
Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 2125

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

LiREAP: A Lightweight Robust Encryption and
Authentication Protocol for Securing In-Vehicle

Communication

Mahmoud A. AttaAlla1*, Mohamed T. Ali2, and Ahmed M. Gawish3

1,2Arab Open University Arab Open University, Egypt. (e-mail:mahmoud.attalah@aou.edu.eg; S2051810045EG@std.aou.edu.eg)
3Arab Open University, HQ, Kuwait. (e-mail: a.gawish@arabou.edu.kw)

1. INTRODUCTION

CONTROLLER Area Network (CAN) is a widely used protocol for connecting in-vehicle electronics [1].
However, the inherited lack of security mechanisms in
CAN networks has exposed them to various cyber threats, including message interception, manipulation, and
unauthorized access.
Research conducted by Koscher et al. [2] illuminated the vulnerabilities within automotive electronic systems,
revealing the potential for complete unauthorized control via accessible interfaces. This concern was also
showcased, when Miller and Valasek [3] demonstrated a remote control over an unmodified Jeep Cherokee by
exploiting a vulnerable ECU that let them to remotely gain access to the CAN bus. In consequence, Chrysler
Corporation recalled approximately 1.4 million vehicles.
Furthermore, in 2019, the U.S. Cybersecurity and Infrastructure Security Agency (CISA) issued an alert
highlighting the vulnerable implementations of CAN bus networks in aircraft [4]. This alert emphasized the
critical consequences of potential attacks, as malicious actors gaining physical access to the CAN bus could
manipulate instrument readings and alter the status of an aircraft posing risks such as loss of control.
Furthermore, there have been numerous passenger vehicle theft incidents, including instances involving
Toyota and Lexus vehicles, perpetrated via CAN injection attacks [5] [6] [7] [8].
In response to these challenges, various efforts have been undertaken to address vulnerabilities in the CAN bus
and mitigate these attacks. These initiatives included the implementation of intrusion detection systems [9]
[10] [11],
deployment of secure gateways [12] [13] [14], and integration

ARTICLE INFO ABSTRACT

Received: 14 Nov 2024

Revised: 27 Dec 2024

Accepted: 12 Jan 2025

Controller Area Network (CAN) is a serial communication protocol for distributed
real-time control systems. Its high reliability and low cost enable it to be widely
implemented in various domains such as automotive, avionics, and maritime
networks. However, security mechanisms were not implemented during the design
of the CAN protocol, which resulted in many attacks such as CAN injection. These
attacks enable attackers to steal vehicles, change their states, and gain remote access
to their control systems. Literature review reports that current CAN's security
protocols experienced lack of security robustness or efficiency due to the constrained
environment of the CAN. This paper introduces A Lightweight Robust Encryption
and Authentication Protocol (LiREAP), that addresses security vulnerabilities in the
CAN protocol while preserving its performance. The proposed protocol adopts
Ascon, the upcoming NIST standard for lightweight cryptography, to achieve both
confidentiality and integrity for CAN data. A hash chain mechanism is implemented
for session key generation. In addition, a challenge-response two-factor
authentication mechanism (CR2AM) is designed for session key distribution. The
proposed protocol is designed to work harmonically with the standard CAN protocol
that enables only 8 bytes for the data field. The conducted theoretical analysis of the
proposed protocol reports its ability to provide robust security level with minimum
overhead that meet the high-speed requirements in-vehicle communication.
Compared to the current protocols, the proposed one efficiently fill the security gap
of the CAN with very low overhead cost.

Index Terms—Ascon, Lightweight Cryptography, Controller area network (CAN),
In-vehicle communication, Automotive Security.

mailto:mahmoud.attalah@aou.edu.eg
mailto:S2051810045EG@std.aou.edu.eg
mailto:a.gawish@arabou.edu.kw)

Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 2126

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

of cryptography [15] [16] [17] [18]. This work follows the approach of utilizing cryptography to address the
security posture of the CAN bus.
This paper proposes a Lightweight Robust Encryption and Authentication Protocol (LiREAP) that aims at
securing the CAN data while maintaining the requirements of high-speed communication. Designed with
efficiency and robustness in mind, LiREAP integrates state-of-the-art cryptographic techniques and secure key
management mechanisms to safeguard CAN networks against various cyber threats, including CAN injection,
forgery attacks, and reverse engineering. It consists of three components: The Key Management Component,
the Authenticated Encryption Component, and the Counter Management Component. These components
work harmonically to ensure confidentiality, integrity, and authenticity for CAN messages. It utilizes Ascon, the
upcoming standard for lightweight cryptography by the National Institute of Standards and Technology (NIST)
[19]. Ascon's efficiency makes it well-suited for securing constrained environments such as the CAN bus, where
reducing computational load is crucial. Moreover, LiREAP incorporates robust mechanisms for a centralized
session key management, including a hash chain mechanism for session key generation and a challenge-
response two-factor authentication mechanism (CR2AM) for session key distribution.
The rest of the paper is organized as follows: Section 2 addresses the previous work and the related scientific
background of the concepts adopted in our proposed solution. Section 3 provides a comprehensive explanation
and the technical details of the LiREAP, while Section 4 discusses the results and findings of the conducted
security and overhead analysis. Finally, section 5 concludes the paper and highlights the prospected future
work.

