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1. INTRODUCTION 

CONTROLLER Area Network (CAN) is a widely used protocol for connecting in-vehicle electronics [1]. 
However, the inherited lack of security mechanisms in 
CAN networks has exposed them to various cyber threats, including message interception, manipulation, and 
unauthorized access. 
Research conducted by Koscher et al. [2] illuminated the vulnerabilities within automotive electronic systems, 
revealing the potential for complete unauthorized control via accessible interfaces. This concern was also 
showcased, when Miller and Valasek [3] demonstrated a remote control over an unmodified Jeep Cherokee by 
exploiting a vulnerable ECU that let them to remotely gain access to the CAN bus. In consequence, Chrysler 
Corporation recalled approximately 1.4 million vehicles. 
Furthermore, in 2019, the U.S. Cybersecurity and Infrastructure Security Agency (CISA) issued an alert 
highlighting the vulnerable implementations of CAN bus networks in aircraft [4]. This alert emphasized the 
critical consequences of potential attacks, as malicious actors gaining physical access to the CAN bus could 
manipulate instrument readings and alter the status of an aircraft posing risks such as loss of control. 
Furthermore, there have been numerous passenger vehicle theft incidents, including instances involving 
Toyota and Lexus vehicles, perpetrated via CAN injection attacks [5] [6] [7] [8]. 
In response to these challenges, various efforts have been undertaken to address vulnerabilities in the CAN bus 
and mitigate these attacks. These initiatives included the implementation of intrusion detection systems [9] 
[10] [11], 
deployment of secure gateways [12] [13] [14], and integration 
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Controller Area Network (CAN) is a serial communication protocol for distributed 
real-time control systems. Its high reliability and low cost enable it to be widely 
implemented in various domains such as automotive, avionics, and maritime 
networks. However, security mechanisms were not implemented during the design 
of the CAN protocol, which resulted in many attacks such as CAN injection. These 
attacks enable attackers to steal vehicles, change their states, and gain remote access 
to their control systems. Literature review reports that current CAN's security 
protocols experienced lack of security robustness or efficiency due to the constrained 
environment of the CAN. This paper introduces A Lightweight Robust Encryption 
and Authentication Protocol (LiREAP), that addresses security vulnerabilities in the 
CAN protocol while preserving its performance. The proposed protocol adopts 
Ascon, the upcoming NIST standard for lightweight cryptography, to achieve both 
confidentiality and integrity for CAN data. A hash chain mechanism is implemented 
for session key generation. In addition, a challenge-response two-factor 
authentication mechanism (CR2AM) is designed for session key distribution. The 
proposed protocol is designed to work harmonically with the standard CAN protocol 
that enables only 8 bytes for the data field. The conducted theoretical analysis of the 
proposed protocol reports its ability to provide robust security level with minimum 
overhead that meet the high-speed requirements in-vehicle communication. 
Compared to the current protocols, the proposed one efficiently fill the security gap 
of the CAN with very low overhead cost. 
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of cryptography [15] [16] [17] [18]. This work follows the approach of utilizing cryptography to address the 
security posture of the CAN bus. 
This paper proposes a Lightweight Robust Encryption and Authentication Protocol (LiREAP) that aims at 
securing the CAN data while maintaining the requirements of high-speed communication. Designed with 
efficiency and robustness in mind, LiREAP integrates state-of-the-art cryptographic techniques and secure key 
management mechanisms to safeguard CAN networks against various cyber threats, including CAN injection, 
forgery attacks, and reverse engineering. It consists of three components: The Key Management Component, 
the Authenticated Encryption Component, and the Counter Management Component. These components 
work harmonically to ensure confidentiality, integrity, and authenticity for CAN messages. It utilizes Ascon, the 
upcoming standard for lightweight cryptography by the National Institute of Standards and Technology (NIST) 
[19]. Ascon's efficiency makes it well-suited for securing constrained environments such as the CAN bus, where 
reducing computational load is crucial. Moreover, LiREAP incorporates robust mechanisms for a centralized 
session key management, including a hash chain mechanism for session key generation and a challenge-
response two-factor authentication mechanism (CR2AM) for session key distribution. 
The rest of the paper is organized as follows: Section 2 addresses the previous work and the related scientific 
background of the concepts adopted in our proposed solution. Section 3 provides a comprehensive explanation 
and the technical details of the LiREAP, while Section 4 discusses the results and findings of the conducted 
security and overhead analysis. Finally, section 5 concludes the paper and highlights the prospected future 
work. 
 

