
Journal of Information Systems Engineering and Management 
2025, 10(56s) 

e-ISSN: 2468-4376 

  

 

https://www.jisem-journal.com/ Research Article  

 

 262 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

A Multi-Model Deep Learning Approach for Classification of 

Different Types of Brain Tumour 

 

P. Yugandhar Reddy, Prof .E. Sreenivas Reddy 
Department of CSE ,ANUCET ,ANU 

SCOPE,VIT-AP,AMARAVATHI 

 

ARTICLE INFO ABSTRACT 

Received: 24 Dec 2024 

Revised: 12 Feb 2025 

Accepted: 26 Feb 2025 

This paper examines recent advancements in Deep learning techniques with Classification of 

brain tumors. Brain tumours pose significant diagnostic challenges, requiring precise and timely 

intervention for improved patient outcomes. Deep Learning(DL), particularly Convolutional 

Neural Networks (CNNs), has transformed medical imaging by enabling automated and accurate 

tumour classification. Key methods discussed include CNNs, transfer learning, & hybrid models, 

which have shown promising results in improving diagnostic efficiency. Additionally, widely 

used datasets like TCIA and When evaluating model performance, evaluation metrics like 

accuracy and AUC-ROC are essential. 

DL for brain tumor classification still faces several obstacles despite tremendous advancements. 

Data scarcity, class imbalance, and model interpretability hinder widespread clinical adoption. 

Addressing these limitations requires advancements in explainable AI, self-supervised learning 

future, and multi-model approaches, which integrate diverse data sources for more 

comprehensive analysis. Research should focus on these areas to enhance reliability and clinical 

applicability of deep learning-based diagnostic systems. This paper proposes two distinct 

approaches were implemented and evaluated for brain tumour classification: a Convolutional 

Neural Network (CNN) designed from scratch, and a Transfer Learning model using 

EfficientNetB0 pre-trained on ImageNet and the Transfer Learning approach using 

EfficientNetB0 demonstrated higher accuracy, better generalization, along with instruction 

behaviour that is more consistent than that of the custom CNN. 

Keywords: Deep Learning,Convolutional Neural Network ,Brain tumor, MRI images. 

 

1. INTRODUCTION 

Brain tumours are serious medical conditions that require timely and accurate diagnosis. MRI is the standard 

imaging technique used for detection, but manual interpretation is time-consuming and prone to human error. 

Differentiating between tumour types like glioma, meningioma, and pituitary tumours is particularly challenging due 

to overlapping visual features. Traditional machine learning methods rely on manual feature extraction, which limits 

their effectiveness. Convolutional Neural Networks (CNNs) have  exceptional performance in image classification 

tasks due to their ability to automatically extract hierarchical features from raw data [1]. Traditional CNNs, when 

designed and trained from scratch, require large amounts of labelled data and computational resources. To address 

these limitations, transfer learning techniques, which reuse pre-trained models on related tasks, have gained 

popularity in medical image analysis [10], [16], [17]. This paper proposes a CNN-based deep learning model for 

classifying different types of brain tumours from MRI scans. The goal is to enhance diagnostic accuracy and support 

clinical decision-making through an automated and efficient approach. 

     Deep learning which is a subset of machine learning, to develop hierarchical data representations[3,4,5]  have 

several layers which are used in  Neural networks. In tasks involving images, Convolutional Neural Networks (CNNs) 

have shown remarkable performance. Spatial Kernel Selection due to their ability to extract spatial and hierarchical 

features from images automatically[6,7,8,9]. DL has enabled tumor detection, segmentation, and classification 

advancements in medical imaging. 
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Deep learning techniques have evolved over the past two decades, with CNNs becoming prominent in image 

classification after its breakthrough of AlexNet in 2012. Since then, various architectures such as VGGNet, ResNet, 

and DenseNet have been explored for medical imaging applications. Initially, medical image processing relied on 

handcrafted feature extraction techniques, which deep learning has largely automated, leading to increased accuracy 

and efficiency. 

2. LITERATURE REVIEW 

Deep learning has significantly impacted various medical imaging applications. One of the most notable 

contributions is in tumour detection and classification. CNN-based models have shown remarkable performance in 

detecting and classifying tumours from medical scans such as MRI and CT images. By leveraging deep hierarchical 

feature extraction, these models can distinguish between benign and malignant tumours with high accuracy. 