I. RELATED WORK AND SCIENTIFIC BACKGROUND
This section reviews the previous works and discusses their findings and drawbacks. It also provides a brief
explanation for the scientific concepts related to the proposed protocol.

A. Related Work
Previous works proposing cryptographic protocols to secure CAN networks have utilized either single or
multiple keys for encryption and authentication. A protocol based on a single key is vulnerable to a single point
of failure, meaning the entire protocol is compromised if the secret key is compromised. On the other hand,
using multiple keys enhances robustness but could increase the overhead of key management.
The Automotive Open System Architecture (AUTOSAR) released the Secure Onboard Communication (SecOC)
Protocol, a framework designed to secure in-vehicle communication, ensuring data integrity and authenticity
[15]. The protocol relies on AES-CMAC, adding a Message Authentication Code (MAC) and a freshness value
to data transmitted between Electronic Control Units (ECUs). However, researchers were able to break the
protocol after successfully extracting the key, demonstrating a vulnerability due to its dependence on a single
secret key [20].
Lu et al. [16] proposed a lightweight encryption and authentication protocol (LEAP) to secure CAN while
maintaining its high performance. A high-performance ECU, called the Secure ECU, is responsible for the key
management. It uses Advanced Encryption Standard (AES) and Secure Hash Algorithm (SHA) in session key
generation and distribution, following an Encrypt-then-MAC scheme. The stream cipher RC4 is used for both
encrypting and authenticating CAN messages between ECUs. Each ECU possesses a long-term key stored
during manufacturing and a symmetric session key assigned to each group of ECUs. Session keys are updated
and distributed regularly at vehicle’s idle time. A counter is required to synchronize the RC4 key stream of each
message. However, the protocol does not mention a mechanism for counter synchronization recovery, which
could lead to failure due to network issues or a denial-of-service (DoS) attack. Additionally, the number of keys
stored in each ECU is directly related to the number of ECUs in the CAN bus, increasing the key management
overhead.
J. Cui et al. [17] proposed a lightweight encryption and authentication protocol for CAN in autonomous
vehicles. The protocol uses the Grain-128a variant of Grain cipher for message encryption, keyed-hash message
authentication code (HMAC) for message authentication, and Blom scheme for session key generation and
distribution. However, the function used for hashing is not specified. A high-performance ECU is set as the key
ECU (KECU) and is responsible for session key

Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 2127

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

Fig. 1. In-vehicle CAN bus connecting ECUs.

distribution and updating. The protocol assigns pairwise keys for each pair of ECUs in addition to a key for
each ECU to securely communicate with the (KECU). Hence, in networks where up to 100 ECUs are connected
to the CAN bus, there are up to 100 keys stored in each ECU, which could lead to key management and latency
issues. A sender ECU calculates the MAC of the message after encrypting it (Encrypt-then-MAC).
The MAC value is truncated into 4 bytes then divided
into two pairs. The first 2 bytes of the CAN frame are placed in the extended identifier field and the other 2 bytes
replace the CRC field. It is worth nothing that according to the CAN specification [1], framing CAN messages
is the responsibility of the Transfer layer, which has no freedom for modifications. Also, during the
implementation of the protocol proposed by Woo et al. [21], which previously utilized a similar technique in
generating secure CAN frames, it was claimed that it is not possible to modify the extended identifier and CRC
fields in microcontrollers like DSP-F28335. Consequently, a software- based evaluation was added to the
hardware-based evaluation to prepare the implementation experiment. Hence, replacing the CRC field with the
authentication bytes is not applicable.
Wiemer and Zeh [22] proposed the CANsec protocol that employed the Ascon cipher to encrypt and
authenticate CAN XL messages. Their work investigated the potential of Ascon to have an advantage on AES-
GCM in nonce-misuse setting. However, they did not propose a solution to secure Classic CAN frames, which
has a highly constrained data field of only 8 bytes [1], unlike CAN XL, which permits data fields up to 2048
bytes [23].

B. Scientific Background
This part addresses two main components in our work: The Controller Area Network and the Ascon Cipher.

Controller Area Network
The Controller Area Network (CAN) protocol was designed by Robert Bosch GmbH and officially released in
1986 [1]. It was developed to meet the requirements of high-speed networks for automotive in-vehicle
communications. Due to its high reliability, low cost and simplicity, its applications have extended to avionics
[24] and maritime networks [25]. CAN connects engine control unit, infotainment system, anti-lock braking
system (ABS), sensors, and other in-vehicle electronics with bitrates up to 1 Mbit/s [1]. Additionally, it is used
to communicate onboard diagnostics through an OBD-II port, which offers real-time sensor data and
diagnostic trouble codes (DTCs) of various in-vehicle systems. Fig. 1 shows an

Fig. 2. CAN A and CAN B message formats.

