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Earthquake Early Warning Systems (EEWS) play a crucial role in mitigating earthquake impacts 

by providing timely alerts to affected regions. This study explores an AI-driven algorithm 

leveraging seismic trace migration and stacking to enhance the detection of seismic events. By 

analysing data from a temporary network in a volcanically active region, the algorithm identified 

optimal detection parameters, achieving a remarkable 94% detection rate, significantly 

outperforming conventional systems. Additionally, it identified 209 previously undetected 

events while maintaining a lower false detection rate of 25%, compared to the system's 40%. Key 

innovations include the application of Kurtosis functions and short-to-long-term average 

variations, enabling precise detection of seismic traces. The method demonstrated efficacy in 

analysing large swarms of low-magnitude events with short inter-event times, making it 

especially suitable for monitoring regions with complex seismic activities, such as fluid injection, 

drilling, and volcanic areas. Despite its computational intensity, the algorithm’s scalability and 

accuracy present a promising advancement in real-time seismic monitoring. Empirical tests 

affirm the utility of small, representative data subsets for fine-tuning detection parameters, 

reinforcing the system’s robustness. This approach underscores the potential of AI-driven 

methods in advancing seismology, improving early warning systems, and contributing to disaster 

risk reduction globally. 

Keywords: Earthquake early warning (EEW); Earthquake prediction; Machine learning; 

Numerical solutions; Time-series analysis; Seismicity; Seismology. 

 

1. INTRODUCTION 

Modern instrumentation technology makes it possible to install dense seismological arrays at a reasonable cost and 

record seismic data permanently or semi-permanently. Data analysis and evaluation must be automated, dependable, 

and computationally efficient due to the ever-increasing volume of data. Many seismic applications rely on the 

detection of seismic events, with the challenging but desirable goal of creating an automatic event catalogue that is 

as comprehensive as possible while having a small number of "false" events that must be eliminated. False events can 

be hard to spot and frequently require laborious manual examination of multiple seismic traces. The most common 

seismic event detectors are usually single station phase onset detection, phase identification and association, and the 

final event location and quality evaluation [1]. P- and/or S-phase onsets are therefore be successfully detected and 

identified in order for an event to be detected. Phase detectors frequently employ changes in seismic trace 

characteristics, like amplitude, envelope, or power, to record distinctive shifts in particle motion [2]. These 

characteristics should ideally remain flat in other locations and generate amplitude peaks at the beginning of energy 

bursts. A short-term average to long-term average ratio (STA/LTA) is a common example of a phase detector, as well 

as variants of the m [3]. It is shown in the given below figure 1.  
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Figure 1. Block Diagram for Seismic Data Preprocessing  

2. DATABASE AND METHODOLOGY 

The methodology prioritizes the largest event at each time step, potentially missing smaller overlapping events. Four 

primary steps can be distinguished in migration and stack-based detection.  

(1) Pre-processing of the trace, which typically consists of frequency filtering the seismic data and selecting an 

attribute function to maximize the desired signals and reduce noise. Instead of emphasizing the maximum amplitude, 

we compare stacking various nonlinear characteristics of the waveform data (Kurtosis, STA/LTA), which indicate the 

beginning of an incoming phase.  

(2) Migration of the pre-processed traces and stacking. S-wave and 1-D P-wave velocity models have both been used 

in earlier research [4]. P-wave velocity model in three dimensions. The travel time look-up tables were calculated in 

2014. We employ a 3-D P- and S-wave velocity model based on it [5], so that we created using our own local 

earthquake tomography.  

(3) Finding peak amplitudes in the stacked data and locating them. We evaluate hypocentre uncertainty and identify 

events by scanning a reduced 1-D stack [6]. An algorithm for adaptive threshold search has been put into place to 

enhance detection, particularly for events with brief inter-event intervals.  

(4) During processing of events, we examine the number of phase arrivals with enough S/N to evaluate the quality of 

an event and use automatically selected S-wave amplitudes to estimate local event magnitudes. We finally used an 

iterative resampling technique. 

