading
defense technique, which involves training models on adversarially perturbed data. This method encourages models
to generalize better under attack, increasing their robustness to input manipulations and reducing vulnerability to
evasion techniques.

Despite its effectiveness against adversarial attacks, adversarial training introduces an unintended side effect: it tends
to increase the memorization of training data, especially in overparameterized models. This increased memorization
creates fertile ground for membership inference attacks (MIAs), a type of privacy attack where an adversary aims to
infer whether a particular sample was part of the model’s training set. Successful MIAs can lead to severe privacy
violations, such as revealing medical records, identity information, or proprietary datasets. Thus, a troubling trade-
off emerges between adversarial robustness and data privacy—improving one often degrades the other. This conflict
poses a fundamental problem for the safe deployment of DNNs in privacy-sensitive settings. As organizations aim to
secure their models against adversarial manipulation, they may inadvertently expose user data to inference-based
leakage, undermining public trust and violating legal data protection regulations such as GDPR and HIPAA. These
risks are not confined to ML systems; empirical studies reveal parallel challenges — for instance, Mereani [12] found
that fewer than 33% of enterprises using IoT devices conduct regular privacy risk assessments, despite 16.1%
experiencing data leaks. This systemic gap highlights the critical need for proactive, architecture-level protections
that address both adversarial robustness and privacy preservation. Therefore, there is an urgent need for strategies
that jointly enhance model robustness while safeguarding privacy, avoiding the zero-sum dynamic often observed
between these objectives.

In this work, we address this challenge by exploring a hybrid approach that combines adversarial robustness
techniques with model quantization, not merely for efficiency, but as a privacy-enhancing mechanism. We
hypothesize that model quantization—by reducing weight precision and limiting representational capacity—can
counteract the overfitting and confidence amplification effects of adversarial training. Specifically, our approach aims
to smooth decision boundaries and reduce the confidence gap between training and unseen data, thereby reducing
the success of membership inference attacks without sacrificing robustness. This dual-purpose framework holds
promise for building models that are both secure against adversarial inputs and resilient to privacy leakage, even in
constrained deployment environments such as mobile or edge devices. In the following sections, we formalize this
approach and demonstrate its effectiveness empirically.

BACKGROUND AND RELATED WORKS

In order to motivate the proposed approach and contextualize its contributions, this section provides a
comprehensive overview of the foundational concepts and related research. We begin by examining adversarial
examples and the corresponding defense strategies developed to counter them, particularly focusing on adversarial
training. Next, we delve into membership inference attacks (MIAs), a growing privacy threat in machine learning
models, and analyze their mechanisms, underlying assumptions, and key challenges. Finally, we present a structured
review of the state-of-the-art defenses against MIAs, organized chronologically to trace the evolution of the field.
Special attention is given to recent advances in quantization techniques, which have emerged as a promising direction
for mitigating privacy leakage without compromising model performance.

Adversarial Examples and Defenses

Despite the increasing success of deep neural networks (DNNs) in complex decision-making tasks, they remain highly
susceptible to adversarial examples—inputs that have been subtly manipulated to cause erroneous model
predictions. These perturbations are crafted by adding imperceptible noise to the original inputs while ensuring that
the modified inputs remain visually or semantically similar from a human perspective. Adversarial examples pose a
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major security risk in safety-critical domains such as medical diagnosis, autonomous navigation, and facial
recognition, where even small misclassifications can lead to harmful outcomes.

Mathematically, an adversarial example x’ for a model fy and true label y satisfies:

fo(2') £y subjectto |z —a'[, <e (1

where € defines the maximum allowable perturbation under an L, norm constraint. The attacker’s objective is to find
such an x’ that lies close to x in input space but causes a misclassification with high confidence.

To address this vulnerability, the machine learning community has proposed numerous adversarial defense
strategies, broadly categorized into empirical and certifiable approaches:

e Empirical defenses : aim to improve robustness through data augmentation or loss re-weighting. Among
them, adversarial training is the most widely adopted method. It involves augmenting the training process
with adversarial examples generated on-the-fly (e.g., via PGD or FGSM) to improve local stability around
each data point.

e Certifiable (verifiable) defenses : provide mathematical guarantees that a model’s predictions will
remain unchanged within a bounded neighborhood around each input. Techniques such as interval bound
propagation, abstract interpretation, and dual-form optimization attempt to establish provable robustness
by computing worst-case prediction bounds under adversarial perturbations.

