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The ride-hailing platform mediates transactions between driver and passenger through an 
assignment algorithm. However, more than 40% of assignments are rejected either by drivers or 
passengers, leading to inefficient system performance. Predicting which assignment would be 
accepted becomes necessary to avoid such inefficiency. Big data technology and the availability 
of ride-hailing daily transactional data can enable platforms to dive into driver’s and passenger’s 
behavior and determine factors influencing their acceptance. This paper aims to incorporate 
prediction ability into an assignment optimization model. We perform numerical experiments 
and conclude that the proposed model could provide behavior-custom assignment, thus ensuring 
a high acceptance rate by drivers and passengers. Unfortunately, We found that the global 
optimal solution for the model can only be found for small-sized problems. When dealing with 
large-sized problems, standardized optimization software can only provide local optimal or no 
feasible solution. We designed an assignment algorithm based on particle swarm optimization 
to improve the solution-finding process. The algorithm can achieve an average of 1.78% error for 
small-sized problems, up to 6.47% better solution compared to local optimal solutions found by 
standard optimization software, and it can give feasible solutions when standard optimization 
software fails to provide them. 

Keywords: Big Data, Tailored Assignment, Predict Then Optimize, Logistic Regression, 

Particle Swarm Optimization. 

 

1. INTRODUCTION 

The rapid development of online ride-hailing (ORH) platforms has globally revolutionized our transportation 

systems. Over the past decade, ride-hailing platforms like Uber in the USA, Didi Chuxing in China, and Grab and 

Gojek in Southeast Asia have successfully transformed how people travel [1] [2]. Despite regulatory challenges [3] 

[4] and incumbent resistance [5], ORH strives to provide easy commuting for passengers and job opportunities for 

drivers. Researchers found that the adoption would continue to grow [6] [7], and the business is projected to reach a 

market size worth $285bn by 2030 [1]. A recent study from Indonesia, a country with more than 270 million people, 

revealed that 1 out of 4 citizens depend on ride-hailing for their daily transportation and business [8]. 

ORH mediates passengers who need transportation services and drivers who provide the service. The mediation is 

done through the ORH digital application, wherein lies an optimization engine capable of assigning drivers to 

passengers and determining the price for each trip. Assignment and pricing algorithms ensure effective and efficient 

ORH operational management. For these reasons, literature regarding assignment and pricing has expanded rapidly 

in recent years. Some specifically addressed the assignment problem [9] [10] [11] [12] [13], pricing problem [14] [15] 

[16] [17] or integration of assignment and pricing [18] [19]. A more comprehensive comparison will be given in the 

next section.  Most research concerning ORH assignment and pricing assumes drivers and passengers always accept 

the assignment result. This assumption is not necessarily valid in the ORH business context, where drivers and 
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passengers can independently accept or reject an assignment.  

Empirical data shows that driver’s rejection rate reached 41% in New York in 2014, while Didi Chuxing reported that 

more than 40% of ride-hailing requests in Shanghai received no response from drivers in 2017 [20]. Assignment 

rejection by drivers causes higher passenger waiting time and dissatisfaction, thus leading to system inefficiency [21]. 

Conversely, it is common to find passengers rejecting assignments due to high waiting times or concerns about a 

driver’s low rating score. This rejection lowers the availability of drivers in other areas and causes drivers to ride a 

wild goose chase [22]. Rejection from either driver or passenger leads to a negative impact; thus, it must be avoided 

and considered when deciding on an assignment. The appearance of big data and machine learning technology, along 

with the availability of ORH’s daily historical data, can help ORH gain visibility into the behavior of drivers and 

passengers during transactions, including revealing factors affecting their decisions. Knowing these factors would 

help predict whether drivers and passengers would accept or reject a particular assignment [23] [24]. This capability 

allows researchers to consider acceptance prediction, assignment, and pricing in an integrated manner.  

Research [25] proposed a mathematical model for assigning drivers to passengers and determining the optimal 

payment for drivers to enforce assignment acceptance. Even though their research is one of the first to integrate 

acceptance prediction, assignment, and payment, they only focused on the drivers and assumed perfect passenger 

acceptance, which is still unrealistic. Moreover, they applied a sequential approach when trying to find the solution, 

meaning that the assignment is decided first and payment second, leading to a suboptimal solution. Through this 

paper, we extend the work of [25] by incorporating the passenger’s acceptance into the assignment and pricing 

decision, thus bringing the model into a more realistic situation. Furthermore, we propose a simultaneous approach 

for finding the solution [25]. 

The contribution of this paper is as follows: we develop a mathematical model for simultaneous assignment and 

pricing, integrate a prediction and optimization model for tailored offerings for drivers and passengers, provide 

numerical experiments, and analyze the model applicability regarding solution-finding efficiency; finally, we propose 

a solution searching algorithm based on particle swarm optimization to increase the efficiency of solution-finding 

process.  This paper is divided into several sections. They are introduction, literature review, model development, 

numerical experiment and analysis, conclusions, and further research exploration. 