2.1 Trace pre-processing 

Coherency in the stack is ensured by bandpass filtering the raw seismic traces to the frequency band that improves 

the S/N in the attribute function and generates a constant signal strength over all source-receiver distances. The 

frequency range utilized for manual phase picking may differ from this one [7]. We found that the P- and S-signals 

in our test data set had a range of spectra. The highly inhomogeneous velocity structure, source mechanisms, and the 

space- and time-varying noise field all contribute to the observed spectra. For simplicity, we define optimal lower and 

upper bounds flo and fhi based on the range of observed dominant frequencies and the S/N of the stacked filtered 

traces [8]. We also choose constant frequency bands. The frequency ranges selected are 2–15 Hz for S (horizontal) 

and 2–30 Hz for P (vertical) traces. We anticipate that most seismic signals will reach a station with sub-vertical 

incidence due to the strong velocity gradient in the top few kilometres of the Icelandic crust; as a result, P-energy will 
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be primarily on the vertical component and S-wave energy will be on the horizontal components. Therefore, we use 

the vertical component as the P-trace and use √(E2 + N2) to calculate an S-trace from the two horizontal components, 

E and N [9]. To emphasize the P- and S-phase onsets, respectively, and raise S/N, attribute functions are applied to 

both P- and S-traces. Reliable at various S/N ratios, the STA/LTA is a strong option for a range of seismic signals. It 

works reliably at different S/N ratios. It can be defined as 

𝑆𝑇𝐴

𝐿𝑇𝐴
(𝑡) =

𝑁𝐿 ∑ |𝑦(𝑡 + 𝑖 𝑑𝑡)|
𝑁𝑆
𝑖=1

𝑁𝑆 ∑ |𝑦(𝑡 − 𝑖 𝑑𝑡)|
𝑁𝐿
𝑖=1

   (1) 

STA and LTA in equation (1) can be used to define it, where dt is the sampling rate and y(t) is the frequency filtered 

trace at the specified station. In the STA and LTA time windows, the number of points is denoted by NL and NS, 

respectively. Depending on the frequency content of the signal under analysis, the time windows' ideal lengths vary. 

It proposes that for their adaptive STA/LTA filter, the LTA window is nine times longer than the STA window, and 

the STA window includes three "cycles" (6 zero-crossings) of the signal. For P and S signals, respectively, we select 

0.1s (STA) and 1s (LTA), and for S signals, 0.2s (STA) and 1s (LTA). These windows are comparatively brief in relation 

to the signals' observed frequency content, in order to increase the STA/LTA's variability. i0(t − idt) − 

μt]4K(t),(2)Nkσt4 is the definition of the Kurtosis function, a statistical measure of the ratio of a distribution's tail to 

its width, where μt and σ t are the data's mean and standard deviation within a time window of Nk points. Three is 

the Kurtosis value for a univariate normal distribution; higher values denote a spiked distribution. Kurtosis values 

greater than three are regarded as seismic signals, presumed to be random, independent, and normally distributed 

seismic noise [10]. The Kurtosis function's positive gradient was also used to increase the detection timing accuracy.  

A traditional single trace picker's detection results are compared to ours, so the system detection software [11]. We 

also evaluate and contrast the same attribute function with the other three attribute functions that are utilized in the 

system software. A forward difference filter and a high-pass filter are used in the system software to filter traces. This 

is followed by an STA/STA, or STA/LTA with two equally long-time windows, which we call the system attribute 

function or STA / STA (grad). A 0.2s window is used to calculate the system attribute function for both STA windows. 

But take note that there are additional steps involved in system detection, like Table 1. Figure 2 displays sample 

traces, and Table 1 summarizes the parameters selected for the various attribute functions [12]. Around the selected 

phase onsets, the STA/LTA generates fairly broad, symmetrical signals, whereas the Kurtosis function first increases 

sharply before gradually declining. While the slowly decaying tail is eliminated by the Kurtosis gradient, several peaks 

may still form.  

Table 1. Trace pre-processing, Migration and detection parameters for an event detection. 

Attribute flo  

[Hz] 

fhi  

[Hz] 

STA  

[s] 

LTA 

[s] 

STA/LTA 2 30(P), 15(S) 0.1(P), 

0.2(S) 

1 

STA/STA 

(grad) 

2 – 0.2 – 

Kurtosis 2 30(P), 15(S) – 1 

Grad 

(kurt.) 

2 30(P), 15(S) – 1 

 

Note, however, that the system detection includes further steps, such as phase association and selection, which 

influence the outcome of the detection. 