While these methods are effective at increasing robustness to adversarial attacks, a growing body of research has
shown that they often incur unintended privacy costs. In particular, robust models tend to exhibit higher training
data sensitivity, leading to increased memorization. This side effect makes them more susceptible to attacks that aim
to exploit the model’s internal behavior to infer properties of the training data. One of the most pressing
manifestations of this risk is the membership inference attack (MIA).

Thus, while adversarial training strengthens a model’s external resilience to manipulated inputs, it may
simultaneously weaken its internal resistance to privacy leakage. This trade-off between robustness and privacy
introduces a challenging dilemma for model designers. The next section delves deeper into this concern, examining
how MIAs operate and why adversarial defenses—despite their security benefits—can inadvertently elevate the risk
of training data disclosure.

Membership Inference Attacks (MIA)

Membership inference attacks (MIAs) have emerged as a central privacy threat in machine learning, particularly in
models trained on sensitive data. These attacks aim to determine whether a given data instance was part of a model’s
training set—information that, in many applications, is considered private. Successful inference of membership
status can lead to serious privacy breaches, such as revealing whether an individual’s medical record, financial
transaction, or image was included in a training dataset. The implications of such leakage are particularly severe in
domains governed by strict data protection regulations like GDPR, HIPAA, and FERPA.

At the core of an MIA lies the behavioral asymmetry exhibited by machine learning models: they often respond
differently to inputs they have seen during training (members) than to those they have not (non-members). This
difference may manifest in several forms:

e Prediction confidence: Members tend to receive higher confidence scores.
e Prediction correctness: Members are more likely to be classified correctly.
e Loss values: Training samples typically produce lower loss values.

¢ Gradient norms and feature embeddings: May vary systematically between members and non-
members.
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These divergences can be exploited by adversaries under various threat models to infer membership. MIAs are
particularly effective against models that exhibit overfitting, where the model’s behavior becomes tightly coupled
with specific training instances.

Formalization of Membership Inference

Formally, consider a target model fp trained on a dataset Dsin. Given a data point x, an adversary aims to determine
whether x€Dyqin (i.€., X is a member). The adversary builds an attack model f, that predicts a binary membership
label m&{o,1} based on the observed behavior of fs(x). This behavior could be the model's predicted class
probabilities, loss value, or any other feature derived from the model’s output.

A common and effective approach to performing MIA is the shadow model technique, first introduced by Shokri et
al. [1]. In this setup:

1. The adversary trains one or more shadow models on datasets drawn from a similar distribution as the target
model’s training data.

2. The shadow models are used to simulate the behavior of the target model on known members and non-
members.

3. The adversary uses the output of the shadow models to construct a membership-labeled dataset, typically
composed of softmax vectors or loss values.

4. Abinary attack classifier is then trained to distinguish members from non-members based on these features.

5. Finally, the attack model is applied to the outputs of the target model to infer the membership status of new
inputs.

Alternative approaches include:

e Threshold attacks, where membership is inferred if the model's confidence in its prediction exceeds a certain
threshold [2].

e Loss-based attacks, which rely on the observation that members usually incur lower training losses [3].
e Label-only attacks, where only the predicted class (not probabilities) is observable [4].
MIAs and Overfitting

MIAs exploit a model's tendency to generalize poorly. When a model memorizes specific training samples, it tends to
generate higher-confidence predictions for those points, thereby widening the confidence gap between members and
non-members. This gap becomes the central signal for the attack model. Consequently, overparameterized models
with limited regularization or models trained on small datasets are often especially vulnerable.

Even in the absence of overt overfitting, latent memorization—where the model fits spurious correlations in the
training data—can still lead to leakage. Furthermore, certain training practices, such as early stopping and data
augmentation, have been shown to affect MIA susceptibility in nuanced ways.

MIAs in Robust Models

Recent studies have revealed a disturbing paradox: robust models, particularly those trained via adversarial training,
are often more vulnerable to MIAs. This is because adversarial training emphasizes prediction consistency in
perturbed regions of the input space, which can increase the reliance on training examples to achieve robustness. As
a result, robust models often amplify the behavioral divergence between members and non-members—exacerbating
MIA risks [5].

