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This research paper presents a comparative analysis of three deep learning architectures—

VGG16, DenseNet121, and the proposed EfficientNetV2B2—for the identification of plant 

diseases through image classification. The study reveals distinct differences in training 

efficiency, convergence speed, and computational demands among the models. VGG16, 

characterized by its substantial parameter count of 15 million, exhibited slower convergence 

and signs of over fitting despite achieving high training accuracy. In contrast, DenseNet121, 

with only 7.3 million parameters, demonstrated remarkable efficiency and quick convergence, 

achieving a classification accuracy of 96.25%. The proposed EfficientNetV2B2 excelled with a 

classification accuracy of 99.29%, effectively handling complex disease patterns and leaf 

textures. All models successfully classified healthy leaf classes, attributed to their distinct visual 

characteristics. The findings highlight the importance of model depth, transfer learning, and 

data preprocessing in enhancing the reliability of automated plant disease classification. 

EfficientNetV2B2 stands out as the most robust and scalable model suitable for real-world 

precision farming applications, while the limitations and potential trade-offs of each 

architecture warrant further investigation across diverse plant species, diseases, and imaging 

conditions. 

Keywords: Deep Learning, Convolutional neural networks (CNN), plant disease, VGG16, 

DenseNet121, EfficientNetV2B, Transfer learning, Precision agriculture. 

 

Introduction 

Agricultural biodiversity is essential to the supply of food and raw materials to humans and is an important 

component of human civilization [1, 2]. Diseases can occur when pathogenic organisms such as fungi, bacteria, and 

nematodes, soil PH, extreme temperatures, air humidity changes, and other elements continue to affect plants. Plant 

diseases affect the growth, function, and structure of plants and crops, and affect people who rely on them. Most 

farmers continue to use manual methods to identify and classify plant disorders because early detection is difficult and 

reduces productivity. Agricultural productivity is an important economic factor. Therefore, identifying and classifying 

plant diseases in the agricultural industry are essential [3]. If not taken, proper precautions, it can have serious 

consequences for plants by reducing the quality, quantity, or productivity of the products or services. Automatic 

disease detection and classification recognize symptoms early in the process, i.e., when they first appear on plant 

leaves, reducing the amount of labor required to monitor large-scale crops. According to [4], leaf diseases are an 

important problem in rice production and can harm crops and lead to a decrease in production. It is difficult to detect 

and classify leaf diseases in plants leaf diseases. Traditional methods of physical observation to detect and classify 

diseases are not always reliable, which can lead to a significant reduction in agricultural production. Plant diseases 

first attack leaves before infecting the whole plant, reducing the quality and quantity of production [5]. 
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The recent development of DL has led to the use of images of infected plants to detect and classify plant diseases [6]. 

Early detection and classification of plant diseases are essential to increasing agricultural productivity [7]. Plant 

diseases harm the crop, reducing crop yields. Identification of plant diseases is an important challenge for farmers and 

experts in agriculture [8]. Artificial intelligence (AI) is used to detect and classify plant leaf diseases early on before 

they spread to other crops on the farm and increase crop productivity. Every country needs agriculture to meet its 

needs and strengthen its economy. When crops are damaged by disease, production and the economy of the country 

are also affected [9, 10]. 

 

 Convolutional neural networks (CNNs) have demonstrated remarkable success in automatically learning multi-level 

and high-level features from disease images, surpassing the limitations of traditional manual design methods [11, 12]. 

Convolutional Neural Networks (CNNs) have emerged as a powerful tool in image analysis, demonstrating exceptional 

capabilities in feature extraction, classification, object detection, and localization tasks. Their ability to automatically 

learn discriminative features from raw image data has revolutionized computer vision, enabling accurate and efficient 

solutions for a wide range of applications [13]. They provide considerable advantages in the diagnosis of diseases and 

have been studied extensively [14]. Depending on the network structure, CNN-based disease detection methods can be 

classified as one-stage or two-stage detectors [15-17]. 

 

Our paper focuses on early network detection using various techniques and algorithms, a technique that offers greater 

accuracy than many other existing techniques. This article evaluates and assesses final performance. Plant Leaf (a 

balanced image dataset that also includes apples, peaches, grapes, tomatoes, corn, potato, cherries, and strawberries) 

can be divided into training, validation, and testing. EfficientNetV2B2 architectures are used to develop and train deep 

learning models on the prepared training dataset; a comparative study of EfficientNetV2B2, VGG16, and DenseNet121 

is conducted; the effectiveness of various transfer learning techniques (e.g., fine-tuning) to leverage pre-trained 

weights and improve model performance is investigated; accuracy, precision, recall, F1-score, and confusion matrix 

are used to assess each model's performance on the validation set. 