overview of how different electronic control units (ECUs) are connected via CAN bus inside an automotive
vehicle.
CAN is divided into different layers: object layer, transfer layer, and physical layer. Object and transfer layers
perform the functions of the data link layer specified by the ISO/OSI model. The object layer is mainly
responsible for message filtering, while the transfer layer is the core of the CAN protocol and is responsible for
framing messages, error
detection, and transfer timing. The physical layer is responsible for the actual data transfer in the wires [1].
The standard CAN message format consists of 7 fields: 1-bit start-of-frame field, 11-bit arbitration field, 6-bit
control field, 0 to 64-bit data filed, 16-bit cyclic redundancy check (CRC) field, 2-bit acknowledge (ACK) field,

Sensor n

Sensor 2
Sensor

Sensor 1

Infotainment

ECU 1

ECU 2

ECU n

Body Gateway ECU

OBD II

Powertrain

ECU 1

ECU 2

ECU n

ECU 1

ECU 2

ECU n

ECU 1

ECU 2

ECU n

CAN A (standard)

CAN B (extended)

11-bit ID 0-64 bits data field CRC

29-bit ID 0-64 bits data field CRC

Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 2128

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

and 7-bit end-of-frame field. An extended CAN message format was introduced by Robert Bosch GmbH in 1991
to provide a larger message address range for more applications by extending the 11-bit identifier of the
arbitration field to 29 bits [1]. Fig. 2 shows the main fields in both standard and extended CAN message
formats.
CAN provides flexibility in adding new nodes to the bus without requiring any modifications to the software or
hardware of the nodes. It also provides flexibility in routing messages, in which any node can decide whether to
receive a message or not based on the identifier in the arbitration field. Nodes in the CAN bus can transmit,
receive, or monitor the bus by comparing the bit levels detected in the bus with the bit levels of the message to
be transmitted. A bitwise arbitration process is used to prevent collisions that might occur when two nodes
attempt to send a message to the bus at the same time. During the arbitration process, message identifiers are
used to decide which message has the highest priority to be sent to the bus first. CAN also provides measures for
the safety of data being transferred including error detection and fault confinement. In addition, receiver nodes
can acknowledge a message that is received without errors.

Ascon Cipher
Ascon is a cipher suite that contains lightweight schemes for authenticated encryption with associated data
(AEAD) and hashing. Ascon was selected in the final portfolio of the CAESAR competition (2014-2019) as the
primary choice for lightweight authenticated encryption [26]. It was also selected as the winner of the NIST
lightweight cryptography (LWC) competition (2019-2023) and is considered for standardization [19].
All schemes in Ascon are based on the Ascon permutation. The Ascon permutation p is a substitution
permutation network (SPN) consisting of bitwise Boolean functions and rotations. It operates on a 320-bit

state, and it consists of three main steps: adding round constant, substitution layer, and linear diffusion layer;

denoted as pC, pS, pL respectively. The 320-bit state S is represented with 5 64-bit words: x0, x1, x2, x3, x4.

The state is divided into the rate r which represents the data block size and the constant c which represents the

rest of the state. Therefore, we can represent the state as follows: S = Sr || Sc

Fig. 3. Ascon AEAD. Figure is taken from Ascon’s official website https://ascon.iaik.tugraz.at/

Ascon AEAD is a nonce-based encryption with a mode of operation founded on the duplex construction [27].
Its primary variants, Ascon-128 and Ascon-128a, both operate with a key size of 128 bits [28]. Ascon is inverse-
free, meaning it does not require inverse operations for decryption. Both encryption and decryption are
evaluated in one direction and have four main phases: Initialization, Processing Associated Data, Processing
Plaintext/Ciphertext, and Finalization (Fig. 3). In the Initialization phase, the state is formed by a 64-bit
initialization vector (IV), a 128-bit key, and a 128-bit nonce (N). The IV is a constant value that specifies the
algorithm as follows:
IV = k || r || a || b || 0160-k, such that
k denotes the key size.
r denotes the rate.
a denotes the number of initial and final permutation rounds.
b denotes the number of intermediate permutation rounds.
0160-k denotes a bitstring of 0s of the size of 160 – k bits.
After the state is formed, it is transformed by an initial permutation pa then XORed with the key. Next, the
associated data (AD) is divided into blocks, and the last block is padded if its length is less than the required
block size. Padding is done by adding 1 and the smallest number of 0s. Then, AD blocks are XORed with the
rate r (i.e. absorbed). An intermediate permutation pb is performed after each AD block absorption. After that,
the state is XORed with a 1-bit constant for domain separation. Then, the plaintext is also divided into blocks,
and the last block is padded if its length is less than the required block size. Then, plaintext blocks are XORed
with the rate r (i.e. absorbed). An intermediate permutation pb is performed after each plaintext block
absorption, except for the last block. The outputs of the XOR operation are the ciphertext blocks (i.e. squeezed).
In the Finalization phase, the state is XORed with the key, then transformed by a final permutation pa. Finally,
the state is XORed again with the key to produce a 128-bit tag T, used for message authentication.
The double-keyed initialization and finalization improve Ascon security robustness, which is the ability to
reduce damage in case of implementation errors [28]. After the Finalization stage of the decryption process, if

https://ascon.iaik.tugraz.at/

Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 2129

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

the calculated tag is not equal to the tag obtained by the sender, decryption will not be successful, and a
verification failed error shall be raised.

