2025, 10(56s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Advancing Data Analytics for Financial Industry in the Upcoming Years

Brunela Karamani¹

¹Department of Computer Science, Faculty of Information Technology, Polytechnic University of Tirana, Albania, bkaramani@fti.edu.al

ARTICLE INFO

ABSTRACT

Received: 26 Dec 2024 Revised: 14 Feb 2025 Accepted: 22 Feb 2025 The financial industry in Albania is undergoing significant transformation, driven by government policies promoting digital adoption and financial inclusion. With commercial banks holding over 80% of the sector's assets, the industry faces increasing pressure to enhance profitability, reduce costs, and comply with stringent regulatory requirements. In this context, data analytics has emerged as a critical enabler of innovation and competitiveness. By leveraging advanced techniques such as clustering, factor analysis, neural networks, and sentiment analysis, financial institutions can gain deeper insights into customer behavior, optimize risk assessment, detect fraud, and improve operational efficiency. This paper explores the role of data analytics in modernizing the Albanian financial sector, highlighting its potential to drive growth and innovation. It examines key analytics techniques, including machine learning models, time series analysis, and game theory, and their applications in areas such as customer segmentation, credit scoring, and portfolio management. Additionally, the study evaluates popular data analytics tools, such as Python, R, SAS, Tableau, and Azure, based on their ease of use, visualization capabilities, and scalability. By integrating data analytics into their operations, Albanian financial institutions can enhance decision-making, improve customer experiences, and maintain a competitive edge in an increasingly dynamic market. This paper underscores the importance of embracing data-driven strategies to ensure long-term success in the evolving financial landscape.

Keywords: data analytics, financial industry, Albania, machine learning, risk management, customer segmentation

INTRODUCTION

The financial industry in Albania comprises a diverse array of institutions, including commercial banks, insurance companies, non-banking financial institutions, and smaller financial enterprises. Commercial banks dominate the sector, holding over 80% of the total financial assets (AAB Albania, 2022). The Albanian government has implemented policies to promote digital adoption and financial inclusion, aiming to expand access to financial services across all income levels by 2030 (Konsultimi Publik, 2021). This shift is expected to drive increased demand for retail banking, insurance, and other financial services. However, the banking sector faces mounting pressure to enhance profitability and reduce operational costs amid a challenging global financial landscape. Rising regulatory compliance requirements further exacerbate competitive pressures (European Central Bank, 2023). In this context, traditional banking models are being disrupted by the adoption of data analytics, which has emerged as a critical differentiator in the evolving financial markets. By leveraging advanced analytics, financial institutions can develop innovative service models, optimize operations, and gain a competitive edge (World Financial Review, 2023). Financial institutions generate vast amounts of transactional data daily, often in real time. While the collection and storage of such data present logistical challenges, merely organizing it is insufficient. To extract meaningful insights, banks must employ sophisticated data analytics techniques. The future of banking hinges on the ability to modernize processes through the integration of big data analytics, artificial intelligence (AI), machine learning (ML), and other cutting-edge tools. By adopting advanced statistical and mathematical models, such as data mining and AI, financial institutions can uncover new insights, accelerate decision-making, and drive growth across various business sectors.

2025, 10(56s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

OBJECTIVES

This study aims to assess the transformative role of data analytics in Albania's financial industry. Specifically, the objectives are:

- To analyse how advanced data analytics methods can enhance operational efficiency, risk management, and customer personalization in Albanian banks.
- To evaluate key techniques—such as clustering, factor analysis, neural networks, and sentiment analysis—for their applicability to real-world financial use cases.
- To assess the functionality, scalability, and user-friendliness of leading analytics tools, including Python, R, SAS, Tableau, Power BI, and Azure.
- To propose strategic steps for Albanian financial institutions to accelerate data analytics adoption through partnerships, training, and phased implementation.

METHODS

Data analytics has the potential to serve as the primary engine of growth for the banking sector. It enables financial institutions to gain deeper insights into customer behavior, assess risks more accurately, and optimize operational efficiency. The data analytics Techniques which are used in the financial industry are as below:

Clustering is a technique used to group similar data points based on shared characteristics without pre-defined labels. In financial institutions, it is frequently applied to segment customers into meaningful categories, such as high-value, risk-prone, or dormant users. This segmentation enables personalized marketing strategies and enhances customer retention.

Factor analysis reduces the complexity of datasets by identifying underlying relationships between variables. It is particularly useful in financial modeling to simplify credit scoring by combining correlated factors into fewer, more interpretable ones. For instance, multiple indicators of financial health can be condensed into a single score representing overall creditworthiness.

Text analytics focuses on extracting insights from unstructured textual data, such as customer reviews, complaints, and emails. Financial institutions use it to evaluate customer feedback, improve service quality, and address concerns promptly. It also supports compliance by scanning legal documents for key terms and potential risks.

Neural networks are machine learning models inspired by the human brain, capable of recognizing complex patterns in large datasets. In finance, they are used for fraud detection by learning from historical fraud patterns and flagging suspicious transactions. Neural networks also excel in stock market prediction, analyzing historical prices, volumes, and external factors.