2. LITERATURE REVIEW 

In recent years, literature concerning ORH services has been numerous. Although there are many research topics 

surrounding ORH services, we limit the discussion in this section to the literature regarding assignment and pricing 

mechanisms. Research concerning the ORH assignment algorithm can be divided into three research groups, which 

differ in their assignment mechanisms. The first group proposed an instant assignment, where any incoming 

passenger’s request is instantly matched to a nearby driver [9] [10]. All platforms used this assignment mechanism 

early in ORH appearance. Instant assignment provides the timeliest response, yet a greedy approach that only 

considers immediate benefit.  

The second research group proposed batched assignment or delayed matching, where passenger’s requests are 

accumulated for a specific interval (usually seconds) and then get matched together to drivers at the end of the 

interval, which allows more extensive exploration for better matching quality [11] [12] [13] [26]. When dealing with 

the batched assignment, the main challenge is determining the optimal length of the batching interval [27]. 

Implementing batched assignments has been reported to bring higher efficiency to ORH operational management 

than instant assignments. The third research group aims for further benefit by considering the future while making 

matching decisions in the current batched interval through forward-looking batched assignment [28]  [29] [30] [31] 

[32] [33] [34] [35] [36] [37] [38]. 

In each research concerning the assignment mentioned earlier, there was an underlying assumption that drivers and 

passengers always accept the assignment result, which is not necessarily valid. In the ORH business context, the 

driver and passenger can accept or reject the assignment. Determining assignment decisions without considering the 

driver’s and passenger’s acceptance would lead to system inefficiency.  

Research by [19] modeled how pricing can affect the driver’s and passenger’s decisions on accepting or rejecting an 
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assignment, specifically how trip price affects their pick-up distance tolerance limit. For the driver, the higher trip 

price allows a higher pick-up tolerance limit, while the contrary applies to the passenger. Their proposed pricing 

strategy is called the per-service pricing strategy, marking the integration of assignment and pricing decisions. 

Following the work of [25], [39] suggested simultaneous assignment and pricing, which considers the behavior 

heterogeneity among drivers and passengers and the platform’s multi-objective target, allowing personalized 

assignment and pricing. However, the research failed to consider that the driver’s and passenger’s acceptance 

decision might not be perfectly influenceable and did not measure how likely drivers and passengers would accept 

the assignment given. Other researchers consider pricing to be a separate decision from assignment. Most of them 

deal with the problem of using price to balance the number of drivers and passengers at a particular time [14] [15] 

[16] [17] [40] [41] [42] [43] or area [44] [45] [46] [47] and do not explicitly consider pricing in the context of 

assignment acceptance decision-making. 

Seeing the importance of ensuring assignment acceptance, researchers attempt to uncover more comprehensive 

factors affecting the decision. To do this, [21] and [48] conducted surveys involving drivers, while [20], [49], and [50] 

analyzed historical data gathered from ride-hailing platforms to build explanatory models for driver’s decisions. On 

the passenger side, [22] built behavior modeling of order cancellation using a two-month hourly average dataset 

provided by Didi Chuxing. Combining the knowledge regarding driver’s and passenger’s decisions, [23] proposed a 

matching success rate (MSR) prediction model using a multi-viewed model, while [24] built a deep learning model 

to predict the probability of order cancellation for Didi Chengdu. The research opens further potential exploration to 

integrate acceptance prediction while doing assignments, which was then pursued by [26], which proposed per-

service payment for drivers to ensure assignment acceptance. However, they only focus on the drivers and assume 

perfect acceptance by passengers, which leads to unrealistic simplification. Furthermore, they took a sequential 

approach to find the solution, meaning that the assignment was determined first, and payment was second. This 

sequential approach would lead to a sub-optimal solution. Table 1 summarizes the classification of research explained 

in this section. Our paper joins the per-service pricing research category introduced by [19], which integrates 

assignment and pricing decisions and extends the work of [25] and [39]. We consider batched assignment, per service 

pricing, and modeled the situation where driver’s and passenger acceptance is partially influenceable.

Table 1. Classification of assignment and pricing research 

Aspect Considered Reference Number 

Assignment 

Instant [9][10][19] 

Single Batched [11] [12] [13] [25] [26] 

Forward-Looking  [28][29] [30] [31] [32] [33] [34] [35] [36] [37] [38] 

Pricing 

Temporal [14] [15] [16] [17] [40] [41] [42] [43] 

Spatial [44] [45] [46] [47] 

Per service [19] [25] [39] 

Driver’s acceptance 

modeling 

Always accept 
[9][10] [11] [12] [13] [26] [27] [28][29] [30] [31] [32] 

[33] [34] [35] [36] [37] [38] 

Completely 

influenceable 

[14] [15] [16] [17] [19] [40] [41] [42] [43] [44] [45] 

[46] [47] 

Partially influenceable [25] 

Passenger’s 

acceptance modeling 

Always accept 
[9][10] [11] [12] [13] [16] [25] [26] [27] [28] [30] [31] 

[32] [33] [34] [35] [36] [37] [38] [40] [47] 

Constant probabilistic 

acceptance 
[29] 

Completely 

influenceable 
[14] [15] [19] [41] [42] [43] [44] [45] [46] 