A wide range of agricultural diseases can occur at various stages of plant development, damaging plant growth and 

negatively impacting crop production as a whole. Plant diseases are caused by various conditions at various stages of 

plant development [18]. As mentioned in [19], the variables causing crop diseases are classified into two categories: 

biotic factors and abiotic factors. Biochemical agents, such as viruses, fungi, bacteria, moss, and insects, cause plant 

diseases as a result of microbial infections, whereas the abiotic ones, such as water, temperature, radiation, and 

nutrition, act by constraining plant growth. 

 

Ahmad et al. [20] Studying several DL models in detecting plant diseases, depending on the dataset and 

environmental parameters. 

 

Five corn disease datasets were utilized: PlantVillage, PlantDoc, Digipathos, NLB, and a personally acquired CD&S 

dataset. Several combinations of datasets were used in order to train and evaluate the DL models. Transfer learning 

using five pre-trained architectures was used in four experiments. Performance-wise, DenseNet169 performed the 

best. The DenseNet169 model achieved an accuracy of 81.60% by removing backgrounds from RGBA images in the 

CD&S dataset and merging field and lab data to enhance generalization. These results imply that improved data 

diversity and quality can boost the performance of DL models for disease detection in the real world. Shovon et al.[21] 

study, five common rice leaf diseases and two betel leaf conditions were identified through image analysis. To 

overcome the difficulties presented by limited and diverse image datasets, a novel deep ensemble model, PlantDet, was 

developed using InceptionResNetV2, EfficientNetV2L, and Xception architectures.PlantDet comprised data 

augmentation, preprocessing, a Global Average Pooling layer, a Dropout mechanism, L2 regularizers, PReLU 

activation function, Batch Normalisation layers, and methods to increase model robustness and prevent overfitting. 

With an accuracy of 98.53%, the proposed model exceeded current techniques in the classification of rice leaf disease.  

Yang et al.[22] presented three interconnected networks forming LFC-Net, a tomato disease detection model. This 

approach detects informative areas in images without human annotations, utilizing a self-supervised mechanism. 

Combining location detection, feedback refinement, and classification, LFC-Net beats ImageNet-pretrained models 
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with a remarkable accuracy of 99.7% on the tomato dataset. There may be wider uses for this novel framework in the 

diagnosis of plant diseases.[23] To overcome the drawbacks of controlled datasets like PlantVillage, we used a dataset 

that included photos of sunflower and cauliflower leaves, bulbs, and flowers taken in natural settings. To maximize the 

accuracy of disease classification, we investigated 38 pre-trained models. Results show that EfficientNetV2B2 and 

EfficientNetV2B3 consistently perform better than other models on the Agri-ImageNet, cauliflower, and sunflower 

datasets. Balafas et al.[24] Research is based on classification or object detection. They provide a comprehensive 

overview of available datasets for these tasks. To benchmark state-of-the-art techniques, we conduct extensive 

experiments on the PlantDoc dataset using five object detection and eighteen classification algorithms. Results 

demonstrate YOLOv5's superior performance in object detection and highlight the efficiency of ResNet50(accuracy 

61.01%) and MobileNetv2(accuracy 59.74%) were trained for about 16 minutes for image classification.[25] Using the 

EfficientNet-V2 architecture, the model integrates dense layers and transfer learning to address class imbalance and 

improve model generalization, and it uses a spatial-channel attention mechanism to improve feature extraction. 

EfficientPNet is tested on the PlantVillage dataset and provides a 98.12% accuracy rate in potato leaf disease 

classification. 

 

Datasets 

The PlantVillage dataset, which is an open-access plant leaf image repository, was chosen as the principal source of 

information for this research. The Plant Village dataset comes in three color modes: color, grayscale, and segmented. 

For this research, the color images were chosen, as they carry the maximum amount of information for visual analysis. 

PlantVillage dataset, 2016, consists of 54,305 images of healthy and diseased leaves of 14 plant species. The dataset 

folder organizes these categories into 38 classes that combine species and diseases. 

Pre-processing of the Dataset 

For the sake of quality and uniformity, we excluded some of the classes from the dataset. Hence, classes representing 

plants with only a single disease/healthy category, such as Orange Huanglongbing, Squash Powdery Mildew, and 

healthy varieties of Blueberry, Raspberry and Soybean, were removed, since they may introduce noise or bias into the 

model. Classes containing fewer than 100 images were also removed to avoid overfitting and guarantee adequate 

training data. Thus, finally, we have RGB-colored Apple, Cherry, Corn, Grape, Peach, Potato, Strawberry, and Tomato 

at 256X256. 