I. RELATED WORK AND SCIENTIFIC BACKGROUND 
This section reviews the previous works and discusses their findings and drawbacks. It also provides a brief 
explanation for the scientific concepts related to the proposed protocol. 
 
A. Related Work 
Previous works proposing cryptographic protocols to secure CAN networks have utilized either single or 
multiple keys for encryption and authentication. A protocol based on a single key is vulnerable to a single point 
of failure, meaning the entire protocol is compromised if the secret key is compromised. On the other hand, 
using multiple keys enhances robustness but could increase the overhead of key management. 
The Automotive Open System Architecture (AUTOSAR) released the Secure Onboard Communication (SecOC) 
Protocol, a framework designed to secure in-vehicle communication, ensuring data integrity and authenticity 
[15]. The protocol relies on AES-CMAC, adding a Message Authentication Code (MAC) and a freshness value 
to data transmitted between Electronic Control Units (ECUs). However, researchers were able to break the 
protocol after successfully extracting the key, demonstrating a vulnerability due to its dependence on a single 
secret key [20]. 
Lu et al. [16] proposed a lightweight encryption and authentication protocol (LEAP) to secure CAN while 
maintaining its high performance. A high-performance ECU, called the Secure ECU, is responsible for the key 
management. It uses Advanced Encryption Standard (AES) and Secure Hash Algorithm (SHA) in session key 
generation and distribution, following an Encrypt-then-MAC scheme. The stream cipher RC4 is used for both 
encrypting and authenticating CAN messages between ECUs. Each ECU possesses a long-term key stored 
during manufacturing and a symmetric session key assigned to each group of ECUs. Session keys are updated 
and distributed regularly at vehicle’s idle time. A counter is required to synchronize the RC4 key stream of each 
message. However, the protocol does not mention a mechanism for counter synchronization recovery, which 
could lead to failure due to network issues or a denial-of-service (DoS) attack. Additionally, the number of keys 
stored in each ECU is directly related to the number of ECUs in the CAN bus, increasing the key management 
overhead. 
J. Cui et al. [17] proposed a lightweight encryption and authentication protocol for CAN in autonomous 
vehicles. The protocol uses the Grain-128a variant of Grain cipher for message encryption, keyed-hash message 
authentication code (HMAC) for message authentication, and Blom scheme for session key generation and 
distribution. However, the function used for hashing is not specified. A high-performance ECU is set as the key 
ECU (KECU) and is responsible for session key 
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Fig. 1.  In-vehicle CAN bus connecting ECUs. 

 
distribution and updating. The protocol assigns pairwise keys for each pair of ECUs in addition to a key for 
each ECU to securely communicate with the (KECU). Hence, in networks where up to 100 ECUs are connected 
to the CAN bus, there are up to 100 keys stored in each ECU, which could lead to key management and latency 
issues. A sender ECU calculates the MAC of the message after encrypting it (Encrypt-then-MAC). 
The MAC value is truncated into 4 bytes then divided 
into two pairs. The first 2 bytes of the CAN frame are placed in the extended identifier field and the other 2 bytes 
replace the CRC field. It is worth nothing that according to the CAN specification [1], framing CAN messages 
is the responsibility of the Transfer layer, which has no freedom for modifications. Also, during the 
implementation of the protocol proposed by Woo et al. [21], which previously utilized a similar technique in 
generating secure CAN frames, it was claimed that it is not possible to modify the extended identifier and CRC 
fields in microcontrollers like DSP-F28335. Consequently, a software- based evaluation was added to the 
hardware-based evaluation to prepare the implementation experiment. Hence, replacing the CRC field with the 
authentication bytes is not applicable. 
Wiemer and Zeh [22] proposed the CANsec protocol that employed the Ascon cipher to encrypt and 
authenticate CAN XL messages. Their work investigated the potential of Ascon to have an advantage on AES-
GCM in nonce-misuse setting. However, they did not propose a solution to secure Classic CAN frames, which 
has a highly constrained data field of only 8 bytes [1], unlike CAN XL, which permits data fields up to 2048 
bytes [23]. 
 