Partially influenceable  

Solution finding 

technique 

Exact 
[9] [14] [15] [16] [19] [25] [28] [29] [31] [32] [40] [41] 

[42] [43] [44] [45] [46] [47] 

Heuristic [11] [12] [13] [26] 
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Aspect Considered Reference Number 

Metaheuristic [30] 

Machine Learning [27] [30] [33] [34] [36] [38] 

Simulation [11] 

 

3. METHOD 

3.1 Problem Description 

We consider the situation where the ORH platform works to mediate transactions between drivers and passengers 

by accumulating and assigning drivers to passengers and determining the trip price for each assignment. The ORH 

implemented a batched assignment. This mechanism divides their operational time into smaller intervals with 

equivalent lengths. Fig.1 illustrates the batched assignment mechanism for a single interval. Fig.1 shows a situation 

where ORH operates for a particular operational time (𝐻). The operational time is then divided into smaller intervals 

(ℎ), where ℎ = 1,2, … , 𝐻; each interval starts at 𝑏ℎ
𝑠 and ends at 𝑏ℎ

𝑒.   Suppose that at the end of a particular batching 

interval (𝑏ℎ
𝑒) there are 𝐼 idle drivers, and 𝐽 passenger’s requests accumulated. Drivers are denoted by the 𝑑𝑖 (𝑖 =

1,2, … , 𝐼). 

Their original location is visible through the ride-hailing app and denoted by (𝑥𝑑𝑖

𝑂 , 𝑦𝑑𝑖

𝑂 ). On the other side, passengers 

are denoted by the 𝑝𝑗 (𝑗 = 1,2, … , 𝐽). As they open the ride-hailing app, they would input their pick-up (𝑥𝑝𝑗
𝑂 , 𝑦𝑝𝑗

𝑂 ) and 

destination point (𝑥𝑝𝑗
𝐷 , 𝑦𝑝𝑗

𝐷 ) and the platform would log their request’s submission time, which is 𝑡𝑝𝑗
. The task of the 

platform is to determine the assignment of driver-𝑖 to passenger-𝑗, which is denoted by 𝑋𝑑𝑖,𝑝𝑗,
, as well as the trip fare 

associated with the assignment (𝐹𝑑𝑖,𝑝𝑗,
). 

The basic assumption proposed in this paper is that both driver and passenger do not always accept the assignment 

results. Suppose that driver-𝑖 acceptance probability when matched to passenger-𝑗 is denoted by 𝑃𝑑𝑖,𝑝𝑗,

′ , while 

passenger-𝑗 acceptance probability when matched to driver-𝑖’ is denoted by 𝑃𝑑𝑖,𝑝𝑗,

′′ . Given that the driver and passenger 

independently choose their decision, the probability of both driver and passenger accepting the assignment (𝑃𝑑𝑖,𝑝𝑗
) is 

the product between 𝑃𝑑𝑖,𝑝𝑗,

′  and 𝑃𝑑𝑖,𝑝𝑗,

′′  Throughout its operational activities, the ORH platform will have significant 

historical data that can be used to predict 𝑃𝑑𝑖,𝑝𝑗,

′  and 𝑃𝑑𝑖,𝑝𝑗,

′′ . In this paper, we assume the platform uses a logistic 

regression-based machine learning model that can predict assignment acceptance probability by the driver and 

passenger using multiple predictors. The logistic regression model also appeared in [23] and [24].  

 

Figure 1. Illustration of Batch Assignment

The factors and coefficient used to predict are uncovered through historical data. In an operational context, ORH 

could customize the number of prediction factors by choosing the most significant among available factors. This paper 

illustrates a situation where three factors are used in the logistic regression model to predict the acceptance 

probability of both drivers and passengers. For drivers, the factors are driver’s profit percentage when assigned to 

passenger-𝑗 (Α𝑑𝑖,𝑝𝑗
), the traffic conditions at the pick-up point of passenger-𝑗 (𝐵𝑝𝑗

), and the traffic to the destination 

Passenger’s request

Idle drivers
Assignment & pricing algorithm run time duration

Dispatching time
Batching Interval
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point of passenger-𝑗 (Γ𝑝𝑗
). Meanwhile, for passengers, the factors used are the waiting time that passenger-𝑗 would 

have to bear when assigned to driver-𝑖 (Π𝑑𝑖,𝑝𝑗
), the trip fare per kilometer they must pay (𝑓𝑑𝑖,𝑝𝑗

), and the rating of 

driver-𝑖 (Λ𝑑𝑖,
).  

These factors are selected based on their frequent appearance among many research on the field [20] [21] [48] [49] 

[50]. The ORH must determine two decision variables: the assignment pair (which driver serves a particular 

passenger) and the trip fare per kilometer. These decisions are determined to maximize the expected revenue at a 

single batching interval. 

3.2 Mathematical Model 

We proposed an optimization model to determine driver-to-passenger assignment and trip price for each assignment. 

Logistic regression prediction models are embedded as optimization constraints inside the optimization model. 