Fig. 4. Ascon hashing. Figure is taken from Ascon’s official website

https://ascon.iaik.tugraz.at/

Fig. 5. LiREAP components present in each secured ECU.

Ascon cipher also includes a sponge-based hashing algorithm for both fixed output and extendible output
functions (XOF) [28]. As illustrated in Fig. 4, Ascon hashing includes three phases: Initialization, Message
Absorption, and Hash Squeezing. In the initialization phase, the 320-bit state is formed by a 64-bit IV and a
256-bit of 0s. The IV is a constant value that specifies the algorithm as follows:
IV = 08 || r || a || a – b || h, such that
08 denotes a bitstring of 0s of the size 8.
r denotes the rate.
a denotes the number of initial and final permutation rounds.
b denotes the number of intermediate permutation rounds.
h denotes the hash output length.
After the state is formed, it is transformed by an initial permutation pa. Next, the message is divided into
blocks, and the last block is padded if its length is less than the required block size. Then message blocks are
XORed with the rate r (absorbed) and an intermediate permutation pb is performed after each message block
absorption except for the last block. Then, an intermediate permutation pb is performed in the beginning of
the Hash Squeezing phase and after each hash block squeeze until the required hash size is obtained.

II. PROPOSED PROTOCOL
This paper proposes A Lightweight Robust Encryption and Authentication Protocol (LiREAP) that aims at
ensuring confidentiality, integrity, and authenticity for CAN data while meeting the high-speed and constrained
environment requirements of the standard CAN protocol. Each Electronic Control Unit (ECU) has three
components: Key Management Component, Authenticated Encryption Component, and Counter Management
Component. These components, as shown in Fig. 5, are working harmonically to achieve the security objectives of
the protocol as outlined in Table I.
Among the ECUs, one is designated by the manufacturer as the

TABLE I REQUIREMENTS FULFILLMENT SPECIFICATION.

Requirement Protocol Component Mechanism / Primitive
Confidentiality and Integrity Authenticated Encryption Component Ascon-128
Key Generation Key Management Component Hash Chain Mechanism,

Ascon-XOF
Key Distribution Key Management Component Challenge-Response Two-

factor Authentication
Mechanism (CR2AM)

Counter Management Counter Management Component Monotonic Counter

Key Management

Component

Counter Management
Component

Authenticated Encryption

Component

ECU

https://ascon.iaik.tugraz.at/

Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 2130

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

Fig. 6. Hash chain mechanism.

Master ECU (MECU), tasked with session key management and counter re-synchronization. It is advisable for
the MECU to be situated in a physically secure location within the vehicle, inaccessible to unauthorized
individuals.

A. Key Management Component
Key Management Component is responsible for key storage in all ECUs, and for session key generation and
distribution in the MECU. Each ECU, including the MECU, possesses a secret key known as ECU_KEY, securely
stored during manufacturing. This key is uniform across all ECUs and is only used for the session key
distribution process. Therefore, each ECU maintains two secret keys: ECU_KEY and SESSION_KEY,
regardless of the number of ECUs in the CAN bus.
The MECU employs a hash chain mechanism, illustrated in Fig. 6, to generate session keys. Initially, a secret
key called MASTER_KEY, securely stored in the MECU during manufacturing, is used to generate a sub-key
called SUBKEY. The SUBKEY is generated by calculating the 16-byte output of Ascon-XOF of the
MASTER_KEY. The first session key is derived by calculating the 16-byte output of Ascon-XOF of the
MASTER_KEY XORed with the SUBKEY. The first session key is also stored in all ECUs during manufacturing.
Subsequent session keys are generated by calculating the 16- byte output of Ascon-XOF of the SUBKEY XORed
with the previous session key. Session keys are regularly updated and distributed by the MECU at predefined
intervals. One viable approach is to update the session keys upon each vehicle ignition.

Fig. 7. CR2AM mechanism for session key distribution.

Fig. 8. Counter recovery mechanism.

Fig. 9. Authenticated Encryption Component operating with other components of LiREAP.

To securely distribute the SESSION_KEY to other ECUs, the MECU employs a challenge-response two-factor
authentication mechanism (CR2AM), as illustrated in Fig. 7. During CR2AM, an ECU requests the new session

Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 2131

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

key from the MECU, which responds with a random 8-byte challenge. The ECU computes the 8-byte output of
Ascon-XOF for the challenge XORed with the ECU_KEY and the SESSION_KEY of the previous session,
sending the response back to the MECU. Upon receiving the response, the MECU performs the same
computation to verify the ECU response. Upon successful verification, the MECU sends the result of XORing
the new SESSION_KEY with the previous SESSION_KEY encrypted with the ECU_KEY. The ECU decrypts
the message using the ECU_KEY, subsequently recovering the new SESSION_KEY by XORing the decrypted
message with the previous SESSION_KEY.
CR2AM requires ECUs to retain the SESSION_KEY of the previous session, as it is used to receive the
SESSION_KEY of the subsequent session. This enhances the robustness of the protocol by mandating the
presence of two keys instead of one, which are the previous SESSION_KEY and the ECU_KEY.