Hybrid architectures have also gained traction for feature extraction. For instance, Montaha et al. [6] proposed the 

Time Distributed-CNN-LSTM model, which combines spatial feature extraction through CNN layers with temporal 

sequence modelling via LSTM networks. This architecture is particularly effective for 3D MRI scans, where sequential 

slices hold contextual relevance. Deepak and Ameer [12] leveraged transfer learning for feature extraction by using 

pre-trained deep CNNs. They demonstrated that using CNN features from models like VGGNet and ResNet, followed 

by classification layers, significantly improves accuracy while reducing training time and overfitting—especially 

important in medical datasets with limited samples. 

Another critical application is image segmentation. Advanced architectures like U-Net and Mask R-CNN have been 

widely applied in segmenting tumour regions, helping radiologists delineate tumour boundaries more precisely 

[9,10,11]. This segmentation process is crucial for treatment planning, as it assists in defining the affected area 

accurately. 

Aamir et al. [14] integrated a segmentation stage into their deep learning pipeline for better performance on brain 

MRI classification. They demonstrated that pre-segmenting tumor regions enhances model convergence and reduces 

the influence of irrelevant background features, leading to more accurate tumor type predictions. the work of Rasool 

et al. [3] involved the use of a hybrid deep learning model that benefits from region-based segmentation strategies to 

enhance classification performance. Their method reinforces the idea that segmentation can directly influence the 

quality of feature representation in deep models. 

Deep learning significantly enhances feature extraction in medical imaging[12]. In contrast to previous methods that 

depend on human feature selection and engineering, deep learning directly automates the extraction of significant 

features from raw medical pictures. In addition to speeding up analysis and reducing human error, this automated 

procedure improves the precision and effectiveness of tumor categorization jobs. 

Multi-modal data analysis is another advantage of deep learning in medical imaging. Deep learning models can 

integrate data from multiple imaging modalities, such as MRI, CT, and PET scans, to provide a more comprehensive 

diagnosis and prognosis. This integration enhances the reliability and accuracy of brain tumour 

classification[12,13,14,15]. 

     In medical imaging, deep learning is also essential for risk assessment and prediction. By examining extensive 

medical datasets, deep learning models are able to evaluate patient risk and forecast disease development with high 

accuracy. By enabling physicians to make well-informed judgments about patient care and treatment alternatives, 

these predictive skills raise the standard of healthcare as a whole. 

Tan and Le [2] introduced the EfficientNet family of models, which scale depth, width, and resolution uniformly 

using a compound coefficient. EfficientNetB0 has shown superior performance in feature extraction for medical 

images due to its parameter efficiency and high representational power. Numerous studies have since adopted 

EfficientNetB0 and other pre-trained models for transfer learning in medical imaging [10][15][17]. 

  Deepak and Ameer [12] demonstrated that transfer learning significantly boosts performance in bra in tumor 

classification, even with limited training data. They used features extracted from VGG16 and ResNet50 and observed 

improved generalization and reduced overfitting. Similarly, Mehrotra et al. [15] and Kim et al. [10] discussed the 
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efficacy of transfer learning in multiple medical imaging contexts, showing that deep features from natural image 

datasets are transferable to medical domains. 

Table 1. LITERATURE SUMMARY 

 

 

 

S. 

No 

Author(s) & 

Year 

Method / 

Model 

Dataset 

Used 

Accur

acy 

(%) 

Advantages 
Disadvantag

es 
Limitations 

[1] 
Deepak & 

Ameer (2019) 

CNN + 

Transfer 

Learning 

Brain 

MRI 

Dataset 

94.58 

Simple 

integration of 

pretrained CNN 

features 

Limited 

flexibility; 

older CNN 

architectures 

used 

Not optimized for 

domain-specific 

medical features 

[2] 
Rasool et al. 

(2022) 

Hybrid DL 

(CNN + 

Pretrained) 

Private 

MRI 

Dataset 

95.46 

Robust multi-

stage learning; 

improved 

feature 

representation 

High 

complexity; 

slower 

training/infere

nce 

Risk of 

overfitting, 

difficult to deploy 

on limited 

hardware 

[3] 
Shajin et al. 