Therefore, simultaneous combinatorial optimization would be performed. The quality of all possible driver and 

passenger pairs and their pricing decision would be evaluated, and finally, the optimal assignment and pricing would 

be selected. In this setting, our approach differs from the one that sequentially optimizes the assignment decision 

and proceeds to payment determination. The complete formulation of the assignment and pricing optimization 

model is given below. 

Objective Function 

  𝑀𝑎𝑥 𝑍 = ∑ ∑ 𝑃𝑑𝑖,𝑝𝑗
𝑋𝑑𝑖,𝑝𝑗

𝐹𝑑𝑖,𝑝𝑗

𝐽
𝑗=1

𝐼
𝑖=1   (1) 

Subject to 

  𝑃𝑑𝑖,𝑝𝑗
= 𝑃𝑑𝑖,𝑝𝑗

′ . 𝑃𝑑𝑖,𝑝𝑗

′′ , ∀𝑖, 𝑗   (2) 

  𝑃𝑑𝑖,𝑝𝑗

′ =
1

1+𝑒
−(𝛼𝑑𝑖

𝛢𝑑𝑖,𝑝𝑗
+𝛽𝑑𝑖

𝐵𝑝𝑗
+𝛾𝑑𝑖

𝛤𝑝𝑗
), ∀𝑖, 𝑗  (3) 

  𝑃𝑑𝑖,𝑝𝑗

′′ =
1

1+𝑒
−(𝜋𝑝𝑗

𝛱𝑑𝑖,𝑝𝑗
+𝜀𝑝𝑗

𝑓𝑑𝑖,𝑝𝑗
+𝜆𝑝𝑗

𝛬𝑑𝑖
, ∀𝑖, 𝑗  (4) 

  𝛢𝑑𝑖,𝑝𝑗
=

𝜃𝐹𝑑𝑖,𝑝𝑗
−𝐶𝑑𝑖,𝑝𝑗

𝜃𝐹𝑑𝑖,𝑝𝑗

, ∀𝑖, 𝑗  (5) 

 𝜃𝐹𝑑𝑖,𝑝𝑗
> 𝐶𝑑𝑖,𝑝𝑗

− (1 − 𝑋𝑑𝑖,𝑝𝑗,
) 𝑀, ∀𝑖, 𝑗  (6) 

 𝐹𝑑𝑖,𝑝𝑗
= 𝑓𝑑𝑖,𝑝𝑗

(|𝑥𝑝𝑗
𝑂 − 𝑥𝑝𝑗

𝐷 | + |𝑦𝑝𝑗
𝑂 − 𝑦𝑝𝑗

𝐷 |), ∀𝑖, 𝑗 (7) 

 𝐶𝑑𝑖,𝑝𝑗
= 𝑐 ((|𝑥𝑑𝑖

𝑂 − 𝑥𝑝𝑗
𝑂 | + |𝑦𝑑𝑖

𝑂 − 𝑦𝑝𝑗
𝑂 |) + (|𝑥𝑝𝑗

𝑂 − 𝑥𝑝𝑗
𝐷 | + |𝑦𝑝𝑗

𝑂 − 𝑦𝑝𝑗
𝐷 |)), ∀𝑖, 𝑗  (8) 

 𝛱𝑑𝑖,𝑝𝑗,
=

(|𝑥𝑑𝑖
𝑂 −𝑥𝑝𝑗

𝑂 |+|𝑦𝑑𝑖
𝑂 −𝑦𝑝𝑗

𝑂 |)

𝑣𝑑𝑖

, ∀𝑖, 𝑗  (9) 

 𝑓𝑚𝑖𝑛 < 𝑓𝑑𝑖,𝑝𝑗
< 𝑓𝑚𝑎𝑥, ∀𝑖, 𝑗            (10) 

 𝑋𝑑𝑖,𝑝𝑗,
= {

𝑋𝑑𝑖,𝑝𝑗,
, 𝑃𝑑𝑖,𝑝𝑗

> 𝑒

0, 𝑃𝑑𝑖,𝑝𝑗
≤ 𝑒

, ∀𝑖, 𝑗   (11) 

 ∑ 𝑋𝑑𝑖,𝑝𝑗,
≤ 1,    ∀𝑖𝐽

𝑗=1   (12) 

 ∑ 𝑋𝑑𝑖,𝑝𝑗,
≤ 1,    ∀𝑗𝐼

𝑖=1   (13) 

 𝑋𝑑𝑖,𝑝𝑗,
= {0,1}, ∀𝑖, 𝑗  (14) 
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Equation (1) defines the objective function of the optimization model, which is to maximize the total expected revenue 

at a single batching interval (𝑍). The expected revenue is calculated as the total product of the driver’s and passenger’s 

joint acceptance probability, the assignment decision of drivers to passengers, and the associated trip fare. Equation 

(2) defines the driver’s and passenger’s joint acceptance probability calculation. It is the product of the driver’s and 

the passenger’s acceptance probability. The driver’s acceptance probability is defined in Eq. (3). It is calculated by 

taking logistic regression equations of three factors: the driver’s profit percentage when assigned to passenger-

𝑗 (Α𝑑𝑖,𝑝𝑗
), the traffic conditions at the pick-up point of passenger-𝑗 (𝐵𝑝𝑗

), and the traffic to the destination point of 

passenger-𝑗 (Γ𝑝𝑗
). The factor’s coefficient (𝛼𝑑𝑖

, 𝛽𝑑𝑖
, and 𝛾𝑑𝑖

) determines the magnitude of each factor’s effect on the 

acceptance probability.  