B. Counter Management Component
The Counter Management Component is responsible for generating and storing nonces used for Ascon
encryption, which is done by the Authenticated Encryption Component. Upon initialization, it assigns a
random 16-byte number to each CAN-ID, ensuring that each identifier has its own counter. The Counter
Management Component acts as a monotonic counter, incrementing the counter by one after a successful
transmission or reception of a CAN message.
Counters are reset with each SESSION_KEY update. Following the CR2AM process, the MECU sends newly
generated counters encrypted with the updated SESSION_KEY to the recipient ECU.

C. Counter Recovery Mechanism
To ensure synchronization of counters across all ECUs for all CAN-IDs, a counter is incremented only upon
successful transmission or reception of a message. Successful reception implies successful decryption of the
message. However, if a recipient ECU attempts to decrypt an injected message that doesn’t contain the correct
tag, it will discard the message, leaving the counter unchanged.
Issues such as network disruptions, ECU malfunctions, DoS, or CAN injection attacks may cause messages to
be dropped, leading to a loss of synchronization between sender and recipient ECUs. This is because the sender
ECU increments the counter after sending the message, while the recipient ECU does not increase the counter
if the message is not received. To address this issue, a counter recovery mechanism is developed (illustrated in
Fig. 8). Initially, an ECU sends a request for a specific counter value to the MECU. The MECU responds with a
random counter value in plaintext, designated solely as a nonce for the next encrypted message. The subsequent
message contains the required counter value encrypted with the SESSION_KEY. The recipient ECU can then
decrypt the message using the SESSION_KEY and the nonce received from the previous message, thereby
recovering the necessary counter value.

D. Authenticated Encryption Component
The Authenticated Encryption Component serves as the central component of LiREAP, responsible for
encrypting and authenticating CAN messages using the Ascon cipher. Prior to transmitting a CAN message
onto the bus, an ECU forwards it to the Authenticated Encryption Component. Utilizing the SESSION_KEY as
the encryption key and the counter generated by the Counter Management Component as the nonce, the
Authenticated Encryption Component encrypts the CAN messages. Due to the CAN standard's limitation,
which restricts the maximum length of the data field to 8 bytes, the Authenticated Encryption Component
utilizes the first 6 bytes of the data field for the encrypted message and the remaining 2 bytes for the truncated
authentication tag. Consequently, the maximum length of a CAN message transmitted using LiREAP is 6 bytes.
Messages exceeding this length are divided and sent across multiple CAN messages.
The sender ECU encrypts a CAN message and embeds the ciphertext along with the first two bytes of the
authentication tag into the data field of a CAN frame. Upon receiving the frame, the recipient ECU attempts to
decrypt the message. If the authentication of the tag fails, indicating tampering or unauthorized access,
the recipient ECU discards the packet. Fig.
9 illustrates the interoperability of LiREAP components in generating secured CAN messages.

III. SECURITY ANALYSIS
In a CAN network secured by LiREAP, an attacker is unable to decrypt, forge, inject, or reverse engineer CAN
messages. Additionally, compromising one secret key does not imply compromising the whole protocol.
Moreover, periodically updating session keys limits the compromise time of a key. Although LiREAP cannot
prevent DoS attacks, it can recover from it using the Counter Recovery Mechanism mentioned in the previous
section.
A. Decryption and Chosen Plaintext Attacks

Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 2132

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

LiREAP ensures confidentiality and integrity for CAN data by employing Ascon cipher, implemented within
the Authenticated Encryption Component. All schemes in Ascon, including AEAD and hashing, offer 128-bit
security if the implementation requirements are met [28]. To fulfill these requirements, counters used as
nonces for Ascon encryption are monotonically increased by the Counter Management Component after each
successful message transmission or reception. This practice ensures that a nonce is never repeated for more
than one message under the same key, thereby avoiding the nonce-misuse scenario that is vulnerable to
chosen-plaintext attacks (CPA) [29][30].
B. Forgery Attacks
In a forgery attack, an attacker tries to craft a message with a valid authentication tag without possessing the
encryption key. However, if the SESSION_KEY, serving as the encryption key, is securely stored in a hardware
security module (HSM), such attacks become obsolete.
Forgery attacks can occur even without knowledge of the encryption key, where an attacker aims to find a
collision, causing two distinct plaintext messages to yield the same authentication tag. It is noteworthy that
reducing the authentication tag to 8 bytes can maintain acceptable security of Ascon [31]. However, LiREAP,
constrained by the CAN protocol’s environment, utilizes only 2 of the 16 bytes of the authentication tag, potentially
increasing the likelihood of a successful forgery attack. Despite this consideration, in a LiREAP environment,
finding a collision in the tag proves exceedingly challenging due to the non-public nature of counters. An
attacker must guess the current counter value on the bus to initiate a collision search. Since counters are 8 bytes
in length, there are 264 possibilities for a counter value. Consequently, by concealing the counter value from
attackers and unauthorized ECUs, the probability of successfully discovering a collision in the tag is significantly
reduced.