Link analysis uncovers relationships and connections between entities, such as customers, transactions, or accounts. Financial institutions use this technique to detect money laundering by identifying hidden networks and unusual account linkages. It is also applied in social network analysis to understand customer relationships.

Survival analysis predicts the time until a particular event occurs, such as customer churn or loan default. It is widely used in customer lifecycle management, helping banks retain valuable customers by identifying early warning signs of churn. This technique also helps model loan repayment timelines, ensuring effective credit risk management.

Markov chain models represent systems that transition between states based on probabilities. In finance, they are used to model customer behavior, such as predicting the likelihood of customers moving between different credit risk categories. They also aid in portfolio management by forecasting asset movements under varying market conditions.

Decision trees are flowchart-like models that split data into branches to arrive at specific outcomes. They are commonly used in credit risk analysis to classify loan applicants as high or low risk. Their interpretability makes them popular for fraud detection and identifying customer eligibility for financial products.

Random trees, or random forests, are ensembles of decision trees that improve accuracy and reduce overfitting. In finance, they are used to predict loan defaults, detect anomalies, and forecast market trends. Their robustness lies in averaging predictions from multiple trees, ensuring stable and reliable results.

2025, 10(56s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Sentiment analysis evaluates the tone of text data, such as customer reviews or social media posts, to gauge public opinion. Financial institutions use it to understand customer satisfaction and track brand reputation. It plays a significant role in market sentiment analysis, were opinions about stocks or products influence investment strategies.

Regression analysis predicts outcomes by examining relationships between dependent and independent variables. It is extensively used for credit scoring, determining how variables like income and credit history affect loan repayment probability. Financial analysts also rely on regression models to forecast stock prices, sales, and economic trends.

Discriminant analysis classifies data into predefined categories based on input features. It is often applied in credit risk analysis to separate high-risk and low-risk borrowers. By focusing on classification, it supports accurate decision-making in various financial scenarios.

Six-sigma methods aim to improve process efficiency by reducing errors and variability. In financial institutions, they are applied to optimize loan processing, customer onboarding, and risk assessment workflows. Its focus on continuous improvement aligns well with the dynamic nature of financial services.

Time series analysis examines sequential data points to identify patterns and make forecasts. It is widely used in financial analytics to model stock prices, interest rates, and currency exchange rates. By analyzing historical trends, financial institutions can make informed investment and risk management decisions.

Hypothesis testing evaluates the validity of assumptions or strategies based on statistical evidence. Financial institutions use it to measure the impact of new product launches or marketing campaigns. For example, it can assess whether a new credit card design increases customer adoption rates.

ANOVA tests whether there are significant differences between groups by analyzing variance. In financial analytics, it is used to compare the performance of investment portfolios, customer segments, and marketing campaigns. For example, banks might use ANOVA to evaluate which customer demographics respond best to certain promotions.

Game theory analyzes strategic interactions where the outcome depends on the actions of multiple players. In financial institutions, it models competitive scenarios like pricing wars, mergers, or bidding strategies. It is also applied to optimize negotiations, such as loan agreements or investment contracts.

RESULTS

The selection of data analytics tools is predicated upon the specific use case and must be congruent with the strategic objectives of the organization, the intricacy of the tasks involved, and the technical expertise of the users. A thorough assessment of the data analytics methodologies employed by each tool is imperative, in conjunction with a comparative examination of widely-used tools, which ought to take into account factors such as user proficiency, statistical analytical capabilities, the integration of machine learning algorithms, and the capacity to process large-scale datasets (big data). This methodology guarantees that the selected tools not only satisfy the technical criteria but also promote efficient and effective decision-making processes throughout the organization.

There are three categories for the user's technical proficiency with different data analysis and visualization tools: minimal, moderate, and advanced programming experience. When utilizing Tableau and Power BI, the user must have little programming experience. This shows that they are familiar with these platforms, most likely through their graphical user interfaces rather than specific scripting. A modest level of programming knowledge is required for Python and R, indicating some aptitude for creating and running data analysis of code. On the other hand, the user has advanced programming abilities in SPSS and RapidMiner, indicating a high degree of competence and perhaps prior familiarity with these tools for statistical analysis, modeling, and data mining.