The higher the profit percentage that driver-𝑖 earned when assigned to passenger-𝑗, the lighter the traffic condition 

both on pick up and destination point would result in higher assignment acceptance probability by the driver. While 

the driver’s profit percentage can be calculated, the traffic condition at the pick-up and destination is pulled through 

the Google map API readily available in the ride-hailing app. Equation (4) shows the calculation of the passenger’s 

acceptance probability. As for drivers, we also consider three factors to predict passenger ride acceptance probability. 

The factors are the waiting time that passenger-𝑗 would have to bear when assigned to driver-𝑖 (Π𝑑𝑖,𝑝𝑗
), the trip fare 

per kilometer they must pay (𝑓𝑑𝑖,𝑝𝑗
), and the rating of driver-𝑖 (Λ𝑑𝑖,

). The coefficient for each predictor is denoted by 

𝜋𝑝𝑗
, 𝜀𝑝𝑗

, and 𝜆𝑝𝑗
.  

The assignment acceptance probability by the passenger would be high if the waiting time is short, the trip price is 

low, and the driver’s rating is high. Equation (5) defines the driver’s profit percentage calculation. Generally, ORH 

applies fixed revenue sharing with the driver. If the driver’s earning share from each assignment is denoted by 𝜃 (0 <

𝜃 < 100%), then for each assignment, the driver would get 𝜃𝐹𝑑𝑖,𝑝𝑗
, as their revenue. The driver’s profit is their revenue 

minus their operating cost when serving passenger-𝑗 (𝐶𝑑𝑖,𝑝𝑗,
). The profit should always be greater than zero to 

maintain economic feasibility (See Eq. (6)). The trip fare (𝐹𝑖𝑗) and the driver’s operating cost while serving passenger-

𝑗 (𝐶𝑑𝑖,𝑝𝑗,
) is calculated through Eq. (7) and Eq. (8). The driver’s cost is primarily determined by the ride distance, 

which covers the pick-up and destination trips. Equation (9) defines the passenger’s waiting time, which depends on 

the pick-up distance and the speed of the driver’s vehicle (𝑣𝑑𝑖
).  

Equation (10)-(14) constrained the value of the decision variables. Equation (10) states that fares per kilometer 

should fall between the minimum and maximum value regulated by the government. Equation (11) defines the 

relation between the value of joint acceptance probability and the assignment decision, where the assignment of 

driver-𝑖 to passenger-𝑗 would not be made if the joint acceptance probability is lower or equal to a specific threshold 

value (𝑒). Equations (12) and (13) limit the assignment solution to a one-to-one assignment, and Eq. (14) defines the 

binary nature of the assignment decision. Compared to [25], we can conclude that through this assignment and 

pricing model, we do not necessarily minimize the distance or waiting time of the driver and passenger pair but look 

into their behavior and determine the optimal distance and price based on that behavior. 

4. RESULT AND DISCUSSION 

4.1 Model Validation 

To validate whether the proposed model has worked as intended, we presented a small case depicting the assignment 

of 2-drivers and 2-passengers (Case 1). The following parameters were used: 𝑓𝑚𝑖𝑛 = 2), 𝑓𝑚𝑎𝑘𝑠 = 5 (both in thousands 

Indonesian Rupiah), 𝑐 = 0.7 ;  𝜃 = 0.8; 𝑒 = 0.5 and 𝑀 = 1000. Data related to the passengers and drivers are given in 

Table 1 and Table 2. 

Table 2. Parameter values for Drivers on Case 1 

𝒊 𝒙𝒅𝒊

𝑶  𝒚𝒅𝒊

𝑶  𝚲𝒅𝒊
 𝜶𝒅𝒊

 𝜷𝒅𝒊
 𝜸𝒅𝒊

 

1 1 0 5 10 -1 -1 
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2 1 0 5 15 -1 -1 

Table 3. Parameter values for Passenger on Case 1 

𝒋 𝒙𝒑𝒋
𝑶  𝒚𝒑𝒋

𝑶  𝑩𝒑𝒋
 𝒙𝒑𝒋

𝑫  𝒚𝒑𝒋
𝑫  𝚪𝒑𝒋

 𝝅𝒑𝒋
 𝜺𝒑𝒋

 𝝀𝒑𝒋
 

1 0 0 1 2 5 1 -2 -4 3 

2 0 0 1 2 5 1 -2 -6 3 

 

Table 1 shows two drivers with different behavior toward profit percentage, shown by 𝛼𝑑1
 and 𝛼𝑑2

. Driver-2 is more 

sensitive to the change in profit percentage, which means that the acceptance probability would be higher for driver-

2 compared to driver-1 for the same amount of improvement in profit percentage. On the other side, there are two 

passengers, both with different behavior towards the trip price, shown by the value of 𝜀𝑝1
 and 𝜀𝑝2

 (see Table 2). With 

this value, the acceptance probability of Passenger-2 would be lower than Passenger-1, given the same trip price. 