2.2 Migration and stack 

The migration and stacking process involves stacking attribute traces time shifted using travel time tables from 3-D 

velocity models.  The models used for this study are in essence although with a higher resolution due to the denser 

station coverage [13]. 
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The stack is then defined as the normalized sum of all time shifted traces where fn is the chosen attribute function 

for the nth component and τkl the travel time estimate from the kth grid point to the lth station. The travel time tables 

are calculated with the time 3d finite difference algorithm. The two stacked components are the P- and S-traces. 

(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

 

 

Figure 2. Left: Bandpass filtered (2–30 Hz) and normalized vertical component seismic trace (a) and derived 

attribute traces (b–e). Right: Bandpass filtered (2–15 Hz) and normalized S-component trace (f), that is, 

Euclidean norm of horizontal components, and derived attribute traces (g–j). Attributes are: STA/LTA (b,g), 

STA/STA(grad) (c,h), Kurtosis (d,i) and grad(kurt) (e,j). The signal was recorded at station lha after event 1. 

Potential first arriving P- and S-picks are marked with red and green vertical lines, respectively. Time is travel 

time, that is, relative to estimated event origin time. 

Travel timetables from velocity models are used to stack attribute traces time shifted during the migration and 

stacking process. We combine manual travel time selections stations in the study area with P- and S-wave velocity 

models from a nearby earthquake tomography study [14]. In essence, the models employed in this investigation are 

comparable to those put forth, but because of the denser station coverage, it has a higher resolution. Then, the stack 

is defined as the normalized sum of all time shifted traces, where τkl is the estimated travel time up to the lth station 

and function (n) is the selected attribute function for the nth component. The time 3d finite difference algorithm is 

used to compute the travel time tables [15]. The P- and S-traces are the two stacked components.  

The length of the stacking window is directly related to the maximum travel-time between two diagonally spaced grid 

points and given by with x the constant grid sampling, Vmin the slowest velocity in the model and mtw a constant 

user defined factor.  

2.3 Event detection 

Similar to other algorithms, we store only the maximum stack amplitude at each time step that is, reducing the stack 

to a function of time. Another parameter l (0 to 1) is defined to estimate the hypocentre and origin time uncertainty. 

We set the origin time uncertainty for each event (maxk) equal to the time interval (Tu) where Sm > lmaxk. 

Hypocentre uncertainty is then estimated as the standard deviation of Xm within Tu [16].  

In order to achieve reasonable spatial resolution in near real-time, we adopt an iterative detection and resampling 

procedure. The length of the stacking window is directly related to the maximum travel time between two diagonally 

spaced grid points and given by with x the constant grid sampling, Vmin the slowest velocity in the model and mtw a 

constant user defined factor [17] [18]. To identify time segments and grid portions that might contain one or more 

(i) 

(h) 

(f) 

(g) 

(e) (j) 
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events, a first low-resolution stack is calculated. The stack is recalculated at greater spatial resolution in the 

subsequent iterations.  

However, in the absence of a coherent signal, we find that consecutive points in Sm randomly correspond to very 

different locations Xm [19]. We only combine the energy from the biggest event in the region at a specific moment 

since we only analyse the maximum stack at each time step. Thus, each Sm peak is thought to correspond to a single 

event. Although event peaks in Sm get wider with lower sampling, this isn't always the case at coarse spatial and, 

consequently, low temporal sampling. Figure 2 illustrates how the maximum stack function Sm's resolution decreases 

as grid sampling decreases.  

Figure 3. Adaptive local maximum detection procedure to detect small local peaks in the maximum stack function 

Sm, each representing a possible event. Td marks the detection interval where the procedure is active. Local detection 

thresholds Lk and Lrk are defined based on the preceding trough mink or peak maxk to detect the next peak maxk+1 

or trough mink+1, respectively. For each peak, an uncertainty interval Tu is defined to calculate origin time and 

hypocentre uncertainty. 

When Sm is higher than a user-defined detection threshold, Ld, an event is detected. There are two ways to 

characterize the detection threshold: constant and time varying (when there are different noise levels present). By 

computing a mean stack time-series with N grid points. A moving average over time is indicated by the brackets [20]. 

The time varying detection threshold is then equal to the moving average of Sμ over time plus a constant value [21]. 