(2023) 

Hierarchical 

DL Neural 

Network 

Brain 

Tumor 

Dataset 

93.25 

Better 

abstraction 

through layer-

wise learning 

Complex 

hyperparamet

er tuning 

Sensitive to 

architecture 

changes, reduced 

interpretability 

[4] 
Montaha et al. 

(2022) 

TimeDistribu

ted CNN-

LSTM 

3D MRI 

Dataset 
96.12 

Extracts both 

spatial and 

temporal 

features 

Requires 

sequence data; 

high training 

cost 

Not scalable for 

2D MRI datasets, 

slow real-time 

performance 

[5] 
Tandel et al. 

(2021) 

DL Ensemble 

(Majority 

Voting) 

MRI 

Brain 

Dataset 

94.82 

Improved 

accuracy using 

ensemble 

predictions 

Requires 

training 

multiple 

models 

Increased 

inference time, 

limited 

interpretability 

[6] 

 

Mehrotra et al. 

(2020) 

Transfer 

Learning 

MRI 

Dataset 
92.30 

Simple and fast 

to implement 

Lower 

accuracy with 

shallow 

architectures 

Poor 

generalization if 

not fine-tuned 

properly 

[7] Custom CNN 
Custom CNN 

from scratch 

Kaggle 

Brain 

MRI [5] 

89.76 

Lightweight; 

suitable for low-

resource devices 

Requires 

careful 

architecture 

design 

Lower accuracy, 

limited feature 

learning without 

pretraining 

[8] 

Proposed: 

EfficientNetB0 

(TL) 

EfficientNet

B0 Transfer 

Learning 

Kaggle 

Brain 

MRI [5] 

94.65 

High accuracy 

with fewer 

parameters; fast 

convergence 

Requires 

pretrained 

model 

availability 

May need fine-

tuning for optimal 

results, less 

transparent 

decision process 
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2.1. RESEARCH GAPS 

  Despite its advantages, deep learning faces several challenges in medical imaging. One major challenge is data 

availability. The need for large, annotated datasets remains a significant obstacle, as medical images are often 

protected due to privacy issues. The development of more accurate and generalized models have restricted 

accessibility of data with labels restricts. 

Another issue is  Interpretability of the model where many deep learning models operate as "black boxes," making it 

challenging for medical professionals to understand and trust their predictions. This lack of openness hampers the 

clinical use of diagnostic techniques based on deep learning. There are additional computational requirements. 

Because deep learning model training demands a lot of processing resources, real-time applications are challenging. 

Deep learning in medical imaging is more expensive and complex to deploy due to the requirement for specialized 

hardware, such as GPUs or TPUs. 

Handling ethical and regulatory issues is also necessary. Thorough validation and regulatory permission are 

necessary for the use of AI in healthcare to guarantee patient safety and dependability. Careful management of ethical 

issues, including bias in AI algorithms and patient data protection, is also required. 

Evaluation in  deep learning-based models for accurate classification of different types of brain tumours using MRI 

images. The primary objective of this research is to develop and based on  these objectives, the study enables  to 

improve the clinical applicability, reliability, and efficiency of deep learning models in brain tumour classification 

from MRI data. 

3. PROPOSED METHOD 

3.1.  Proposed Method – 1: Custom CNN 

3.1.1. Dataset Preparation 

Every picture was downsized to a standard 150x150 pixel size to guarantee that the model's input dimensions were 

constant. The pixel values were normalized to a range of 0 to 1 in order  to increase training efficiency. Class labels 

were extracted from folder names ‘no_tumor’, ‘glioma_tumor’,‘meningioma_tumor’,and‘pituitary_tumor’and 

mapped to numerical values. The conversion of one-hot encoded vectors to suit the categorical classification problem  

were labelled. 

After combining both training and testing images into a single dataset, for a new and fair assessment, the data was 

divided at random into 80% for training and 20% for testing. The training set was also subjected to real-time data 

augmentation through the use of the `ImageDataGenerator` class. Rotation, zooming, shifting, and horizontal 

flipping were among the augmentation strategies utilized to improve the model's capacity to generalize to new, 

unknown data, decrease overfitting, and boost data diversity.. 