Except for their behavior, the drivers or passengers can be seen as identical. A list of possible solutions for Case 1 is 

given in Table 3, which profiled all possible trip fares per kilometer and joint probabilities when the assignment is 

made for a particular pair of driver and passenger (𝑑𝑖, 𝑝𝑗) 

Table 4. Possible assignment on Case 1 

Driver-𝒊/ Passenger-𝒋 𝒑𝟏 𝒑𝟐 

𝒅𝟏 𝑓𝑑1,𝑝1
= 5 

𝑃𝑑1,𝑝1

′ = 0.880 

𝑃𝑑1,𝑝1

′′ = 0.975 

𝑃𝑑1,𝑝1

′′′ = 0.858 

𝑍𝑑1,𝑝1
= 30.06 

𝑓𝑑1,𝑝2
= 3.875 

𝑃𝑑1,𝑝2

′ = 0.805 

𝑃𝑑1,𝑝2

′′ = 0.603 

𝑃𝑑1,𝑝2

′′′ = 0.485 

𝑍𝑑1,𝑝2
= 17.23 

𝒅𝟐 𝑓𝑑2,𝑝1
= 5 

𝑃𝑑2,𝑝1

′ = 0.998 

𝑃𝑑2,𝑝1

′′ = 0.975 

𝑃𝑑2,𝑝1

′′′ = 0.973 

𝑍𝑑2,𝑝1
= 34.03 

𝑓𝑑2,𝑝2
= 3.454 

𝑃𝑑2,𝑝2

′ = 0.991 

𝑃𝑑2,𝑝2

′′ = 0.950 

𝑃𝑑2,𝑝2

′′′ = 0.941 

𝑍𝑑2,𝑝2
= 22.75 

 

Given the list in Table 3, we can see that the optimal solution to maximize the total expected revenue is reached when 

we assign driver-1 to passenger-1 and driver-2 to passenger-2 (𝑋11=1, 𝑋12 = 0, 𝑋21 = 0, 𝑋22 = 1) resulting in total 

expected revenue of 52.810 (thousand Rupiahs). Selecting another feasible pair would lead to a lower objective value. 

Assigning driver-1 to passenger-1 allows us to set the trip price per kilometer at its highest value and still have a high 

acceptance probability by both parties; this is not seen when assigning driver-2 to passenger-2 due to the passenger-

2 sensitivity towards the trip price. The key decision variable impacting the assignment acceptance by both driver 

and passenger is the trip fare per kilometer. Fig. 2(a) and 2(b) represent the drivers’ and passengers’ acceptance 

probability given various trip fares per kilometer. The driver’s acceptance probability increases along with the 

increment of the trip price, while the passenger’s acceptance probability shows a decreasing pattern. Fig. 2(c) 

represents driver and passenger joint probability when being assigned to each possible pair, and Fig. 2(d) gives the 

potential revenue gained for each possible assignment pair. The optimal assignment is determined by selecting pairs 

of drivers and passengers that maximize the expected revenue. Fig. 2(d) shows that the objective function expected 

revenue for the platform is convex, and there is a single optimal solution for the problem described in Case-1.
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(a) (b) 

  

(c) (d) 

Figure 2. Graphical representation of driver’s acceptance probability (a), Passsenger’s acceptance probability (b), 

Driver’s and Passenger’s Joint Probability (c), and Expected revenue for each potential assignment (d), all plotted 

against trip fare per kilometer as the decision variable. 

Research by [25] solved the problem by applying two stages of decisions. In the first stage, they determine the 

assignment decision based on the target of minimizing the pick-up distance. Later, in the second stage, they 

determine the payment for the driver given the assignment. Looking at the driver and passenger profile in Case 1, we 

can see two possible sets of solutions available. The first set is assigning driver-1 to passenger-1, and driver-2 to 

passenger-2 (𝑋11=1, 𝑋12 = 0, 𝑋21 = 0, 𝑋22 = 1) and the second set is assigning driver-1 to passenger-2 and driver-2 to 

passenger-1 (𝑋11= 0, 𝑋12 = 1, 𝑋21 = 1, 𝑋22 = 0). When being compared, both sets of solutions lead to similar pick-up 

distances. Applying the same approach as [25] would lead us to choose one of the sets arbitrarily. Choosing the first 

set would result in the same expected revenue as we proposed, but choosing the second set would result in lower 

expected revenue. Applying this approach means that for the situation profiled in Case 1, there is a 50% chance we 

would arrive at non-optimal expected revenue. Taking a simultaneous approach, as we proposed in this paper, would 

guarantee that each feasible assignment is evaluated regarding driver’s and passenger’s acceptance, which would 

finally lead to higher expected revenue. Using standardized optimization software, we experimented with another 

250 cases of two-driver to two-passenger assignment (2D-2P), resulting in similar patterns. 