The averaging window length that we propose is greater than a number of event peaks. It is frequently not possible 

to differentiate between two closely spaced local maxima in Sm using one of the aforementioned thresholds; instead, 

the constant term should be marginally greater than the average variation of Sm around [22]. Defining peaks in Sm 

at low spatial resolution may merge if inter event times are brief because of the stacking window approach, which 

makes them wider. To find as many peaks as we can, we look for several local maxima during the time interval (Td) 

when the stack surpasses the detection threshold. Depending on the preceding trough (or peak), we establish a local 

detection threshold within Td for every peak (and trough). To achieve this, we established a fixed peak-to-trough 

ratio (d) and the subsequent local detection threshold. This adaptive detection keeps going until the detection window 

Td is over. These are the adjusted local detection thresholds, L1 and L2. Another parameter, l, is defined to estimate 

the value between 0 and 1  [23].  

2.4 Local magnitude estimation 

We define our own local magnitude scale and calibrate it to the system. A linear relationship between the local 

magnitude ML, the log of the epi-central distance (D), and the log of the S-wave amplitude (A) of an event is assumed, 

where α, β, and γ are constants determined for each individual station using linear regression. 

An estimate of event magnitudes is helpful to fine-tune algorithm parameters and to assess our algorithm's 

performance with meaningful statistics. The system local magnitude is calibrated to our own local magnitude scale. 

The local magnitude (ML), log of the epi-central distance (D), and log of the S-wave amplitude (A) of an event are 

assumed to have a linear relationship, where linear regression is used to determine the constants α, β, and γ for each 

individual station. The maximum zero-to-peak amplitude of the transverse component within a projected arrival time 
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window is used to automatically estimate the S-wave amplitudes [24]. In order to prevent P-wave contamination in 

the S-wave window, we opt for the transverse component. After detection, it is computed by rotating the horizontal 

components in relation to the estimated event location. To identify the presence of the corresponding phase, arrival 

time windows for the P- and S-phases are established. In relation to the anticipated travel time τkl, the lower time 

boundary t1 is provided with vsource the velocity at the estimated event location, c a constant estimate of the relative 

velocity error (0 to 1), and δ a spatially uniform hypocentre uncertainty from the event detection. Although δ and c 

have opposite signs, the upper boundary t2 has the same form. We assume all travel time residuals τi in order to 

determine an appropriate value for c.  

The time windows are typically long enough (roughly 0–5 seconds, depending on source-receiver distance) and 

skewed towards later times so that they reliably cover the maximum S-wave amplitude, even though the maximum 

S-wave amplitude frequently arrives later than the phase onset. The identified P-phases can be used to define event 

quality, such as by counting toward the total number of observed phase arrivals, but they do not aid in magnitude 

estimation. Using the system catalogue to enter the local magnitudes, event locations, and S-wave amplitudes, the 

regression parameters α, β, and γ are established. Because of either a lack of detected S-phases or inaccurately 

estimated S-amplitudes, the parameters may not be well determined for some stations. Those stations are rejected. 

The magnitudes of each detected event are estimated for each of the remaining stations. The median of all an event's 

station-specific magnitudes is then used to determine its local magnitude. This rapidly produces imprecise estimates 

for local magnitudes, much like the Richter scale, but it ignores any kind of radiation pattern because of the event's 

source mechanism [25].  

3. APPLICATION TO MICRO EARTHQUAKE DATA FROM A REGION 

Region associated geothermal fields are currently exploited for geothermal energy in several locations, including nine 

active reinjection wells. The geology consists of hyaloclastite formations topping the base of the central volcano and 

containing elongated lens-like interglacial lava series and a postglacial lava layer. 

In an attempt to better characterize the geometry and potential of the geothermal reservoir, a high-density seismic 

network with broad-band (120s) sensors. All data were recorded with a sampling rate of 100Hz. The volcanic system 

is the most noticeable formation. There are currently active reinjection wells where its associated geothermal fields 

are being used to generate geothermal energy. Over the course of four years, a high-density seismic network 

comprising twenty seismological stations equipped with broad-band (120s) sensors. All of the stations were 

operational at the same time [26] [27].  

The seismicity is partly due to the plate-tectonic setting but a large number of small magnitude events are related to 

drilling and re-injection of waste water at the production sites. The remaining 97 events were found using the system 

automatic detection software with the data from the enhanced temporary network followed by manual picking.  