3.1.2.  Proposed Methodology Framework 

The CNN an input layer that takes MRI images that have been shrunk to 150x150 pixels with three color channels 

(RGB) is the first step in the model used for brain tumor categorization. The input is standardized by normalizing all 

pixel values to fall within [0, 1]. The architecture then moves through a number of convolutional blocks, each of which 

is intended to extract features from the images that are more and more abstract. Conv2D layer with 128 filters 

utilizing ReLU activation is part of the first block. MaxPooling2D is used for down-sampling, Batch-Normalization is 

used to stabilize learning, and a Dropout layer with a rate of 0.3 is used to avoid overfitting. 

Subsequent blocks deepen the network with Conv2D layers of 64 and 32 filters, interspersed with pooling and 

normalization layers to continue refining feature maps. The final convolutional layer again uses 32 filters, followed 

by another round of pooling, batch normalization, and dropout., the model includes a Using ReLU activation, the 

flatten layer transforms the 2D feature maps into a 1D feature vector, which is then sent through two fully linked 

(Dense) layers of 128 and 256 units, respectively after the convolution of  layers. A final Dropout layer with a 0.5 rate 

comes before the output layer. 
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Class probabilities are generated using a SoftMax activation function in the output layer, which comprises a Dense 

layer with four units (representing the four tumor classes). With an exponentially decaying learning rate, the Adam 

optimizer is used to optimize the model, which is constructed using the categorical cross entropy loss function and 

appropriate for multi-class classification. With a batch size of 32 and training for up to 30 epochs, training involves 

data augmentation using ImageDataGenerator and early stopping to prevent overfitting. The robust performance in 

identifying brain tumors from MRI data is guaranteed by this meticulously crafted system. 

3.1.3.  Results and Discussion 

• Evaluation Metrics 

       Accuracy vs Loss: 

 

Fig 4. Training and validation across epochs 

From the above Fig 4. The two images shows training and validation accuracy by left side graph and     training and 

validation loss over 30 epochs for a deep learning model explained by right side graph.  

From the above graph(left) blue line training accuracy and orange line validation accuracy ,it is observed that 

Training accuracy increases steadily and smoothly from ~0.3 to ~0.92 across 30 epochs. 

Validation accuracy shows more fluctuations but generally follows an upward trend, peaking close to the training 

accuracy. Between epochs 10–20, the validation accuracy spikes and dips—indicating variability in generalization. 

Validation accuracy stabilizes in the final epochs (20–30) but never fully matches training accuracy. 

It is observed that Training loss consistently decreases indicating the model is optimizing and it’s performance on 

the training data  and Validation loss is highly erratic, especially in the first 15 epochs, spiking several times. It 

decreases over time but remains unstable even after 25 epochs is shown in the above right side graph where  blue line 

training loss and orange line validation loss is indicated. 
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From the  above image  confusion matrix for a multi-class brain tumour classification model, likely from custom 

CNN. The resultant prediction results for a classification problem is a summary of  confusion matrix.  

Other Metrics: 

 Precision Recall F1-

score 

Support 

No Tumour 0.89 0.95 0.92 122 

Glioma 

Tumour 

0.95 0.95 0.85 162 

Meningioma 

Tumour 

0.79 0.77 0.82 180 

Pituitary 

Tumour 

0.91 0.96 0.94 189 

Table 2.Custom CNN model classification metrics table 

Accuracy: 0.88   

From the above Table 2 it is observed that CNN model achieves overall accuracy that is moderate to high accuracy 

with F1-scores which ranges from 0.82 to 0.94. Therefore, class with high precision (0.91), recall (0.96), and F1-score 

(0.94) this model performed best on "Pituitary Tumor". Also achieved in good performance results like "No Tumour" 

and "Glioma Tumour" classes, with F1-scores of 0.92 and 0.85 respectively, suggesting the model is effective in 

detecting tumor presence. 

The "Meningioma Tumour" class had the lowest precision (0.79) and recall (0.77), leading to an F1-score of 0.82. 