4.2 Finding Solutions for a Large Problem Size 

We provide a larger experiment to learn about the characteristics of the solution-finding process when the problem 

size for the assignment is varied. For each problem size, multiple cases are tested. The data we used here is randomly 

generated within practical limits. We defined a cutoff time for the solution-searching process, which is 1200 seconds. 

Each time we find a globally optimal solution within the cutoff time, we log the objective function value and the 
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computation time to reach that solution. However, if no global solution was found after the cutoff time limit was 

reached, we stopped the computation and logged whatever solution was found. Several cases lead to local optimal 

solutions, while other cases lead to only feasible solutions or no feasible solutions at all. As mentioned, all experiments 

are conducted using a standardized optimization (SOS) and run on Intel(R) Core (TM) i5-8250U CPU @ 1.60GHz   

1.80 GHz computer hardware. Table 3 shows the results of the experiment. 

Table 5. Solution optimality status and average computation time for various problem sizes 

 using standardized optimization software (SOS) 

Proble

m size 

Number of 

cases 

experimen

ted 

Optimality status of the 

solution found 

(percentage) 

Average 

computation time to 

reach global optimal 

(second) 
Global 

optimal 

Local 

optimal 

2D-2P 250 100% 0 0.54 

3D-3P 90 75.56% 24.44% 15.67 

4D-4P 54 53.57% 46.43% 123.16 

5D-5P 36 38.89% 61.11% 1156.00 

6D-6P 20 0 100% N/A 

7D-7P 44 0 100% N/A 

8D-8P 16 0 0 N/A 

… … … … N/A 

25D-25P 10 0 0 N/A 

The first column in Table 3 identifies the size of the assignment problem or, specifically, the number of drivers and 

passengers involved in the assignment. We arbitrarily select a balanced number of drivers and passengers, but the 

model can also handle imbalance cases. The second column identifies the number of cases experimented for a 

particular problem size. The third column identifies the optimality status of the solution found for each case. As we 

explained earlier, we discern the percentage of cases that could reach global optimal and those that could only reach 

local optimal. The fourth column identifies the average time it takes to reach a global optimal solution. 

The data compiled in Table 3 shows that only in 2D-2P cases can the global optimal solution be 100% found. For 

cases in the problem size of 3D-3P up to 5D-5P, a globally optimal solution could only be reached for some parts of 

the cases, while for all cases experimented in the problem size of 6D-6P up to 7D-7P, no feasible solution is found. 

These are all logged within the 1200-second cutoff time limit for computational time. This information shows that 

with the increase in problem size, finding the global optimal solution for the model is not easy. Standard optimization 

software can only efficiently find globally optimal solutions for small-size problems. Larger problem sizes require a 

very long computational time (more than 1200s, which is not feasible for the ORH operational framework).  

4.3 Reaching Efficient Computational Time 

As pointed out in the previous sub-section, other means to improve the efficiency of the solution-finding process for 

the model are needed. Therefore, we designed a solution-finding technique based on the Particle Swarm Optimization 

(PSO) algorithm. PSO is selected due to its superiority in solving combinatorial problems such as assignment 

problems [51]. We designed the algorithm in Python and ran it on the same hardware used for standardized 

optimization software. The pseudocode of the algorithm is given in Table 4. 
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Particle Swarm Optimization (PSO) is a metaheuristic algorithm based on the behavior of a swarm. In the swarm, 

each individual (also called a particle) will show their intelligence through a particular behavior; this behavior will 

affect the behavior of other particles. Thus, if one particle finds the fastest path to a food source, other particles in the 

same swarm can immediately follow the discovery through information between them. 

Table 6. Pseudocode for PSO-based ORH assignment 

Start:  

PSO Parameter initialization and driver and 

passenger data input 

Set PSO parameter (number of particles, 

maximum iteration, individual factor, social 

factor, inertia weight) 

Set the number of drivers and passengers to be 

assigned 

Set data related to driver and passenger (driver 

and passenger initial point, destination point, 

behavior characteristics) 

Iteration = 0; (starting point) 

While iteration ≤ Maximum Iteration 

Do 

For i = 0 to Number of Particles 

Determine the assignment of driver to passenger 

Evaluate the feasibility of one-to-one assignment 

Determine the trip price of each assignment 

Evaluate whether the joint acceptance probability 

minimum limit is achieved. 

Calculate the objective function 

Record Pbest as the best objective value for 

individual particle 

Find Zbest as the best objective value for the entire 

swarm 

Update the position of each particle 

Iteration = Iteration +1 

End while 

Output Zbest for the entire swarm, assignment, 

and trip price. 

 

In PSO, the swarm is assumed to have a specific size that describes the number of particles in it. Particles have 

positions and velocities that change over time. In the optimization context, the particle’s position represents the value 

of the decision variable. This position changes over time, describing the exploration of the value of the decision 

variable in the solution space. The change in position is determined by the particle velocity (vector), which has a 
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direction of movement and a magnitude of displacement. The particle velocity is iteratively calculated based on the 

history of the best position of a particular particle (𝑃𝑏𝑒𝑠𝑡) and the best position of the swarm (𝐺𝑏𝑒𝑠𝑡). By changing the 

position of the particles over time, it is expected that all particles in the swarm will eventually converge to one point 

in the solution space. This convergence point is then considered the best solution.  