This phenomenon highlights the complex and sometimes conflicting relationship between robustness and privacy. A
model hardened against evasion attacks may become more prone to inference attacks. Understanding and mitigating
this trade-off is a central challenge addressed by emerging defense strategies, including those involving quantization.
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Related works on defenses against MIA

Since the emergence of membership inference attacks (MIAs) as a serious threat to machine learning privacy, the
research community has developed a diverse set of defense mechanisms. These defenses vary in theoretical rigor,
implementation complexity, and trade-offs between model utility and privacy. The risks are particularly acute in
sensitive domains like healthcare, where MIAs on medical models can reveal confidential patient conditions,
treatment histories, or diagnostic patterns. This section presents a chronological review of the most influential
defense strategies against MIAs, emphasizing their core principles, strengths, and limitations.

The foundational work by Shokri et al. [1] in 2017 formally introduced MIAs in the context of supervised learning,
showing that deep models often expose membership status through overconfident predictions. Their attack model
leveraged shadow training, where adversaries train auxiliary models to mimic the behavior of the target model. This
study also highlighted that models with high generalization gaps are particularly vulnerable.

In response, differential privacy (DP) emerged as a principled defense framework. Dwork et al. [2] introduced the
concept of DP, and its adaptation to machine learning was explored in follow-up works such as Abadi et al. [3], who
proposed differentially private stochastic gradient descent (DP-SGD). DP provides formal guarantees that the
inclusion or removal of any single training sample has a limited influence on the model’s output. However, in practice,
achieving meaningful privacy with DP often results in severe performance degradation, particularly in deep learning
contexts with limited data.

To mitigate privacy leakage without sacrificing accuracy, researchers proposed techniques based on regularization.
Nasr et al. [4] (2018) introduced adversarial regularization, which modifies the training objective to explicitly
penalize model behaviors that facilitate membership inference. This method enhances generalization and makes
model outputs less distinguishable for member vs. non-member samples.

In parallel, prediction perturbation methods were explored. Jia et al. [5] proposed MemGuard, which adds
adversarial noise to the output prediction vectors in a post-processing step, effectively confusing the attack model.
MemGuard showed strong empirical results but relies on access to the prediction vector and assumes a black-box
threat model. Moreover, such methods can interfere with downstream applications that depend on calibrated
prediction scores.

Building upon prior work, Shejwalkar and Houmansadr [6] introduced Distillation for Membership Privacy (DMP)
in 2021, leveraging knowledge transfer to obfuscate the training data's influence. Their approach trains a student
model using labels generated by a teacher model on an unlabeled public dataset. By decoupling the training data from
the student model’s learning signals, DMP effectively reduces the membership signal.

Another line of defense involves prediction purification, as proposed by Yang et al. [7], which aims to sanitize model
outputs by removing redundant or overconfident information that could be exploited in MIAs. These methods use
statistical or heuristic transformations to reduce sensitivity in the prediction layer.

Recent advances have shifted focus toward more realistic threat models, including label-only MIAs and attacks based
on training loss dynamics. Liu et al. [8] (2022) demonstrated that loss trajectory information—how the loss evolves
during training for each sample—can leak membership information even when output confidence is obfuscated. This
motivated defenses that go beyond output-layer manipulation, targeting deeper network behavior.

Meanwhile, Choquette-Choo et al. [9] introduced label-only MIAs, where the attacker only observes the predicted
label, not the confidence scores. This further challenges defenses reliant on softmax output manipulation, requiring
more robust model-level strategies.

While initially developed for model compression and efficiency, quantization has recently gained attention as a
privacy-enhancing mechanism. Famili and Lao [10] (2023) proposed a novel quantization framework aimed
explicitly at reducing MIA success. Their weight-only quantization method avoids activation quantization to preserve
accuracy while constraining the model’s capacity to memorize training data. Empirical results on CIFAR10 and
Fashion-MNIST show substantial reductions in MIA true positive rates and Fi-scores compared to full-precision
models.
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PROPOSED METHOD: ROBUST AND PRIVATE DEEP LEARNING VIA ADVERSARIAL
QUANTIZATION

This section presents our proposed defense strategy, which integrates adversarial robustness and quantization-based
regularization to mitigate both adversarial attacks and membership inference attacks (MIAs). We begin by discussing
the motivation for combining these two techniques, then describe the architecture and workflow of the proposed
method, and finally formalize the training procedure.