Although the plate-tectonic setting contributes to some of the seismicity, drilling and waste water re-injection at 

production sites are responsible for a significant number of small magnitude events.  Time and place have a 

significant impact on noise levels.  Events of various kinds are seen, some of which have ambiguous P and/or S phase 

arrivals. We used data spanning six days to test our algorithm.  To encompass various event clusters across the study 

region, we chose non-contiguous days (2011 November 2/3, 2012 March 2/19, and 2012 July 7/8). Earthquake 

swarms in November 2011 and July 2012 showed inter event times as short as a few seconds. For those days, a total 

of 234 manually selected events were known. These are referred to as "system" events. 137 of them were captured by 

the permanent network.  We calibrate our own local magnitude scale using the event magnitudes that are listed in 

Iceland's public earthquake catalogue. The system automatic detection software was used to locate the remaining 97 

events using the enhanced temporary network data, which was then manually selected. During this process, we 

determined that several events had been overlooked and that roughly 40% of the events that the system software 

automatically detected were false.  Low S/N and brief inter event intervals during swarms were primarily blamed for 

the overlapping of phases from various events.  
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4. RESULTS 

t = 0.12s and tw = 0.58s are the results of a second iteration that is conducted at 1km sampling. The final detection is 

performed using d = 0.75 and l = 0.95 after the second iteration stack has been calculated. This allows for the 

distinction of multiple event peaks within each time interval and yields reasonable uncertainty values. Following the 

second iteration, the maximum stack function for the various attribute functions. However, the stack was generated 

with fewer stations and a smaller search volume for every event (determined by its location uncertainty). We 

categorized the automatically detected events as either "true" or "false" events for the purposes of the analysis that 

follows. If an event is locatable and at least four phases are discernible, it is deemed true. Every other occurrence is 

regarded as untrue. While generally strong, these standards are not perfect. Therefore, in addition to real events of 

low magnitude that are too weak to be recognized as true events, false events can also be caused by noise bursts that 

coincidentally stack coherently. Events with an origin time of less than two seconds (no multiple matches) are 

referred to as "matching" events when comparing event catalogues [28].  

4.1 Comparison of attribute functions and completeness of detected events 

In order to test the algorithm, we look at both the number of false events generated and the completeness, and the 

number of missed events compared to a "complete" event catalogue. True events identified by various attribute 

functions were combined with manually selected events to create a "complete" catalogue of 480 true events. By 

computing the ratio of missed events to false events, the entire catalogue is used to evaluate our algorithm's detection 

performance in relation to the input attribute function and the selection of the detection threshold. Notwithstanding 

the fact that we did not manually verify every event, we regard all events above the dashed line as false events in 

accordance with our definition of the complete catalogue. The ideal detection threshold is 7. A low percentage of 

missed events at low detection thresholds and few false events at high thresholds are the outcomes of the STA/LTA, 

Kurtosis, and the positive gradient of the Kurtosis. The Kurtosis function produces slightly better results. 

Less than 10% of all known events are missed by the ideal detection threshold, which produces roughly 75% true 

events. In contrast, the system attribute function (STA/STA (grad)) has a less defined knee and a much flatter curve. 

This could make it more challenging to adjust the detection threshold for best results. It should be noted that the 

system detection software's phase detection is intended to produce a large number of detections, and that a phase 

association procedure is then implemented to get rid of false phase detections. Therefore, our findings show the 

performance of the system detection software's attribute function (i.e., rather than the software's overall 

performance) and phase detection in relation to our algorithm that is based on migration, further lowering the 

detection threshold than what is depicted in Figure 4 quickly raises the cost of false events while not achieving less 

than roughly 5% of missed events. The cause is a small number of events from the entire catalogue that take place in 

close proximity (both in time and space) to larger events and were only discovered by hand-examining the data; 

neither the migration nor the system algorithm were able to identify them [29].  

5. Discussion 

Event detection via migration and stack techniques, unlike methods relying solely on phase picking from a single 

trace, mandates a velocity model of the subsurface for the detection process. This approach inherently assumes that 

the supplied velocity model, and the subsequent migration or backpropagation algorithms, adequately mirror the 

actual physical conditions and seismic wave propagation. Utilizing travel time residuals, we've gauged the maximum 

relative error of our velocity model at 5 percent. Importantly, migration and stack techniques primarily respond to 

portions of the velocity model that influence the predicted travel times, specifically those cells traversed by seismic 

rays. Analysing stacks at varied spatial resolutions, we've observed a sensitivity to velocity anomalies exceeding 1 km. 