This indicates the model has difficulty distinguishing meningioma from other tumors, likely due to visual similarity. 

All classes have good representation in the balanced dataset (support values between 122 and 189), but 

misclassification still occurred—especially between meningioma and other tumors. 

 3.1.4.  Key Insights 

The CNN model was trained using a dataset of 3,264 MRI images split into four categories: pituitary tumor, glioma 

tumor, meningioma tumor, and no tumor. After the data was pre-processed and supplemented, the model was 

trained for up to 30 epochs, with early termination based on validation loss to prevent overfitting. With an overall 
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accuracy of 88% when tested on the test set, the model showed exceptional capacity to classify the different types of 

brain tumors. 

The majority of tumor classes had high precision and recall, according to a thorough analysis of the classification 

report. The precision of the model was specifically 0.95 for gliomas, 0.91 for pituitaries, 0.89 for tumors without 

tumors and 0.79 for meningiomas. The recall values followed a similar trend, with the model performing best on 

pituitary (0.96) and no tumour (0.95) classes, and slightly lower on glioma (0.77). The F1-scores for all classes ranged 

from 0.82 to 0.94, demonstrating a balanced ability to identify and classify tumour types accurately.  

The majority of incorrect classifications were between meningioma and glioma tumors, which frequently have 

comparable visual characteristics on MRI scans  which were revealed by the confusion matrix. Nevertheless, the 

model's performance remained robust, with minimal confusion among distinctly different classes such as no tumour 

vs. tumour categories. Overall, these findings show that the model can provide strong support for radiologists in 

diagnosing brain tumours with consistency and accuracy, especially when integrated as a clinical decision-support 

tool. 

3.2. Proposed Method –2: EfficientNetB0 

3.2.1 Dataset Preparation 

The preprocessing pipeline ensures the MRI image data is properly structured and formatted to train a DL model. It 

begins by loading and resizing images to a fixed dimension of 150x150 pixels, ensuring consistency across the dataset. 

The images are read from their respective training and testing directories, together with the labels that go with them, 

are kept. To maintain class balance, the training and test datasets are merged and then split again using a stratified 

approach, ensuring that each class is proportionally represented in both sets. The data is then converted into NumPy 

arrays to enhance computational efficiency. Labels, originally in categorical text form, are mapped to numerical 

values based on their index in the label list. Finally, these numerical labels are one-hot encoded, a crucial step for 

multi-class classification, which allows  the model to learn effectively. This comprehensive preprocessing workflow 

prepares the dataset for optimal performance in training a CNN for detection of tumour and classification. 

Using 3,264 photos in total, the model was trained and tested. The algorithm acquired the patterns and 

characteristics required for precise categorization by using 2,870 of these photos for training. The remaining 394 

photos were reserved for testing to ensure an objective assessment of the model's performance on unseen data. This 

results in a train-test split ratio of 88:12. 

3.2.2 Proposed Methodology Framework 

We utilized EfficientNetB0 as the backbone for our model, as it is efficient and has strong feature extraction 

capabilities. We added a Pooling 2D layer to reduce spatial dimensions, a Dropout layer to prevent overfitting, and a 

Dense layer for final classification to enhance the performance. This model was made to run for a total of 25 epochs 

employing Categorical Cross-Entropy as the loss function. 

The EfficientNetB0 model's initial accuracy was 86%. However, we greatly enhanced its performance by adding a 

Global Average Pooling 2D layer and a Dropout layer, increasing accuracy to 98%. Image data augmentation was 

essential in improving the model's capacity for generalization to further contribute to this notable increase. 

Given that our loss function for this multi-class classification task was categorical cross-entropy loss. To mitigate 

overfitting and reduce loss, we implemented Learning Rate Reduction, which dynamically lowers the learning rate 

when training progress plateaus, allowing the model to converge more effectively. Furthermore, we utilized Early 

Stopping with TensorFlow Checkpoints, ensuring that only the best-performing model—based on validation 

accuracy—was saved. This approach prevented the model from being retained beyond the optimal point in Gradient 

Descent, thereby improving overall stability and performance. We also added a dropout layer, which dropped 50% of 

nodes to reduce overfitting during training.  