Before starting the PSO experiment, we first determine the optimal PSO parameter values to be used. We start by 

using small-sized cases (2D-2P) and varying PSO parameter values such as the number of particles, maximum 

iterations, individual and social learning factors, and inertia weight. We then compared the average objective value 

and computational time achieved by each parameter value set. When a particular set of parameters does not 

significantly improve the objective value yet lengthens the computational time, the set is denied. The following PSO 

parameter values are selected through this process: the number of particles is 50, maximum iterations are 1000, 

individual and social learning factors and inertia weight subsequently are 0.5, 0.5, and 2 [51].  

Once the parameter value is set, we ran the PSO algorithm to solve the cases previously listed in Table 3 and 

summarized the result in Table 5. Moreover, we compared the solution quality found by the PSO algorithm and the 

output of the standardized optimization software (SOS) in terms of optimality and computational time. The summary 

presented in Table 5 shows four groups of cases that have different comparison patterns. The first group is 2D-2P 

cases, which show the SOS’s superiority over PSO regarding solution quality (gap of 0.72%)  and average 

computational time (gap of -5.40 seconds). The second group consisted of 3D-3P up to 5D-5P cases. In this group, 

the SOS maintains its superiority in solution quality (gap of 1.24% to 1.78%) but is worse in average computational 

time (gap of 12.67 to 514.10 seconds).  

The third group consisted of 6D-6P up to 7D-7P cases. In this group, the SOS only gave local optimal solutions within 

the cutoff time (1200 seconds), while PSO can give better solutions than the local optimal provided by the SOS. In 

terms of computational time, the PSO can give a relatively short computational time. In fact, by this far, we can see 

that the computational time for PSO has increased quite a linear pattern compared to SOS (see Fig. 3). The last group 

comprises cases with large problem sizes (more than 7D-7P). In this group, SOS cannot find any feasible solution 

within the cutoff point. On the other hand, PSO can still come up with solutions in a relatively short computational 

time. By projecting this pattern, we can conclude that, given larger cases, the proposed PSO algorithm can solve the 

ORH assignment problem effectively and efficiently.

Table 7. Comparison of standard optimization software (SOS) and PSO algorithm output. 

Problem 

Size 

Comparison of AZ value Comparison of ACTvalue 

AZSOS 

(in thousand 

Rp) 

AZPSO 

(in thousand 

Rp) 

Gap 

(in 

percentage) 

ACTSOS 

(in 

second) 

ACTPSO 

(in 

second) 

Gap 

(in 

second) 

2D-2P 51.88 51.87 0.72% 0.54 5.94 -5.40 

3D-3P 85.34 85.28 1.24% 22.61 7.19 12.67 

4D-4P 124.50 122.28 1.78% 129.10 9.94 119.16 

5D-5P 153.05 150.65 1.57% 524.56 10.46 514.10 

6D-6P 180.98 192.69 -6.47%*  1200 14.24  1185.76 

7D-7P 210.41 220.33 -4.71%*  1200 17.72  1182.28 

8D-8P No FS 250.02 -∞ ∞ 18.10 ∞ 

9D-9P No FS 280.88 -∞ ∞ 19.49 ∞ 

15D-15P No FS 426.26 -∞ ∞ 36.05 ∞ 

20D-20P No FS 559.00 -∞ ∞ 48.98 ∞ 
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25D-25P No FS 673.80 -∞ ∞ 59.75 ∞ 

30D-30P No FS 806.59 -∞ ∞ 80.95 ∞ 

*The PSO output is compared to the local optimal of standard optimization software (SOS) 

 

Figure 3. Computational time for standard optimization software (SOS) and PSO plot against the problem size

5. CONCLUSION  

This paper proposed a simultaneous model for assigning and determining trip prices used in online ride-hailing 

businesses. The model has been developed, validated, and experimented on various problem sizes. The result shows 

that the model can find solutions accommodating different driver and passenger behavior settings. Behavior 

differences among drivers and passengers lead to different optimal assignments and tailored pricing schemes. This 

mechanism would reduce the likelihood of the driver and/or passenger rejecting the assignment, thus increasing the 

system’s efficiency. Regarding the solution-finding process, it was found that using standardized optimization 

software (SOS), the global optimal solution can only be found for small-size problems. Given a larger problem size, 

the average computational time becomes poor, and the optimality status of the solution deteriorates. We proposed 

using the particle swarm optimization (PSO) algorithm to overcome this.  

The proposed algorithm can achieve an average of 1.78% error for small-sized problems, up to 6.47% better solution 

compared to local optimal solutions found by standard optimization software, and can give feasible solutions when 

standard optimization software fails to provide one. A further issue to be tackled is finding data sets to build empirical 

logistic regression, especially for the Indonesia Ride Hailing market, and integrating them into this research. Another 

opportunity exists to apply multiple service types provided by ORH in the form of vehicle type. It aims to facilitate 

the different wants and needs of ORH passengers. Investigating how pricing is determined in such situations can be 

beneficial for improving ORH’s business. 
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