B. Scientific Background 
This part addresses two main components in our work: The Controller Area Network and the Ascon Cipher. 
 
Controller Area Network 
The Controller Area Network (CAN) protocol was designed by Robert Bosch GmbH and officially released in 
1986 [1]. It was developed to meet the requirements of high-speed networks for automotive in-vehicle 
communications. Due to its high reliability, low cost and simplicity, its applications have extended to avionics 
[24] and maritime networks [25]. CAN connects engine control unit, infotainment system, anti-lock braking 
system (ABS), sensors, and other in-vehicle electronics with bitrates up to 1 Mbit/s [1]. Additionally, it is used 
to communicate onboard diagnostics through an OBD-II port, which offers real-time sensor data and 
diagnostic trouble codes (DTCs) of various in-vehicle systems. Fig. 1 shows an 

 

Fig. 2. CAN A and CAN B message formats. 

 
overview of how different electronic control units (ECUs) are connected via CAN bus inside an automotive 
vehicle. 
CAN is divided into different layers: object layer, transfer layer, and physical layer. Object and transfer layers 
perform the functions of the data link layer specified by the ISO/OSI model. The object layer is mainly 
responsible for message filtering, while the transfer layer is the core of the CAN protocol and is responsible for 
framing messages, error 
detection, and transfer timing. The physical layer is responsible for the actual data transfer in the wires [1]. 
The standard CAN message format consists of 7 fields: 1-bit start-of-frame field, 11-bit arbitration field, 6-bit 
control field, 0 to 64-bit data filed, 16-bit cyclic redundancy check (CRC) field, 2-bit acknowledge (ACK) field, 
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and 7-bit end-of-frame field. An extended CAN message format was introduced by Robert Bosch GmbH in 1991 
to provide a larger message address range for more applications by extending the 11-bit identifier of the 
arbitration field to 29 bits [1]. Fig. 2 shows the main fields in both standard and extended CAN message 
formats. 
CAN provides flexibility in adding new nodes to the bus without requiring any modifications to the software or 
hardware of the nodes. It also provides flexibility in routing messages, in which any node can decide whether to 
receive a message or not based on the identifier in the arbitration field. Nodes in the CAN bus can transmit, 
receive, or monitor the bus by comparing the bit levels detected in the bus with the bit levels of the message to 
be transmitted. A bitwise arbitration process is used to prevent collisions that might occur when two nodes 
attempt to send a message to the bus at the same time. During the arbitration process, message identifiers are 
used to decide which message has the highest priority to be sent to the bus first. CAN also provides measures for 
the safety of data being transferred including error detection and fault confinement. In addition, receiver nodes 
can acknowledge a message that is received without errors. 
 
Ascon Cipher 
Ascon is a cipher suite that contains lightweight schemes for authenticated encryption with associated data 
(AEAD) and hashing. Ascon was selected in the final portfolio of the CAESAR competition (2014-2019) as the 
primary choice for lightweight authenticated encryption [26]. It was also selected as the winner of the NIST 
lightweight cryptography (LWC) competition (2019-2023) and is considered for standardization [19]. 
All schemes in Ascon are based on the Ascon permutation. The Ascon permutation p is a substitution 
permutation network (SPN) consisting of bitwise Boolean functions and rotations. It operates on a 320-bit 

state, and it consists of three main steps: adding round constant, substitution layer, and linear diffusion layer; 

denoted as pC, pS, pL respectively. The 320-bit state S is represented with 5 64-bit words: x0, x1, x2, x3, x4. 

The state is divided into the rate r which represents the data block size and the constant c which represents the 

rest of the state. Therefore, we can represent the state as follows: S = Sr || Sc 
 

 
Fig. 3. Ascon AEAD. Figure is taken from Ascon’s official website https://ascon.iaik.tugraz.at/ 
 