Our wave field simplification focuses exclusively on first-arriving P and S waves, anticipating these to create the most 

pronounced peaks in the attribute function. Therefore, phenomena like multi pathing and surface waves are 

disregarded. Furthermore, we did not correct for distance-amplitude decay; such correction consistently degraded 

the stacked results by amplifying noise originating from distant recording stations. A more sophisticated wave field 

modelling could necessitate a more comprehensive understanding of the velocity structure to yield an advantage. 

It's crucial to consider the combined error in travel time resulting from both the velocity model and the back-

propagation stage when we're stacking the attribute function we've selected. Our observations suggest that stacking 
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the highest amplitude within a user-specified temporal window – which, at its core, applies a maximum value filter 

to the incoming data – effectively addresses travel time discrepancies. Another approach involves substituting the 

peaks observed in the attribute function traces with Gaussian functions. These Gaussians can have either a fixed or 

fitted width, and this replacement often enhances constructive stacking, leading to more precise event localization. 

The Gaussian functions introduced in this manner can provide an estimate of the arrival time uncertainty, which can 

then be used to calculate origin time and location uncertainties following the stacking process. However, one must 

also set a threshold to identify these attribute function peaks, which causes data below the set threshold to be 

dismissed; in essence, this introduces a method of phase detection. 

 

(a)  (b) 

Figure 4. (a) General trade-off between a low number of detected events and a low percentage of missed events for 

the Kurtosis attribute function and various magnitude ranges. Black squares show all detections for an increasing 

detection threshold from left to right. Black solid lines with dots represent trade-off curves for events above different 

magnitude thresholds. Points connected by grey dotted lines belong to the same detection threshold. Two scenarios 

are highlighted by the blue and red lines. (b) Same data and colour codes as in (a), but re-organized as percentage of 

missed events above a given magnitude for different detection thresholds. 

Data pre-processing involves selecting a frequency band and an attribute function. Our choice of broad, constant 

frequency bands stems from observing the dominant frequencies present in the P- and S-phases. This wide definition 

appears appropriate for the automated detection of a diverse range of events in a seismically active region like Iceland. 

While we haven't looked into adaptive frequency filters, we believe that shorter bands could reduce signal strength 

within the attribute function, the stack, or both [30].  

5.1 Frequency bands and attribute functions 

We observed comparable performance across three attribute functions evaluated: (i) the STA/LTA, (ii) Kurtosis, and 

(iii) the gradient of the Kurtosis. The system function, designed to maximize phase detection, couldn't be tuned to 

perform on par with the other three [31]. Possible reasons include the use of a high-pass filter instead of a band-pass 

filter, and the higher variability in the STA/STA values compared to STA/LTA values. Although these results suggest 

similar effectiveness among different attribute functions, each function identified a slightly unique set of events. 

Lacking further analysis of the detected events, we can only infer that a particular attribute function might be 

advantageous for pinpointing specific types of events. We did not find significant improvements in hypocentre 

estimates, with the Kurtosis demonstrating slightly better detection statistics [32]. 

5.2 Runtime improvements and impacts 

The crucial element in developing a real-time, migration-based detection algorithm is runtime. Runtime for a finite 

difference grid is proportional to the cube of grid points. This means that grid size and sampling heavily affect the 

runtime. The grid size is often determined by the study area's dimensions and not easily altered. Practically, the 
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spatial grid must be constructed to encompass all required stations and desired seismic activity. However, regional 

or tele seismic events might be located inaccurately within the model. These events sometimes appear close to the 

model boundaries. We, therefore, recommend removing events from a "critical zone" along the model boundaries 

[33]. 

Grid sampling influences the spatial and temporal resolution of detection. So we proposed an iterative up-sampling 

approach to reduce computation time. Based on our implementation, we offer the following practical insights: (i) 

events missed during the initial, coarse iteration are irrecoverable in later iterations; (ii) the high location uncertainty 

in a coarse-grid iteration might render the defined time interval and sub-volumes unsuitable for later iterations; (iii) 

Parameters that tie temporal sampling to spatial sampling, such as the stacking window and time step multipliers, 

are essential to prevent spatial resolution loss [34]. This is effectively transformed into a loss of temporal resolution 

("smearing" event peaks over time). When using an iterative method, selecting the initial iteration parameters—

detection threshold, grid resizing, time interval for subsequent iterations, time step, and stacking window lengths—

is critical for successful detection. In our experience, more than two iterations generally complicate things without 

further gain [35]. 