C. CAN Injection Attacks
CAN injection attack is a kind of replay attack, in which an attacker intercepts encrypted CAN messages from
the bus, stores them, and attempts to resend them later. This type of attack is mitigated by using counters that
are updated for each message.Hence, even if two plaintext messages are identical, their corresponding
ciphertext will be different because each message encryption utilizes a different nonce. Therefore, if an attacker
stores an encrypted message and attempts to send it later, its authentication tag will not be correct. This is because
the receiving ECU will use a new counter to decrypt the message and calculate its tag. As the tags will not match,
the ECU will drop the packet.

D. Reverse Engineering
Reverse engineering CAN messages involves identifying the function of each message, which can be exploited
by attackers to manipulate vehicle systems, such as unlocking doors or disabling engine immobilizers. LiREAP
mitigates this risk by encrypting each message using a unique counter, ensuring that the same message
produces different ciphertexts in separate encryptions. As a result, intercepting CAN messages does not
provide attackers with actionable information, effectively preventing reverse engineering and unauthorized
manipulation of vehicle systems.

E. Robustness
Robustness in LiREAP is ensured by the requirement for critical operations to involve multiple secret
components instead of relying on one. For example, in CR2AM, an ECU must demonstrate possession of both
the ECU_KEY and the previous SESSION_KEY to obtain the new SESSION_KEY from the MECU. This
reduces the risk of protocol failure if one component is compromised.
The MASTER_KEY and SUBKEY, stored within the MECU in a hard-to-reach location inside the vehicle, are
considered highly secure and difficult to compromise. However, the robustness of LiREAP extends to scenarios
involving compromised secret keys stored in an ECU, including the SESSION_KEY and the ECU_KEY. The
following scenarios emphasizes the protocol robustness:
1) If the ECU_KEY is compromised, an attacker cannot send authenticated messages or authenticate to the
MECU for a new SESSION_KEY without compromising the previous SESSION_KEY.
2) If the SESSION_KEY is compromised, an attacker cannot send authenticated messages or authenticate to
the MECU without the ECU_KEY. Also, producing the next SESSION_KEY requires knowledge of the
SUBKEY.
To further mitigate the risk of compromising both keys simultaneously, it is advisable to store the
SESSION_KEY and ECU_KEY in separate locations within the ECU with distinct sets of protections.

F. Overhead Analysis
LiREAP is designed with efficiency in mind, particularly regarding the limited resources typically available in

Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 2133

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

CAN environments. It aims to minimize overhead while still achieving the desired security objectives. One key
aspect of LiREAP is its use of Ascon, which is anticipated to become the NIST standard for lightweight
cryptography. Ascon's benchmarks demonstrate its efficiency, particularly for short messages [26], making it
well-suited for constrained

TABLE 2 MESSAGES OVERHEAD FOR THIS WORK AND PREVIOUS WORKS
 Number of required CAN frames

Original message size (bytes) Without cryptography [18] [32] [33] [34] LiREAP
1 to 6 1 2 1

7 to 8 1 2 2

9 to 12 2 4 2

13 to 16 2 4 3

17 to 18 3 6 3

19 to 24 3 6 4

environments like CAN networks. Also, as Ascon is an authenticated encryption cipher, it achieves both
confidentiality and integrity using the same cryptographic primitive. Moreover, both Ascon’s AEAD and
hashing functions are based on the same permutation, which reduces the code size and memory footprint
required for implementation. Furthermore, LiREAP uses session keys and a centralized MECU for key
management, thereby reducing overhead associated with key management.
By embedding the truncated authentication tag with the ciphertext within the same CAN frame, LiREAP
enables small messages that do not exceed 6 bytes to be sent in a single secured CAN message. Table II
demonstrates that LiREAP requires fewer messages compared to previous works that requires sending a
separate message to authenticate the original CAN message, which increases the busload [18] [32] [33] [34].

IV. CONCLUSION
The famous CAN protocol was designed to achieve high reliability and speed for in-vehicle communications.
However, its implementation suffers from severe security risks that results in various attacks along the last
decay. This paper proposed a Lightweight Encryption and Authentication Protocol (LiREAP) to mitigate these
risks. By integrating the state-of-the-art lightweight cipher Ascon with proposed key management
mechanisms, the proposed protocol offers robust security with very low overhead. The LiREAP succeeded to
keep the high speed and reliability of the CAN protocol along with ensuring confidentiality, integrity, and
authenticity of the CAN data. Future work includes implementing LiREAP in other in-vehicle communication
standards, and optimizing it for FPGA platforms to achieve highest possible speed.

REFERENCES
[1] CAN Specification, Robert BOSCH GmbH, Version 2.0, 1991.
[2] K. Koscher et al., "Experimental security analysis of modern automobile", Security and Privacy (SP) 2010

IEEE Symposium on Oakland CA USA, pp. 447-462, May 2010.
[3] C. Miller and C. Valasek, "Remote exploitation of an unaltered passenger vehicle", Black Hat USA, vol.