 

Table 1: Number of samples for each class 

Class/Folder Name Before 

Preprocessing 

Image Count 

After 

Preprocessing 

Image Count 

Apple___Apple_scab 500 500 

Apple___Black_rot 500 500 

Apple___Cedar_apple_rust 275 500 

Apple___healthy 500 500 

Cherry_(including_sour)___Powdery_mildew 500 500 

Cherry_(including_sour)___healthy 500 500 

Corn_(maize)___Cercospora_leaf_spot 

Gray_leaf_spot 

500 500 
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Corn_(maize)__Common_rust 500 500 

Corn_(maize)___Northern_Leaf_Blight 500 500 

Corn_(maize)___healthy 500 500 

Grape___Black_rot 500 500 

Grape___Esca_(Black_Measles) 500 500 

Grape___Leaf_blight_(Isariopsis_Leaf_Spot) 500 500 

Grape___healthy 423 500 

Peach___Bacterial_spot 500 500 

Peach___healthy 360 500 

Potato___Early_blight 500 500 

Potato___Late_blight 500 500 

Potato___healthy 152 500 

Strawberry___Leaf_scorch 500 500 

Strawberry___healthy 456 500 

Tomato___Bacterial_spot 500 500 

Tomato___Early_blight 500 500 

Tomato___Late_blight 500 500 

Tomato___Leaf_Mold 500 500 

Tomato___Septoria_leaf_spot 500 500 

Tomato___Spider_mites Two-spotted_spider_mite 500 500 

Tomato___Target_Spot 500 500 

Tomato___Tomato_Yellow_Leaf_Curl_Virus 500 500 

Tomato___Tomato_mosaic_virus 373 500 

Tomato___healthy 500 500 
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Figure 1: Augmented Images 

 

After augmentation, dataset was divided into three distinct subsets: a training set comprising 80% of the data, a 

validation set representing 10% of the data, and a testing set comprising the remaining 10% of the data. The number of 

photos for each disease is displayed in Table 1  

 

Methodologies 

Deep learning is nowadays one of the key image-classification techniques. In this approach, multilayer neural 

networks are generated and trained with labeled data to obtain feature representations for the purpose of improving 

classification and prediction accuracy. 
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VGG16 

VGG16 is a simple and effective convolutional neural network (CNN) architecture and has been widely adopted. It was 

proposed by Simonyan and Zisserman in the paper "Very Deep Convolutional Networks for Large-Scale Image 

Recognition" in 2014 and was the foundation of the ILSVRC (ImageNet Large Scale Visual Recognition Competition) 

winning image classification networks in 2014 of 2015. VGG16 uses a deep architecture with 16 layers of convolutions 

and can therefore model complex features in the input images. The network utilizes 3x3 filters in all convolutional 

layers. 

Load Pre-trained Model: 

We loaded the pre-trained VGG16 model from ImageNet and removed the final classification layer, allowing us to 

insert our custom output layers easily. Max pooling shrinks the size of the feature maps (in terms of their spatial 

dimensions), which in turn can help make your architecture computationally more efficient and reduce the risk of 

overfitting. The initial 15 layers of the VGG16 model are pre-trained and are frozen in training. This leads to improved 

generalization and faster training. 

Experimenting with additional layers: 

We obtain the one-dimensional vector of the feature maps by flattened. The dense layers for extracting abstract 

features at higher levels and to reduce dimensionality. A dropout used to introduce randomness to minimize the risk 

of overfitting. The last dense layer computes the probability of each class of disease using a sigmoid as activation. 

Hyperparameter Search Experiment with other hyperparameters like the learning rate, batch size, and weight decay in 

order to fine-tune the model for higher performance. Transfer Learning tries and leverage the idea of transfer 

learning by finetuning the VGG16 model on the leaf disease dataset. 

 

Optimizer is a method for reducing the loss of the loss function during training by updating the weights of the model. 

Adamax is a popularized version of Adam that is based on the infinity norm. Use early stopping with an appropriate 

patience value of 3 to save time. Longer patience may cause overfit, and importantly, reset best weights to True to 

ensure that the model's weights are restored to the epoch with the best validation performance. This network has 

7,511,455 trainable parameters. 

DenseNet121 

One major strength of DenseNets is the reduction in the vanishing gradient problem. In general, the vanishing 

gradient problem occurs when gradients from backpropagation have less magnitude with each iteration so much so 

that the model cannot learn well. DenseNet combats this by connecting each layer to all layers that come after it. This 

gives gradients a direct path to flow through them, thereby allowing information to flow better within a network. 