3.2.3 Results and Discussion 

Behaviour of model concerning Various Parameters: 
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• Early Stopping 

In our model, we employed an optimized training strategy using Checkpoints, a modified version of Early Stopping. 

Unlike traditional Early Stopping, which halts training prematurely when performance plateaus, Checkpoints 

continuously save the model only when an epoch's validation accuracy exceeds the highest recorded value. This 

method guarantees that the model maintains its best-performing state while continuing to learn, preventing 

overfitting or performance degradation. As a result, our model achieves enhanced overall accuracy and stability. 

Given that our model is based on transfer learning, the decision to freeze pre-trained layers had a significant impact 

on performance. Specifically, freezing any of the pre-trained layers of EfficientNetB0 led to a noticeable decline in 

classification accuracy. These pre-trained layers contain essential feature representations learned from large-scale 

datasets, providing a strong foundation for tumour classification. Restricting their adaptability limited the model's 

ability to fine-tune for the specific task of tumour classification, as evident in the accompanying graph. This outcome 

reinforces the importance of maintaining the trainability of pre-trained layers for optimal performance. 

• Dropout Ratio 

One of the simplest and most effective ways to mitigate overfitting in deep learning models is by incorporating a 

Dropout layer. During training, this layer randomly deactivates a portion of neurons to keep the model from 

becoming unduly dependent on particular features. The dropout rate, defined as a value between 0 and 1, determines 

the proportion of neurons to be dropped. For example, a 20% of the neurons have a dropout rate of 0.2. will be 

temporarily deactivated during each training iteration, improving generalization and reducing overfitting. 

 

Fig 1. Accurcy vs Dropout Ratio 

The above Fig 1 displays a line graph showing the relationship between Dropout Ratio and Accuracy in a deep learning 

model (likely your EfficientNetB0-based model) and it illustrate how model accuracy changes with varying drop out 

ratios ranging from 0.1 to 0.9. 

It is observed that Dropout ratios below 0.3 and above 0.8 show relatively lower accuracy, suggesting potential 

underfitting (too little dropout) or over-regularization (too much dropout).The optimal setting for dropout rate was 

observed to be 0.5 where the proposed model achieves the highest accuracy. 

• Learning Rate 

The learning rate is an essential hyperparameter that determines how much a model's weights are updated during 

training in machine learning. It controls the step size of the Gradient Descent algorithm, which is used to minimize 

the loss function. 

Effects of Learning Rate: 

• Too High: The model takes large steps, potentially overshooting the optimal point, leading to instability or 

divergence. 

• Too Low: The model updates weights in very small increments, causing slow convergence and prolonged 

training times. 
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• Optimal Learning Rate: Ensures efficient learning, balancing speed and accuracy, allowing the model to 

converge smoothly to the best solution. 

Dynamic Learning Rate: 

• Learning Rate Decay: Reduces the learning rate over time to improve fine-tuning. 

• Adaptive Learning Rate (in our case Adam): Adjusts learning rates based on gradients to enhance stability. 

Following is a graph showing behaviour of accuracy with different static learning rates: 

 

Fig 2: Accurcy vs Learning Rate 

Instead of utilizing a set learning rate,  used TensorFlow's Dynamic Learning Rate feature, which enables the model 

to change its learning rate while it is being trained. This adaptive approach helps the model converge more efficiently 

by starting with an initial learning rate of 0.001, which gradually decreases as training progresses. Lowering the 

learning rate over time prevents overshooting the optimal solution and enhances model stability, ultimately leading 

to improved accuracy and better generalization. 

3.2.4. Evaluation Metrics: 

• ACCURACY AND LOSS 

 

Fig 3. Loss Function Used: Categorical Cross-Entropy 

In the above Fig 3 it visualizes machine learning model’s  performance changed over 25 training epochs and from the 

left side graph it shows Green line (Training accuracy) rapidly increases and reaches 99 percentage around epoch 6 

and stays consistently high, indicating that the model fits the training data very well and red line (validation accuracy) 
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starts very low and fluctuates significantly between epochs 6-14 and eventually stabilizes around 90-93% ,closely 

tracking training accuracy . 