2015, pp. 91, 2015.
[4] Rapid7, CAN Bus Network Implementation in Avionics, 2019, [online] Available:

https://www.cisa.gov/news-events/ics-alerts/ics-alert-19-211- 01.
[5] Toyota UK, Toyota GB statement on vehicle theft, 2024, [online] Available:

https://mag.toyota.co.uk/toyota-gb-statement-on-vehicle-theft.
[6] K. Tindell, CAN Injection: keyless car theft, 2023, [online] Available:

https://kentindell.github.io/2023/04/03/can-injection.
[7] Z. Palmer, Thieves are now stealing cars via a headlight 'CAN injection', 2023, [online] Available:

https://www.autoblog.com/2023/04/18/vehicle- headlight-can-bus-injection-theft-method-update.
[8] E. Kovacs, Thieves Use CAN Injection Hack to Steal Cars, 2023, [online] Available:

https://www.securityweek.com/thieves-use-can-injection-hack- to-steal-cars.
[9] S. Lee, W. Choi, H. J. Jo and D. H. Lee, "ErrIDS: An enhanced cumulative timing error-based automotive

intrusion detection system", IEEE Trans. Intell. Transp. Syst., vol. 24, no. 11, pp. 12406-12421, 2023.
[10] Y. Zhao, Y. Xun and J. Liu, "ClockIDS: A real-time vehicle intrusion detection system based on clock

skew", IEEE Internet Things J., vol. 9, no. 17, pp. 15593-15606, 2022.
[11] J. Zhou, G. Xie, S. Yu and R. Li, "Clock-based sender identification and attack detection for automotive

CAN network", IEEE Access, vol. 9, pp. 2665-2679, 2021.

https://www.cisa.gov/news-events/ics-alerts/ics-alert-19-211-01
https://www.cisa.gov/news-events/ics-alerts/ics-alert-19-211-01
https://mag.toyota.co.uk/toyota-gb-statement-on-vehicle-theft
https://kentindell.github.io/2023/04/03/can-injection
https://www.autoblog.com/2023/04/18/vehicle-headlight-can-bus-injection-theft-method-update
https://www.autoblog.com/2023/04/18/vehicle-headlight-can-bus-injection-theft-method-update
https://www.securityweek.com/thieves-use-can-injection-hack-to-steal-cars
https://www.securityweek.com/thieves-use-can-injection-hack-to-steal-cars

Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 2134

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

[12] J. Park, D. Kim and I, Suh, “Design and Implementation of Security Function According to Routing
Method in Automotive Gateway”, in International Journal of Automotive Technology, vol. 22, pp. 19–25,
2021.

[13] Luo, F. and Hou, S., "Security Mechanisms Design of Automotive Gateway Firewall," SAE Technical Paper
2019-01-0481, 2019.

[14] S. Seifert and R. Obermaisser, "Secure automotive gateway-secure communication for future cars", in
2014 12th IEEE International Con- ference on Industrial Informatics (lNDIN), IEEE, pp. 213-220, 2014.

[15] AUTOSAR. Specification of Secure Onboard Communication AUTOSAR CP R19–11, 2019.
[16] Z. Lu, Q. Wang, X. Chen, G. Qu, Y. Lyu and Z. Liu, "LEAP: A Lightweight Encryption and Authentication

Protocol for In-Vehicle Communications," 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), Auckland, New Zealand, pp. 1158-1164, 2019.

[17] J. Cui et al., "Lightweight Encryption and Authentication for Controller Area Network of Autonomous
Vehicles," in IEEE Transactions on Vehicular Technology, vol. 72, no. 11, pp. 14756-14770, 2023.

[18] H. Oguma et al., “Message authentication method in communication system and communication system”,
European Patent 2775660B1, Jun. 2016.

[19] National Institute of Standards and Technology, Lightweight Cryptography (LWC) Standardization
project, 2019, [online] Available: https://csrc.nist.gov/projects/lightweight-cryptography.

[20] W. Melching, "Extracting Secure Onboard Communication (SecOC) keys from a 2021 Toyota RAV4
Prime," icanhack.nl, Mar. 2, 2024. [online]. Available: https://icanhack.nl/blog/secoc-key-extraction/.

[21] S. Woo, H. J. Jo and D. H. Lee, "A Practical Wireless Attack on the Connected Car and Security Protocol
for In-Vehicle CAN", in IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 2, pp. 993-
1006, 2015.

[22] F. Wiemer and A. Zeh, “Enabling Secure Communication for Automotive Endpoint-ECUs through
Lightweight-Cryptography”, In Proceedings of the 7th ACM Computer Science in Cars Symposium (CSCS
'23), Association for Computing Machinery, New York, NY, USA, Article 9,

pp. 1-10, Dec. 2023.
[23] F. Hartwich, Introducing CAN XL into CAN networks, 2020, [online] Available: https://www.can-

cia.org/fileadmin/resources/documents/proceedings/2020_hartwich.pdf.
[24] J Klüser, CAN-based Protocols in Avionics, 2012, [online] Available:

https://cdn.vector.com/cms/content/know-how/_application- notes/canopen/AN-ION-1-0104_CAN-
based_protocols_in_Avionics.pdf.

[25] G.C. Kessler, “The can bus in the maritime environment–technical overview and cybersecurity
vulnerabilities”, TransNav: International Journal on Marine Navigation and Safety of Sea Transportation,
vol. 15, no. 3, 2021.