 

Load Pre-trained Model: 

We are loading the pre-trained DenseNet121 model, which was originally trained on ImageNet. However, when 

loading this model for the plant leaf dataset, the top-most classification layer is erased so that it does not interfere with 

the unique task of image classification. The model weights of the base model are set to non-trainable so that the pre-

trained features from ImageNet remain intact and are not updated during the initial training process on the target 

dataset. By freezing the weights, we utilize the knowledge and patterns learned from ImageNet, which should aid in 

recognizing relevant features in images of plant leaf diseases. 
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Experimenting with additional layers: 

Now, the next step is to create a custom classification head. This head will be responsible for learning the specific 

characteristics of plant leaf diseases and mapping the extracted features to the appropriate disease categories. A 

custom classification head is added, comprising several layers: a batch normalization layer, a dense layer, dropout 

layer, and finally, a dense layer with the number of class counts as neurons and softmax activation for output 

probability distribution. After adding a custom classification head, the model has 299,551 trainable parameters. 

EfficientNetV2B2 

EfficientNets, a family of eight neural network architectures, has recently achieved state-of-the-art performance on the 

ImageNet dataset. A key innovation in EfficientNets is the introduction of the Swish activation function. Swish, 

defined as f(x) = x * sigmoid(x), has demonstrated superior performance to ReLU in various neural network 

architectures and datasets[26]. EfficientNet architectures were developed using neural architecture search (NAS) to 

optimize the scaling of depth, width, and input resolution. This approach enables EfficientNets to achieve optimal 

performance while maintaining computational efficiency. By systematically scaling these dimensions, EfficientNets 

effectively balance accuracy and resource constraints, making them highly suitable for a wide range of applications. 

Load Pre-trained Model: 

We are loading the pre-trained EfficientNetV2B2 model, which was originally trained on the ImageNet dataset. 

However, for the plant leaf dataset, the top classification layer is excluded to avoid interference with the specific task of 

classifying images. 

Experimenting with additional layers: 

To adapt the model to the plant leaf disease task, a custom classification head is built on top of the pre-trained 

EfficientNetV2B2. This head consist global average pooling layer that summarizes the overall information from the 

extracted features and perform batch normalization to improve the training process stability. The Dense layer is used 

with 128 and 32 neurons using the ReLU activation function. To further enhance regularization, we added a Dropout 

layer with a dropout rate of 0.5 and 0.2, which randomly drops 50% and 20% of the neurons during training to 

prevent over fitting. This configuration aims to balance learning capacity and generalization by progressively refining 

the representations learned by the model. Finally, a dense layer with the number of disease categories as neurons and 

a softmax activation function is added. This final layer produces probability distributions for each disease class, 

enabling the model to predict the most likely disease present in a given leaf image. 

 

After defining model architecture, the code configures it for training by specifying Adamax as the optimizer, a loss 

function, and evaluation metrics to be considered. Optimization is run by using the Adam optimizer with a learning 

rate setting of 0.0001. Categorical cross-entropy is picked as the loss function, which is appropriate for multi-class 

classification tasks such as this. The model is trained on the prepared training set for 50 epochs. Callbacks might be 

activated during training to watch the training process with a 'patience' parameter set to 3. 

 

Table 2: Model configuring and training parameters 

↓Hyper parameter/ 

Model→ 

VGG16 DenseNet121  EfficientNetV2B2 

Learning rate 0.0001 0.0001 0.0001 

Optimizer Adamax Adam Adamax 

Batch size 64 64 64 
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↓Hyper parameter/ 

Model→ 

VGG16 DenseNet121  EfficientNetV2B2 

Epochs  50 50 50 

Activation Function at  Relu and 

Softmax at the 

output layer 

Relu and 

Softmax at the output 

layer  

Relu and Softmax at the 

output layer 

Freeze/Unfreeze layers Freeze the first 15 

layers of the Base 

model 

The base model is fully 

frozen 

Base model fully 

Unfreeze 

Input size 256 X 256 X 3 256 X 256 X 3 256 X 256 X 3 

No. of total parameters 15,146,719 7,339,615 8,961,149 

No. of Trainable Parameters 7,511,455 299,551 8,875,725 

Results and Discussions 

Experiment Setup 

The present system development was done using Python and TensorFlow/Keras libraries. The dataset to be used in the 

experiment was the PlantVillage one, which originally had 54,306 images in 38 classes. For this study, only 31 relevant 

classes from 8 plant species were selected. The dataset was cleaned during preprocessing, which also involved the 

removal of extraneous classes. Each image was resized to 256×256, and after that, data augmentation techniques like 

rotation, flipping, and zooming were applied to help fine-tune the model. The entire dataset was further split with 80% 

given for training, 10% for validation, and the remaining 10% for testing. 