Motivation for Combining Adversarial Training and Quantization

Adversarial training is one of the most effective defenses against adversarial examples. By training models on
perturbed inputs designed to fool them, adversarial training strengthens a model’s resilience to small, malicious
perturbations. However, prior work has demonstrated a crucial downside: adversarial training tends to increase
model memorization, making models more vulnerable to privacy attacks such as MIAs. This is because the robust
optimization objective encourages the model to fit perturbed training samples tightly, thereby increasing the
behavioral divergence between training (member) and test (non-member) samples.

On the other hand, quantization, traditionally used for model compression, has recently shown promise in reducing
overfitting and smoothing model behavior. By limiting the model's expressive power (e.g., via reduced weight
precision), quantization can constrain its capacity to memorize specific training samples. Consequently, quantized
models exhibit less pronounced confidence gaps between members and non-members—making MIA attacks less
effective.

Given these complementary properties, our key insight is to combine adversarial training with quantization in a
unified framework that:

e Preserves the robustness benefits of adversarial training,
e Leverages quantization to mitigate the privacy risks it introduces,

e Maintains competitive accuracy and efficiency, especially for edge deployment.

Details of the Proposed Framework
Our proposed defense framework proceeds in two stages:

1. Robust Model Training: We first train the model using adversarial training to ensure robustness against
evasion attacks.

2. Quantization-Aware Fine-Tuning: We then apply a weight-only quantization scheme during fine-
tuning to reduce overfitting and suppress membership inference leakage.

The overall goal is to solve the following joint optimization problem:

. (2)
min Ee,).p |max L{fo(z +9),y)

Where:
e 0 are the model parameters constrained to the quantized space Q,
e §isthe adversarial perturbation bounded in norm: S={8:[|8l|p<e},
e Lis the cross-entropy loss,

e Disthe training data distribution.

Copyright © 2024 by Author/s and Licensed by J[ISEM. This is an open access article distributed under the Creative Commons Attribution License 771
which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Journal of Information Systems Engineering and Management
2025, 10(56s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

This formulation ensures that adversarial examples are used during training, while the learned parameters remain

constrained to low-precision values, enhancing both robustness and privacy.

During the Adversarial Training Phase, we adopt Projected Gradient Descent (PGD) adversarial training, which is
known for its strong robustness guarantees. At each training step, adversarial examples are generated using the
following iterative update:

=Tlp ) (z' + a - sign(V,L(fo(z"),y))) (3)

Where:
e IIBe(x) is the projection operator onto the L.-ball of radius €,
e aisthe step size,
e  x0=x, the clean input.

The model is trained to minimize the loss on these adversarial examples:

1 adv
robust - N Z: yi) (4)

This phase ensures robustness to input-space perturbations but may increase memorization.

To counter the privacy leakage introduced by adversarial training, we apply weight-only uniform quantization. Let
W be the full-precision weight tensor of a layer. The quantized weight Wq is computed as:

1. Scale Factor:

s — Tmax — Tmin (5)
20 -1
2. Quantization Function:
W — rmi
Wo = clam; d 2,0,2° —1) - s+ roin
0 p (roun ( s ) ) s+ (6)

Where:
e Dbis the quantization bitwidth (e.g., 8-bit, 4-bit),
®  TI'min, I'max are the min and max values of W,
e clamp ensures values stay within the valid range.

This quantization is applied during training, allowing gradients to flow via straight-through estimators (STE).
Importantly, only the weights are quantized, while activations remain in full precision to preserve expressive capacity.

In the proposed approach, we adopt a privacy regularization via posterior flattening. We also introduce an optional
privacy regularization term to explicitly reduce the prediction gap between members and non-members:

Lprivacy - KL(Pmember H Pnon-member) (7)

Where P denotes the predicted softmax distribution. This encourages the model to produce similar confidence scores
for both member and non-member inputs, reducing MIA effectiveness. The total loss becomes:
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Implementation and Deployment Considerations

The proposed framework is designed for practical integration into existing training pipelines with minimal overhead.
The adversarial training phase follows standard projected gradient descent (PGD) procedures, while the
quantization-aware fine-tuning phase introduces weight discretization using uniform quantization with straight-
through estimators to preserve gradient flow. Notably, the quantization step is applied exclusively to the model
weights, leaving activations in full precision to maintain accuracy. Fine-tuning is performed over a limited number
of epochs, avoiding the need for full retraining and ensuring computational efficiency. During inference, the model
utilizes only the quantized weights, significantly reducing memory footprint and enabling deployment on resource-
constrained devices such as mobile platforms or embedded systems.