We also observed that stacking only the nearest stations at each grid point can enhance the stack for low-magnitude 

events while simultaneously decreasing runtime. This enables each point within the 4-D stack to, in theory, include 

data from different areas. Therefore, when signals from several events overlap, we will only observe the stacked 

amplitude of the strongest event at that given time [36]. 

5.3 Result appraisal: magnitude estimates, completeness, and event quality 

To evaluate the efficacy of any event detection algorithm (in terms of detection capability), it's critical that the 

detected events include a magnitude estimate. We derive our magnitude estimations from hypocentre estimations, 

coupled with automatically selected S-amplitude data. Refining these magnitude calculations by incorporating 

manually picked phase arrival times, event relocation, and the analysis of S-phase frequency content is an approach 

that could offer improved magnitude estimation [37]. However, the magnitude distributions we generated align well 

with the system data and were deemed adequate for this research. We note a small underestimation of magnitudes 

exceeding ML 1.2. 

In the context of a seismic network, the magnitude of completeness (Mc), assessed using a frequency–magnitude 

diagram, denotes the magnitude threshold below which the detection of a substantial number of events becomes 

unreliable. Whether an event below Mc is detected depends on its location within the network, the stations available 

for observation, and the level of noise at nearby stations—all of which may fluctuate over time. Yet, Mc does not 

guarantee that all events surpassing this threshold are easily detected. Our findings reveal that the application of a 

migration and stacking algorithm necessitates the examination of a significant number of false events to identify all 

possible events. This is, based on intuition, not necessarily a property exclusive to migration and stacking, because 

all event detection approaches must deal with events nearing or below Mc in magnitude where detection becomes 

challenging due to network-specific constraints. Simultaneously, specific events went undetected because of an 

inability to differentiate them as two discrete events (inter-event separation measured in seconds). The magnitudes 

associated with these events (along with chosen detection thresholds) have a secondary effect; it is their close 

proximity that triggers failure within the detection algorithm. It is very likely that this issue could impede any event 

detection algorithm. Therefore, we contend that various factors, such as event location, wave propagation, and signal-

to-noise (S/N) ratio at the receiver, impact the event's detectability, independent of its magnitude estimation. This 

may obfuscate the direct relationship between detection threshold and magnitude estimation – a relationship 

potentially prone to significant temporal and spatial variation [38]. 

False events in our detection outputs either originated from extraneous noise bursts – associated with environmental 

influences or instrumentation – or were, in fact, legitimate events, categorized incorrectly because they failed to meet 

our criteria, particularly relating to the count of identifiable phases. Noise bursts can impact the stack process with 

varying degrees of significance, dictated by the signal strength they generate within the attribute function. As a result, 

careful data examination is advised, together with the standard removal of noisy and/or erroneous traces to minimize 

false detections due to random noise bursts [39]. 
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6. CONCLUSIVE REMARKS 

Migration-based event detection presents a beneficial alternative to traditional event detection algorithms founded 

on single-trace phase detection. The migration process diminishes incorrect signal associations, and the stack 

improves the signal-to-noise ratio, thereby lowering the detection threshold. Precision adjustments to the algorithm’s 

parameters can produce robust recovery of lower magnitude events, along with an improved true-to-false ratio, 

therefore reducing the number of manual inspections required. Calculation time mainly rests upon the number of 

model grid points, but adequate spatial resolutions can be obtained within acceptable run-times (near real-time) 

using iterative up sampling. Migration-based event detection proves particularly appealing for studying natural or 

induced earthquake swarms or for monitoring areas of significant seismic activity that demonstrate low magnitude 

seismicity. 

The described algorithm recovered 94 percent of genuine events by the system detection software and roughly 

doubled the overall count of authentically detected events. The percentage of false events declined from 40 percent 

to 25 percent even prior to the implementation of event selection criteria. Hypocentre estimations from our 

automatically detected events closely resemble events located with manually picked arrivals, with variances 

proportional to the size of the grid cell utilized. The attribute functions assessed produced matching overall detection 

statistics, with the Kurtosis function generating marginally fewer missed and false events. It is still mandatory to 

apply the appropriate pre-processing based on each type of attribute function. 
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