From the right side graph Green line (Training Loss) gradually decreases and stays low, showing that the model 

continuous to improvement on the training set and the red line (Validation Loss) very high and erratic in early epochs 

(especially around epochs 6-10),peaking at over 7 and then drops steadily and becomes low and stable ,similar to 

training loss. 

• Confusion Matrix:  

 

The above image shows a heatmap of the confusion matrix for a multi-class classification model that detects 

types of brain tumors. The above confusion matrix supports the metrics and the model is highly accurate, but some 

improvements could focus on reducing confusion between meningioma and other tumor types. 

• Additional Metrics 

 Precision recall F1-

score 

Support 

Glioma 

Tumour 

1.00 0.96 0.98 93 

Meningioma 

Tumour 

0.99 0.97 0.98 94 

No Tumour 0.94 0.98 0.96 50 

Pituitary 

Tumour 

0.96 1.00 0.98 90 

TABLE 1. PERFORMANCE METRICS OF  DATASET FOR EFFICIENTNETB0 MODEL 

In the above Table 1 it shows  classification metrics for a model trained to classify different types of brain tumors and 

these metrics suggest a highly effective classification model for brain tumor detection .However depending on the 

application even small drops in recall or precision may warrant further improvement even small drops in -especially 

in life critical tasks like tumor detection. 

From the above Table 1 it is observed that the EfficientNetB0 model offers highly reliable tumor classification, with 

F1-scores close to or at 0.98 near-perfect scores in most categories. Still, enhancing the "No Tumour" class 

representation or using weighted loss functions could improve diagnostic reliability, particularly in avoiding false 

negatives in critical health applications.   
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3.2.5 Key Insights 

F1-score as Key Metric: Crucial in medical applications; No Tumour has an F1-score of 0.96, while other classes 

achieve =0.98. 

Precision-Recall Trade-off: Low precision but high recall for Meningioma Tumour, leading to more false 

positives. 

Class Imbalance: No Tumour class has significantly lower support, indicating dataset imbalance. 

3.2.6 Potential Improvements 

Improve precision for Meningioma Tumour: Use loss functions that penalize false positives more, such as 

weighted cross-entropy, focal loss, or hinge loss. 

Address Class Imbalance: Increase the number of "No Tumour" class images to create a more balanced dataset. 

4 RESULTS AND DISCUSSION 

4.1 Model Performance Comparison 

Two distinct approaches were implemented and evaluated for brain tumour classification: a CNN designed from 

scratch, and an EfficientNetB0 pre-trained on ImageNet Transfer Learning model. The main evaluation measures, 

which were evaluated on a held-out test set[16,17], were accuracy, precision, recall, F1-score, and validation loss. 

Table 3. Model comparison 

 Accuracy Precision Recall F1-

score 

Custom CNN 0.88 0.88 0.89 0.87 

EffiecientNetB0  0.97 0.98 0.98 0.97 

 

The experimental results clearly demonstrate that the Transfer Learning approach using EfficientNetB0 significantly 

outperforms the custom Convolutional Neural Network (CNN) across all major evaluation metrics. EfficientNetB0 

achieves a markedly higher classification accuracy (97% compared to 88%) and a substantially lower validation loss. 

These metrics collectively indicate not only better performance in terms of correct classification but also stronger 

generalization to unseen data, a critical requirement for medical imaging tasks where datasets are often limited in 

size and diversity. 

4.2 Analysis 

There are several essential reasons why EfficientNetB0 performs better. Which are discussed in more detail below: 

• Pre-trained Knowledge EfficientNetB0 benefits from having been pre-trained on the large-scale 

ImageNet dataset[2], which contains over 14 million labelled images spanning 1,000 categories. During this pre-

training process, the model learns a wide range of low-level features (such as edges, textures, and shapes) as well as 

higher-level patterns that are useful across various vision tasks. When this pre-trained model is fine-tuned on a 

medical imaging dataset, such as brain MRI scans, it retains this rich feature representation, which allows it to adapt 

quickly and effectively—even with a comparatively smaller and more specialized dataset. 

This transferability of features is a major advantage in domains like medical imaging, where obtaining large volumes 

of annotated data is often challenging and resource-intensive. EfficientNetB0 essentially "borrows" learned visual 

knowledge from a broader domain and repurposes it in a targeted way, reducing the amount of training time required 

while increasing performance stability. 