Ascon AEAD is a nonce-based encryption with a mode of operation founded on the duplex construction [27]. 
Its primary variants, Ascon-128 and Ascon-128a, both operate with a key size of 128 bits [28]. Ascon is inverse-
free, meaning it does not require inverse operations for decryption. Both encryption and decryption are 
evaluated in one direction and have four main phases: Initialization, Processing Associated Data, Processing 
Plaintext/Ciphertext, and Finalization (Fig. 3). In the Initialization phase, the state is formed by a 64-bit 
initialization vector (IV), a 128-bit key, and a 128-bit nonce (N). The IV is a constant value that specifies the 
algorithm as follows: 
IV = k || r || a || b || 0160-k, such that 
k denotes the key size. 
r denotes the rate. 
a denotes the number of initial and final permutation rounds. 
b denotes the number of intermediate permutation rounds. 
0160-k denotes a bitstring of 0s of the size of 160 – k bits. 
After the state is formed, it is transformed by an initial permutation pa then XORed with the key. Next, the 
associated data (AD) is divided into blocks, and the last block is padded if its length is less than the required 
block size. Padding is done by adding 1 and the smallest number of 0s. Then, AD blocks are XORed with the 
rate r (i.e. absorbed). An intermediate permutation pb is performed after each AD block absorption. After that, 
the state is XORed with a 1-bit constant for domain separation. Then, the plaintext is also divided into blocks, 
and the last block is padded if its length is less than the required block size. Then, plaintext blocks are XORed 
with the rate r (i.e. absorbed). An intermediate permutation pb is performed after each plaintext block 
absorption, except for the last block. The outputs of the XOR operation are the ciphertext blocks (i.e. squeezed). 
In the Finalization phase, the state is XORed with the key, then transformed by a final permutation pa. Finally, 
the state is XORed again with the key to produce a 128-bit tag T, used for message authentication. 
The double-keyed initialization and finalization improve Ascon security robustness, which is the ability to 
reduce damage in case of implementation errors [28]. After the Finalization stage of the decryption process, if 

https://ascon.iaik.tugraz.at/
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the calculated tag is not equal to the tag obtained by the sender, decryption will not be successful, and a 
verification failed error shall be raised. 
 

 
Fig. 4. Ascon hashing. Figure is taken from Ascon’s official website 

https://ascon.iaik.tugraz.at/ 
 

 
Fig. 5.  LiREAP components present in each secured ECU. 

 
Ascon cipher also includes a sponge-based hashing algorithm for both fixed output and extendible output 
functions (XOF) [28]. As illustrated in Fig. 4, Ascon hashing includes three phases: Initialization, Message 
Absorption, and Hash Squeezing. In the initialization phase, the 320-bit state is formed by a 64-bit IV and a 
256-bit of 0s. The IV is a constant value that specifies the algorithm as follows: 
IV = 08 || r || a || a – b || h, such that 
08 denotes a bitstring of 0s of the size 8. 
r denotes the rate. 
a denotes the number of initial and final permutation rounds. 
b denotes the number of intermediate permutation rounds. 
h denotes the hash output length. 
After the state is formed, it is transformed by an initial permutation pa. Next, the message is divided into 
blocks, and the last block is padded if its length is less than the required block size. Then message blocks are 
XORed with the rate r (absorbed) and an intermediate permutation pb is performed after each message block 
absorption except for the last block. Then, an intermediate permutation pb is performed in the beginning of 
the Hash Squeezing phase and after each hash block squeeze until the required hash size is obtained. 
 

II. PROPOSED PROTOCOL 
This paper proposes A Lightweight Robust Encryption and Authentication Protocol (LiREAP) that aims at 
ensuring confidentiality, integrity, and authenticity for CAN data while meeting the high-speed and constrained 
environment requirements of the standard CAN protocol. Each Electronic Control Unit (ECU) has three 
components: Key Management Component, Authenticated Encryption Component, and Counter Management 
Component. These components, as shown in Fig. 5, are working harmonically to achieve the security objectives of 
the protocol as outlined in Table I. 
Among the ECUs, one is designated by the manufacturer as the  

 
TABLE I REQUIREMENTS FULFILLMENT SPECIFICATION. 

Requirement Protocol Component Mechanism / Primitive 
Confidentiality and Integrity Authenticated Encryption Component Ascon-128 
Key Generation Key Management Component Hash Chain Mechanism, 

Ascon-XOF 
Key Distribution Key Management Component Challenge-Response Two-

factor Authentication 
Mechanism (CR2AM) 

Counter Management Counter Management Component Monotonic Counter 

Key Management 

Component 

Counter Management 
Component 

Authenticated Encryption 

Component 

ECU 
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Fig. 6.  Hash chain mechanism. 