Integrated Benefits of the Combined Approach

By unifying adversarial training and quantization, the proposed method effectively addresses two orthogonal yet
critical challenges in machine learning security and privacy. Adversarial training enhances robustness against
evasion attacks by encouraging prediction consistency under input perturbations. Quantization, in turn, acts as a
regularization mechanism that suppresses overfitting and attenuates the behavioral disparities between training and
non-training samples, thereby mitigating membership inference leakage. The resulting model exhibits a favorable
trade-off between robustness, privacy, and utility, offering strong resistance to adversarial inputs while
simultaneously reducing the model’s susceptibility to inference-based privacy violations—all without compromising
deployment efficiency.

RESULTS

As emphasized in prior work [11], evaluating the effectiveness of defenses against membership inference attacks
(MIAs) requires more than just reporting classification accuracy. A model’s clean or adversarial accuracy alone does
not capture the nuances of privacy leakage. For stronger privacy, especially against membership inference attacks
(MIAs), the attack model accuracy should be low, ideally close to 50%, which indicates random guessing. This means
the attacker cannot reliably determine whether a data point was in the training set. While shadow model accuracy
reflects how well the attacker can mimic the target model, it's less critical on its own—what matters most is that even
if the shadow model is accurate, it should not lead to an effective attack. In short, lower attack model accuracy is key
to better privacy, and reducing shadow model effectiveness can help achieve that.

To that end, our evaluation framework includes not only target model accuracy but also the performance of the
shadow model and the attack model, as shown in Table 1. In addition, Table 2 reports class-wise precision, recall, and
F1-scores to better characterize the attacker’s ability to distinguish between members and non-members. To further
dissect the attack model's behavior, we provide a detailed breakdown of true positive, true negative, false positive and
false negative rates in Table 3.

Importantly, unlike prior work, which applied quantization only as a post-training privacy mechanism, our approach
combines adversarial training with quantization-aware fine-tuning, integrating robustness and privacy into a unified
training pipeline. This distinction is crucial: while adversarial training enhances model resilience against evasion
attacks, it has been shown to amplify memorization and worsen MIA vulnerability. Our results demonstrate that the
incorporation of weight-only quantization—especially at lower bitwidths (4 and 8)—can counteract this effect by
reducing representational capacity and smoothing the confidence landscape, thereby mitigating MIA success.

As reflected in Table 1, proposed model often matches or even outperforms quantized only models counterparts in
classification accuracy, especially under adversarial settings. For instance, the quantized ResNet-50 model not only
maintained high predictive performance but also showed a notable drop in attack model accuracy—indicating
enhanced privacy. Interestingly, while the shadow models trained on full-precision architectures were generally able
to mimic full-precision target models effectively, they struggled to replicate the behavior of quantized counterparts,
particularly those trained with adversarial examples. This behavioral mismatch resulted in reduced attack efficacy,
as seen by the lowered true positive rates and Fi-scores in Tables 2 and 3. It is clear from Table 2 that proposed
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method is superior in defending against MIAs, due to lower member class detectability and predictions that are more

ambiguous.

Table 1. Shadow and Attack Model Accuracy at Different Quantization Bitwidths for LeNet, ResNet-20,

and ResNet-50.

Model Model

Shadow Model Accuracy Attack Model Accuracy

Model from [10] (Bandwidth 4) 82.39% 50.07%

LoNet Model from [10] (Bandwidth 8) 83.20% 50.21%
enet Proposed 81.11% 47.13%
Model from [10] (Bandwidth 4) 51.22% 69.50%

Model from [10] (Bandwidth 8) 51.38% 72.50%

ResNet-20 Proposed 50.41% 64.03%
Model from [10] (Bandwidth 4) 58.90% 64.10%

ResNet-50 Model from [10] (Bandwidth 8) 60.38% 59.38%
R Proposed 55.72% 53.89%

Table 2: F1-score, precision, and recall of the full bitwidth model and quantized model.