Training 

Three deep learning models were selected for performance evaluation, i.e., VGG16, DenseNet121, and 

EfficientNetV2B2. All models were subsequently fine-tuned using transfer learning, with ImageNet pre-trained 

weights. The top layers were replaced with a custom-built classifier for the 31-class output. Models were trained with 

categorical cross-entropy loss and accuracy as the major evaluation factors. 

Results of the Experiments 

According to these aggregate metrics, EfficientNetV2B2 showed the best and most consistent performance across the 

31 classes and most often returned endless values of 1.00 for precision, recall, and F1-scores. DenseNet121 also 

performed accurately across most categories but occasionally suffered some declines in terms of either precision or 

recall.VGG16, by contrast, exhibited great variability intuitively in disease classes with fewer examples or subtle visual 

distinctions. 
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Table 3 summarizes the evaluation metrics: precision, recall, F1-score, and overall accuracy for all three models. 

Model Precision Recall F1-score Accuracy 

VGG16 0.95 0.95 0.95 94.83% 

DenseNet121 0.96 0.96 0.96 96.25% 

EfficientNetV2B2 1.00 1.00 1.00 99.29% 

Such findings, shown through per-class performance tables and metrics, clearly indicate the effectiveness of the more 

modern, deeper architectures. EfficientNetV2B2, in particular, recorded the highest accuracy; it converged in fewer 

epochs while exhibiting almost no overfitting. 

From the loss and accuracy plots, EfficientNetV2B2 is the fastest in convergence and lowest in validation loss, followed 

by DenseNet121. VGG16 is slower to converge with some minor signs of overfitting.  

 
Figure 2: Training and validation accuracy and loss for the transfer learning network, using VGG16 

 
Figure 3: Training and validation accuracy and loss for the transfer learning network, using DensNet121 
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Figure 4: Training and validation accuracy and loss for the transfer learning network, using EfficientNetV2B2 

 

Discussion 

The three deep learning models—VGG16, DenseNet121, and EfficientNetV2B2—differed significantly in terms of 

training efficiency, convergence speed, and computation. VGG16, with its 15 million parameters, is the heaviest and 

shallowest, and this makes it slower in convergence. For instance, it takes about 88-90 seconds per epoch, and for 28 

epochs, it arrives at roughly 46 minutes. Despite achieving a high training accuracy at the end, there were indications 

of overfitting as evidenced by lower test accuracy. DenseNet121 is most efficient at about 8 million parameters, thanks 

to its dense connectivity and reuse of features; its speed is also robust as it has completed 25 epochs in just 21 minutes, 

averaging 43-45 seconds per epoch to convergence at 96. 

In a nutshell, VGG16 is slow and computationally heavy; DenseNet121, on the other hand, remains light, quick, and 

efficient; and EfficientNetV2B2 balances between depth and accuracy for deployment needing real-time results with 

high precision. Despite demonstrating better performance, one has to consider potential limitations and trade-offs 

that include higher computational cost and longer training times when compared to simpler models. Therefore, 

whether these findings will hold in the case of other plant species, diseases, and imaging conditions remains to be 

investigated, aside from their reliance on large, labeled datasets like PlantVillage. Nonetheless, irrespective of the 

drawbacks, EfficientNetV2B2 offers an excellent balance of accuracy and computational efficiency, thereby casting a 

potential solution for plant disease detection under confined environments or with adequate computational resources. 

Conclusion 

Under image classification, this work attempted a comparative account of three deep architectures, VGG16, 

DenseNet121, and EfficientNetV2B2 (Proposed Model), in plant disease identification. Being the deepest model, 

EfficientNetV2B2 was found able to land a classification accuracy of 99.29%, followed very closely by DenseNet121 at 

96.25%, whereas VGG16 lagged at 94.83%. 

By the class-wise analysis and checking the confusion matrices, the deeper models seemed to handle more complex 

disease patterns and leaf textures successfully. EfficientNetV2B2 missed none. Healthy leaf classes were classified 

right with certainty by all models because of their clear-cut and uniform visual traits. 



Journal of Information Systems Engineering and Management 
2024, 9(4s) 
e-ISSN: 2468-4376 
https://www.jisem-journal.com/ Research Article 

 

 

 1431 

 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Overall, EfficientNetV2B2 is by far the most robust and scalable design for deployment in a real-world precision 

farming environment. This work stands to underpin how model depth, transfer learning, and data pre-processing are 

the major factors in strengthening the reliability in the automated classification of plant diseases. 
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