• Efficient Architecture Unlike traditional CNNs that often scale arbitrarily by increasing depth or width 

alone, EfficientNetB0 uses a compound scaling approach that balances the model's resolution (input image size), 
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width (number of channels), and depth (number of layers) all at once. This approach leads to more efficient utilization 

of computational resources and results in a network that is not only compact but also highly expressive. In other 

words, it can extract meaningful features more effectively than a standard CNN with a similar or even larger number 

of parameters. 

The design of EfficientNetB0 is also based on a neural architecture search, meaning its structure was optimized 

through automated exploration for the optimal balance between efficiency and accuracy. It is particularly appropriate 

for fine-tuning jobs because of its optimization. like brain tumour classification, where precision and computational 

efficiency are both critical. 

• Feature Reuse and Robust Convergence: Transfer learning promotes the reuse of high-quality 

features—especially low- and mid-level visual patterns—that are general enough to be applicable to a wide range of 

images, including those in the medical domain. These pre-trained features provide a solid foundation for further 

learning, allowing the model to converge more quickly and reliably during training. As a result, EfficientNetB0 

reaches higher accuracy in fewer epochs is less prone to overfitting compared to a model trained from scratch. 

In contrast, the custom CNN, while capable of learning from the data, lacks the benefit of pre-existing knowledge and 

must extract all relevant features during training [2,15,17] which makes the model more sensitive to the quality & 

quantity of data available. The custom CNN exhibited signs of overfitting, including a widening gap between training 

and validation accuracy after several epochs. Its relatively shallow architecture and limited capacity to extract deep, 

hierarchical features also constrained its ability to capture complex patterns that distinguish between tumour types. 

Furthermore, the custom CNN required careful tuning of hyperparameters along with a longer training duration to 

achieve acceptable performance. Even then, it struggled to maintain consistency in generalization, particularly when 

exposed to new, unseen data samples. The strength of transfer learning in contexts where data is limited, and model 

generalizability is essential and these observations were further reinforced. 

On the other hand, the custom CNN, while demonstrating reasonably good performance, struggled with overfitting 

during training and required more epochs to converge. Its relatively shallow architecture limited its ability to capture 

complex hierarchical features, which are often essential in distinguishing subtle patterns in medical images. 

• Limitations and Considerations 

While Transfer Learning provides a clear advantage in this case, it’s worth noting that pre-trained models like 

EfficientNetB0 are larger and require more computational resources. In deployment scenarios with strict 

performance or memory constraints, a well-optimized CNN might still be preferred, depending on the accuracy–

efficiency trade off. 

Additionally, both models were evaluated on the same dataset, and external validation on a different dataset would 

further confirm the generalizability of the EfficientNetB0-based model. 

5 CONCLUSION 

In summary, the Transfer Learning approach using EfficientNetB0 demonstrated higher accuracy, better 

generalization, and more consistent training results than the custom CNN. 

Building on these fundamentals, EfficientNet, a family of models that revolutionized CNN scaling through a 

compound coefficient strategy. EfficientNetB0, in particular, proved how accuracy can be significantly improved 

while minimizing computational cost—making it highly suitable for medical applications with limited hardware 

resources.These results demonstrate how useful it is to use pre-trained architectures for medical image classification 

tasks, especially when data availability is restricted. 

6 FUTURE WORK 

Currently, the model is designed to perform multi-class classification to detect the presence or absence of a tumour 

in MRI scans and can further categorize tumours into four distinct classes: glioma, pituitary, meningioma, and no 

tumour. While this provides a foundational level of diagnostic assistance, there is significant scope for enhancement. 
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Future improvements could focus on incorporating the ability to assess tumour progression, specifically by 

identifying the stage or grade of the tumour as visible in the MRI. This would enable more nuanced clinical insights 

and aid in treatment planning. Additionally, integrating a localization mechanism—such as generating bounding 

boxes or segmentation masks around the tumour region—would greatly enhance the model’s interpretability and 

practical applicability. This capability would not only highlight the exact location of the abnormality but also facilitate 

further tasks such as surgical planning, radiation targeting, and monitoring tumour growth over time. 
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