Dataset Model

Class

Precision Recall F1-Score

. Non-Member 0.51 0.06 0.11
Model from [10] (Bandwidth 4) Member 0.50 0.94 0.65
. Non-Member 0.51 0.16 0.24
LNet Model from [10] (Bandwidth 8) Member 0.50 0.85 0.63
T Proposed Non-Member 0.53 0.34 0.41
pose Member 0.51 0.62 0.56
X Non-Member 0.52 0.82 0.64
Model from [10] (Bandwidth 4) Member 0.58 0.26 0.36

) - . )
Model from [10] (Bandwidth 8) Non-Member “"37 0.73 0.64
ResNet-20 Member 0.62 0.44 0.52
esets Pronosed Non-Member 0.78 0.53 0.63
POse Member 0.59 0.61 0.60
. Non-Member 0.59 0.50 0.54
Model from [10] (Bandwidth 4) ;o 0.57 0.65 0.61
. Non-Member 0.65 0.41 0.50
Model from [10] (Bandwidth 8) Membor 0.57 0.78 0.66

. >mbe . . .

ResNet-30 Pronosed Non-Member 0.68 0.56 0.61
pose Member 0.55 0.48 0.51

Table 3: Attack accuracy, TN, FP, FN, and TP for full bitwidth and quantized networks.

Model Bitwidth Attack Accuracy TN FP FN TP
Model from [10] (Bandwidth 4) 50.07% 03.24%  46.76%  3.17%  46.82%
LeNet Model from [10] (Bandwidth 8) 50.21% 07.79%  42.21%  7.57%  42.42%
Proposed 49.31% 13.62% 36.38% 14.76% 35.24%
Model from [10] (Bandwidth 4) 53.59% 40.76%  9.23%  37.18%  12.82%
ResNet-20  Model from [10] (Bandwidth 8) 65.88% 36.30%  13.69%  27.86%  22.13%
Proposed 52.72% 42.15% 7.85% 45.41% 4.59%
Model from [10] (Bandwidth 4) 57.66% 25.09%  24.90%  17.43%  32.56%
ResNet-50  Model from [10] (Bandwidth 8) 59.38% 20.47%  29.52%  11.09%  38.90%
Proposed 51.27% 35.06% 14.93% 39.40% 10.60%

Table 4: Attack Success Rates and Confusion Matrix Metrics Across Quantized Models: Comparison Between
Baseline [10] and Proposed Method
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Figure 1 shows the ROC curves comparing the effectiveness of membership inference attacks (MIAs) against different
quantization strategies. The dashed lines represent the baseline method from [12] using 4-bit and 8-bit quantization,
while the solid blue line represents the proposed method. The ROC curve for the proposed method lies consistently
below the baselines, indicating significantly weaker attack performance. This suggests that our method reduces the
adversary's ability to distinguish between training and non-training samples, effectively diminishing membership
signals. Unlike the baseline models, which exhibit strong separability between members and non-members, the
proposed defense achieves superior privacy by regularizing model behavior and narrowing confidence disparities—
thereby offering a more robust defense against MIAs.

ROC Curve: Membership Inference Attack Comparison

1.0
0.8
1
|
@O ]
et 1
£ 06F |
Q 1
= 1
= ]
@ ]
c oal |
g 0.4 !
= 1
|
|
I;
0.2 !
1
]
| [12] 4-bit Quantization
—=—= [12] 8-bit Quantization
0.0 —— Proposed Method
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 1: ROC Curves demonstrating the superiority of the proposed method against membership inference attacks
CONCLUSION

In this work, we present a novel defense framework that combines adversarial training with quantization-aware fine-
tuning to simultaneously address two critical challenges in deep learning: robustness to adversarial examples and
resilience against membership inference attacks (MIAs). While adversarial training enhances model robustness, it
has been shown to unintentionally increase privacy risks by amplifying memorization. To mitigate this trade-off, our
approach leverages weight-only quantization not only for model efficiency but also as a regularization mechanism to
reduce overfitting and suppress membership leakage.

Through extensive empirical evaluation across multiple datasets and architectures, we demonstrated that the
proposed method effectively lowers the success rate of membership inference attacks while maintaining or improving
robustness and classification performance. ROC curve analysis, confusion matrix metrics, and F1-score evaluations
consistently showed that our method outperforms state-of-the-art quantization-based defenses in protecting
sensitive training data.

The proposed framework is lightweight, deployment-friendly, and particularly suitable for privacy-sensitive
applications on edge devices, where efficiency and security must coexist. Future work will explore extending this
approach to more complex privacy threats such as model inversion and attribute inference, as well as integrating it
with federated and distributed learning paradigms to further enhance real-world applicability.
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