 
Master ECU (MECU), tasked with session key management and counter re-synchronization. It is advisable for 
the MECU to be situated in a physically secure location within the vehicle, inaccessible to unauthorized 
individuals. 
 
A. Key Management Component 
Key Management Component is responsible for key storage in all ECUs, and for session key generation and 
distribution in the MECU. Each ECU, including the MECU, possesses a secret key known as ECU_KEY, securely 
stored during manufacturing. This key is uniform across all ECUs and is only used for the session key 
distribution process. Therefore, each ECU maintains two secret keys: ECU_KEY and SESSION_KEY, 
regardless of the number of ECUs in the CAN bus. 
The MECU employs a hash chain mechanism, illustrated in Fig. 6, to generate session keys. Initially, a secret 
key called MASTER_KEY, securely stored in the MECU during manufacturing, is used to generate a sub-key 
called SUBKEY. The SUBKEY is generated by calculating the 16-byte output of Ascon-XOF of the 
MASTER_KEY. The first session key is derived by calculating the 16-byte output of Ascon-XOF of the 
MASTER_KEY XORed with the SUBKEY. The first session key is also stored in all ECUs during manufacturing. 
Subsequent session keys are generated by calculating the 16- byte output of Ascon-XOF of the SUBKEY XORed 
with the previous session key. Session keys are regularly updated and distributed by the MECU at predefined 
intervals. One viable approach is to update the session keys upon each vehicle ignition. 
 

 
Fig. 7. CR2AM mechanism for session key distribution. 

 

 
Fig. 8. Counter recovery mechanism. 

 

 
Fig. 9. Authenticated Encryption Component operating with other components of LiREAP. 

 
To securely distribute the SESSION_KEY to other ECUs, the MECU employs a challenge-response two-factor 
authentication mechanism (CR2AM), as illustrated in Fig. 7. During CR2AM, an ECU requests the new session 
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key from the MECU, which responds with a random 8-byte challenge. The ECU computes the 8-byte output of 
Ascon-XOF for the challenge XORed with the ECU_KEY and the SESSION_KEY of the previous session, 
sending the response back to the MECU. Upon receiving the response, the MECU performs the same 
computation to verify the ECU response. Upon successful verification, the MECU sends the result of XORing 
the new SESSION_KEY with the previous SESSION_KEY encrypted with the ECU_KEY. The ECU decrypts 
the message using the ECU_KEY, subsequently recovering the new SESSION_KEY by XORing the decrypted 
message with the previous SESSION_KEY. 
CR2AM requires ECUs to retain the SESSION_KEY of the previous session, as it is used to receive the 
SESSION_KEY of the subsequent session. This enhances the robustness of the protocol by mandating the 
presence of two keys instead of one, which are the previous SESSION_KEY and the ECU_KEY. 
 
B. Counter Management Component 
The Counter Management Component is responsible for generating and storing nonces used for Ascon 
encryption, which is done by the Authenticated Encryption Component. Upon initialization, it assigns a 
random 16-byte number to each CAN-ID, ensuring that each identifier has its own counter. The Counter 
Management Component acts as a monotonic counter, incrementing the counter by one after a successful 
transmission or reception of a CAN message. 
Counters are reset with each SESSION_KEY update. Following the CR2AM process, the MECU sends newly 
generated counters encrypted with the updated SESSION_KEY to the recipient ECU. 
 
C. Counter Recovery Mechanism 
To ensure synchronization of counters across all ECUs for all CAN-IDs, a counter is incremented only upon 
successful transmission or reception of a message. Successful reception implies successful decryption of the 
message. However, if a recipient ECU attempts to decrypt an injected message that doesn’t contain the correct 
tag, it will discard the message, leaving the counter unchanged. 
Issues such as network disruptions, ECU malfunctions, DoS, or CAN injection attacks may cause messages to 
be dropped, leading to a loss of synchronization between sender and recipient ECUs. This is because the sender 
ECU increments the counter after sending the message, while the recipient ECU does not increase the counter 
if the message is not received. To address this issue, a counter recovery mechanism is developed (illustrated in 
Fig. 8). Initially, an ECU sends a request for a specific counter value to the MECU. The MECU responds with a 
random counter value in plaintext, designated solely as a nonce for the next encrypted message. The subsequent 
message contains the required counter value encrypted with the SESSION_KEY. The recipient ECU can then 
decrypt the message using the SESSION_KEY and the nonce received from the previous message, thereby 
recovering the necessary counter value. 
 