[26] The CAESAR Committee. Caesar: competition for authenticated encryption: security, applicability, and
robustness, 2014.

[27] G. Bertoni, J. Daemen, M. Peeters and G. V. Assche, "Duplexing the sponge: Single-pass authenticated
encryption and other applications", Proc. Sel. Areas Cryptograph. (SAC), pp. 320-337, 2011.

[28] Dobraunig, M. Eichlseder, F. Mendel and M. Schläffer, Ascon Submission to the NIST Lightweight
Cryptography Standardization Process, 2021, [online] Available:
https://csrc.nist.gov/CSRC/media/Projects/lightweight- cryptography/documents/finalist-
round/updated-spec-doc/ascon-spec- final.pdf.

[29] Serge Vaudenay and Damian Vizár. Can Caesar Beat Galois?: Robustness of CAESAR Candidates Against
Nonce Reusing and High Data Complexity Attacks. In Applied Cryptography and Network Security - 16th
International Conference, ACNS 2018, Leuven, Belgium, July 2-4, 2018, Proceedings, pp. 476–494, 2018.

[30] M. T. Ali, "Generic CPA Decryption Attack on Ascon-128 in Nonce- Misuse Setting by Exploiting XOR
Patterns," 14th International Conference on Electrical Engineering (ICEENG), Cairo, Egypt, pp. 172- 174,
2024.

[31] B. Chakraborty, C. Dhar and M. Nandi, “Exact Security Analysis of ASCON”, In: Guo, J., Steinfeld, R.
(eds) Advances in Cryptology – ASIACRYPT 2023. ASIACRYPT 2023. Lecture Notes in Computer
Science, vol 14440. Springer, Singapore, 2023.

[32] B. Palaniswamy, S. Camtepe, E. Foo, and J. Pieprzyk, “An efficient authentication scheme for intra-
vehicular controller area network,” IEEE Transactions on Information Forensics and Security, vol. 15, pp.
3107– 3122, 2020.

[33] P.-S. Murvay and B. Groza, “Security shortcomings and countermeasures for the SAE J1939 commercial
vehicle bus protocol,” IEEE Trans. Veh. Technol., vol. 67, no. 5, pp. 4325–4339, May 2018.

[34] A. Radu, F.D. Garcia, “LeiA: A Lightweight Authentication Protocol for CAN”. In I. Askoxylakis, S.
Ioannidis, S. Katsikas, C. Meadows (Eds.), Computer Security – ESORICS 2016, ESORICS 2016. Lecture
Notes in Computer Science, vol 9879, pp. 283-300 Springer, 2016.

https://csrc.nist.gov/projects/lightweight-cryptography
https://icanhack.nl/blog/secoc-key-extraction/
https://www.can-cia.org/fileadmin/resources/documents/proceedings/2020_hartwich.pdf
https://www.can-cia.org/fileadmin/resources/documents/proceedings/2020_hartwich.pdf
https://cdn.vector.com/cms/content/know-how/_application-notes/canopen/AN-ION-1-0104_CAN-based_protocols_in_Avionics.pdf
https://cdn.vector.com/cms/content/know-how/_application-notes/canopen/AN-ION-1-0104_CAN-based_protocols_in_Avionics.pdf
https://cdn.vector.com/cms/content/know-how/_application-notes/canopen/AN-ION-1-0104_CAN-based_protocols_in_Avionics.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf

Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 2135

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

Dr. Mahmoud A. AttaAlla is a computer science professional with extensive
education and research experience. He received his B.Sc., M.Sc., and Ph.D
degrees in Computer Science from Mansoura University, Egypt in 2004, 2009,
and 2017 respectively. Currently, he is with the Faculty of Computer Studies,
AOU in Egypt, where he also serves as the program coordinator for the M.Sc. in
Cybersecurity and Forensics. His primary research interests lie in the areas of
network security, wireless networks, and routing. Dr. Attalah has published
many papers in international conferences and journals, in the field of network
and cyber security.

 Mohamed T. Ali (student member, IEEE) is graduated from faculty of
Computer Studies at Arab Open University, Egypt. He served as a
summer intern at Nokia, Egypt in 2023. He developed "playascon," an
online tool for the Ascon cipher. Additionally, he attained first place at
the International Competition of Military Technical College (ICMTC)
for Cyber Security in July 2024 and second place in July 2023. He
instructed Cryptography with Python course at AOU-Training and
Community Services Center (TCSC) During 2023-2024. His current
area of focus is lightweight

Dr. Ahmed M. Gawish, received his B.Sc. and M.Sc. degree in Computer
Science in 1997 and 2002, respectively; both from Ain Shams University, Cairo,
Egypt. He got his Ph.D. degree from Tohoku University, Japan in 2009. He is
currently with the Faculty of Computer Studies, Deanship-HQ, Arab Open
University, Kuwait. His major research interest is in Cloud Computing,
Security, modelling and simulation. He published over 50 referred papers in
international conferences, journals, transactions, and book chapters. He is a
member of IEEE and ACM.