D. Authenticated Encryption Component 
The Authenticated Encryption Component serves as the central component of LiREAP, responsible for 
encrypting and authenticating CAN messages using the Ascon cipher. Prior to transmitting a CAN message 
onto the bus, an ECU forwards it to the Authenticated Encryption Component. Utilizing the SESSION_KEY as 
the encryption key and the counter generated by the Counter Management Component as the nonce, the 
Authenticated Encryption Component encrypts the CAN messages. Due to the CAN standard's limitation, 
which restricts the maximum length of the data field to 8 bytes, the Authenticated Encryption Component 
utilizes the first 6 bytes of the data field for the encrypted message and the remaining 2 bytes for the truncated 
authentication tag. Consequently, the maximum length of a CAN message transmitted using LiREAP is 6 bytes. 
Messages exceeding this length are divided and sent across multiple CAN messages. 
The sender ECU encrypts a CAN message and embeds the ciphertext along with the first two bytes of the 
authentication tag into the data field of a CAN frame. Upon receiving the frame, the recipient ECU attempts to 
decrypt the message. If the authentication of the tag fails, indicating tampering or unauthorized access, 
the recipient ECU discards the packet. Fig. 
9 illustrates the interoperability of LiREAP components in generating secured CAN messages. 
 

III. SECURITY ANALYSIS 
In a CAN network secured by LiREAP, an attacker is unable to decrypt, forge, inject, or reverse engineer CAN 
messages. Additionally, compromising one secret key does not imply compromising the whole protocol. 
Moreover, periodically updating session keys limits the compromise time of a key. Although LiREAP cannot 
prevent DoS attacks, it can recover from it using the Counter Recovery Mechanism mentioned in the previous 
section. 
A. Decryption and Chosen Plaintext Attacks 
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LiREAP ensures confidentiality and integrity for CAN data by employing Ascon cipher, implemented within 
the Authenticated Encryption Component. All schemes in Ascon, including AEAD and hashing, offer 128-bit 
security if the implementation requirements are met [28]. To fulfill these requirements, counters used as 
nonces for Ascon encryption are monotonically increased by the Counter Management Component after each 
successful message transmission or reception. This practice ensures that a nonce is never repeated for more 
than one message under the same key, thereby avoiding the nonce-misuse scenario that is vulnerable to 
chosen-plaintext attacks (CPA) [29][30]. 
B. Forgery Attacks 
In a forgery attack, an attacker tries to craft a message with a valid authentication tag without possessing the 
encryption key. However, if the SESSION_KEY, serving as the encryption key, is securely stored in a hardware 
security module (HSM), such attacks become obsolete. 
Forgery attacks can occur even without knowledge of the encryption key, where an attacker aims to find a 
collision, causing two distinct plaintext messages to yield the same authentication tag. It is noteworthy that 
reducing the authentication tag to 8 bytes can maintain acceptable security of Ascon [31]. However, LiREAP, 
constrained by the CAN protocol’s environment, utilizes only 2 of the 16 bytes of the authentication tag, potentially 
increasing the likelihood of a successful forgery attack. Despite this consideration, in a LiREAP environment, 
finding a collision in the tag proves exceedingly challenging due to the non-public nature of counters. An 
attacker must guess the current counter value on the bus to initiate a collision search. Since counters are 8 bytes 
in length, there are 264 possibilities for a counter value. Consequently, by concealing the counter value from 
attackers and unauthorized ECUs, the probability of successfully discovering a collision in the tag is significantly 
reduced. 
 
C. CAN Injection Attacks 
CAN injection attack is a kind of replay attack, in which an attacker intercepts encrypted CAN messages from 
the bus, stores them, and attempts to resend them later. This type of attack is mitigated by using counters that 
are updated for each message.Hence, even if two plaintext messages are identical, their corresponding 
ciphertext will be different because each message encryption utilizes a different nonce. Therefore, if an attacker 
stores an encrypted message and attempts to send it later, its authentication tag will not be correct. This is because 
the receiving ECU will use a new counter to decrypt the message and calculate its tag. As the tags will not match, 
the ECU will drop the packet. 
 
D. Reverse Engineering 
Reverse engineering CAN messages involves identifying the function of each message, which can be exploited 
by attackers to manipulate vehicle systems, such as unlocking doors or disabling engine immobilizers. LiREAP 
mitigates this risk by encrypting each message using a unique counter, ensuring that the same message 
produces different ciphertexts in separate encryptions. As a result, intercepting CAN messages does not 
provide attackers with actionable information, effectively preventing reverse engineering and unauthorized 
manipulation of vehicle systems. 
 
E. Robustness 
Robustness in LiREAP is ensured by the requirement for critical operations to involve multiple secret 
components instead of relying on one. For example, in CR2AM, an ECU must demonstrate possession of both 
the ECU_KEY and the previous SESSION_KEY to obtain the new SESSION_KEY from the MECU. This 
reduces the risk of protocol failure if one component is compromised. 
The MASTER_KEY and SUBKEY, stored within the MECU in a hard-to-reach location inside the vehicle, are 
considered highly secure and difficult to compromise. However, the robustness of LiREAP extends to scenarios 
involving compromised secret keys stored in an ECU, including the SESSION_KEY and the ECU_KEY. The 
following scenarios emphasizes the protocol robustness: 
1) If the ECU_KEY is compromised, an attacker cannot send authenticated messages or authenticate to the 
MECU for a new SESSION_KEY without compromising the previous SESSION_KEY. 
2) If the SESSION_KEY is compromised, an attacker cannot send authenticated messages or authenticate to 
the MECU without the ECU_KEY. Also, producing the next SESSION_KEY requires knowledge of the 
SUBKEY. 
To further mitigate the risk of compromising both keys simultaneously, it is advisable to store the 
SESSION_KEY and ECU_KEY in separate locations within the ECU with distinct sets of protections. 
 
F. Overhead Analysis 
LiREAP is designed with efficiency in mind, particularly regarding the limited resources typically available in 
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CAN environments. It aims to minimize overhead while still achieving the desired security objectives. One key 
aspect of LiREAP is its use of Ascon, which is anticipated to become the NIST standard for lightweight 
cryptography. Ascon's benchmarks demonstrate its efficiency, particularly for short messages [26], making it 
well-suited for constrained 
 

TABLE 2 MESSAGES OVERHEAD FOR THIS WORK AND PREVIOUS WORKS 
 Number of required CAN frames 

Original message size (bytes) Without cryptography [18] [32] [33] [34] LiREAP 
1 to 6 1 2 1 

7 to 8 1 2 2 

9 to 12 2 4 2 

13 to 16 2 4 3 

17 to 18 3 6 3 

19 to 24 3 6 4 

 
environments like CAN networks. Also, as Ascon is an authenticated encryption cipher, it achieves both 
confidentiality and integrity using the same cryptographic primitive. Moreover, both Ascon’s AEAD and 
hashing functions are based on the same permutation, which reduces the code size and memory footprint 
required for implementation. Furthermore, LiREAP uses session keys and a centralized MECU for key 
management, thereby reducing overhead associated with key management. 
By embedding the truncated authentication tag with the ciphertext within the same CAN frame, LiREAP 
enables small messages that do not exceed 6 bytes to be sent in a single secured CAN message. Table II 
demonstrates that LiREAP requires fewer messages compared to previous works that requires sending a 
separate message to authenticate the original CAN message, which increases the busload [18] [32] [33] [34]. 
 

IV. CONCLUSION 
The famous CAN protocol was designed to achieve high reliability and speed for in-vehicle communications. 
However, its implementation suffers from severe security risks that results in various attacks along the last 
decay. This paper proposed a Lightweight Encryption and Authentication Protocol (LiREAP) to mitigate these 
risks. By integrating the state-of-the-art lightweight cipher Ascon with proposed key management 
mechanisms, the proposed protocol offers robust security with very low overhead. The LiREAP succeeded to 
keep the high speed and reliability of the CAN protocol along with ensuring confidentiality, integrity, and 
authenticity of the CAN data. Future work includes implementing LiREAP in other in-vehicle communication 
standards, and optimizing it for FPGA platforms to achieve highest possible speed. 
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