2025, 10(56s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Table 1 Data analytics technique and tools

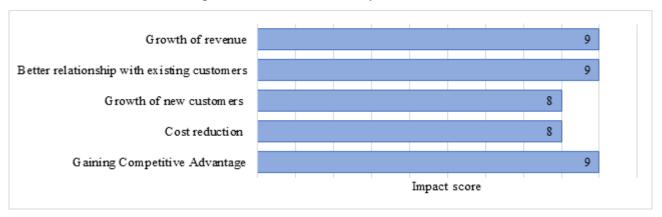
Technique	Tools											
	Python	R	SAS	MATLAB	Table au	SPSS	STATA	MSExcel	MS PowerBl	Rapid Miner	Azure	Watson
Clustering	4	√	4		1				1			
Factor Analysis	4	4	4	4		4	4					
Text Analytics	V	4								4	V	V
Neural Networks	V	V	4	1							V	V
Link Analysis	V				1							
Survival Analysis	V	V	V	1			V					
MarkovChain	N.	4		4				4				
Decision Trees	4	V	4		V	4				V		
Random Trees	V	V	4							1		
Sentiment Analysis	A.	√									√	1
Regression Analysis	4	√	4	4	4	4		4				
Discriminant Analysis	4	1	√	4		4	V					
Six-Sigma Methods	√		V		V			N/	V			
Time Series Analysis	4	√	√	4	√				√			
Hypothesis Testing	4	4	4	4		4	4	4				
ANOVA	4	√	√			4	4					
Game Theory	4	4		4								

Table 2 Statistical Analysis and Machine Learning tools

Tools	R	SAS	STATA	PYTHON	MATLAB
Statistical Analysis	v	v	v		
Econometrics		v	v		
Predictive modeling		v			
Machine Learning				v	
Data Manipulation				v	
Deep Learning				v	
Scientific research					v

Table 3 Big Data Handling and Scalability tools

Features	AZURE	PYTHON	R	SAS
Big Data	V	v	V	v
Scalability	v			v
Can handle large datasets	v	v		v
Cloud-based services	V			
Manage large-scale data processing	V			
Manage Storage	v			
Manage ML models	V			


In Albania, the implementation of data analytics in financial institutions is still in the early stages, primarily due to high costs and technical barriers. However, some institutions have started exploring the use of analytics to improve customer service and streamline operations. For example, a few banks in Albania are using basic data analytics for customer segmentation and targeted marketing campaigns. They are leveraging transactional data to understand customer behaviors and offer personalized products. The Albanian banking seeks to leverage data analytics solutions to improve efficiency, enhance customer experience, and drive business growth. Here are some key benefits they expect from their data analytics investments:

2025, 10(56s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

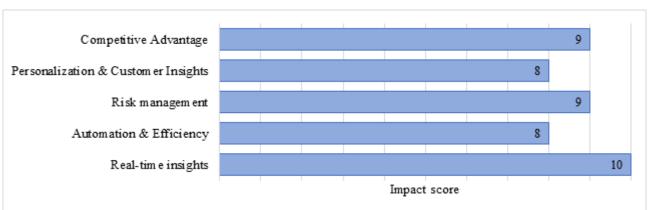

Research Article

Chart 1 Expected Benefits of Data Analytics for Banks in Albania

In today's digital economy, organizations generate vast amounts of data every day. However, data alone is not enough—it must be analyzed and transformed into actionable insights. A comprehensive data analytics solution is essential for businesses to remain competitive, improve decision-making, and drive innovation.

Chart 2 The need for comprehensive Data Analytics for Banks in Albania

The implementation of data analytics solutions necessitates the establishment of technological frameworks and instruments that facilitate the systematic collection, processing, analysis, and interpretation of data to support informed decision-making. Different deployment models impact the effectiveness of data analytics implementations.

Albanian banks are increasingly adopting cloud-based solutions, which offer scalability and flexibility, while some institutions still prefer on-premises setups for control over sensitive data. The hybrid deployment model, combining the best of both worlds, is also gaining traction in the Albanian banking sector.

Chart 3 The deployment models of Data Analytics for Banks in Albania

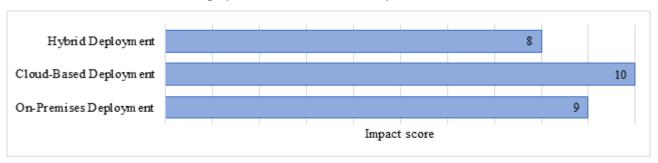
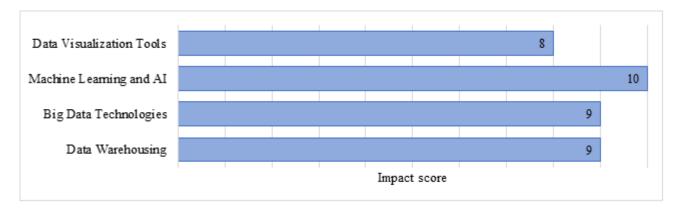



Chart 4 The key technologies of Data Analytics for Banks in Albania

2025, 10(56s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

To enhance their capabilities and access cutting-edge resources, Albanian banks should collaborate with technology companies and academic institutions. These partnerships can play a critical role in the successful implementation of advanced analytics solutions, enabling banks to stay competitive in the evolving financial landscape. Developing specialized training programs is essential for nurturing internal talent. Develop internal training programs to upskill employees, enabling them to understand and leverage data analytics for decision-making. A phased approach to implementing data analytics projects allows banks to carefully evaluate the outcomes at each stage. This method helps in managing costs effectively and provides flexibility to adjust before scaling the project, ensuring its long-term success. Focus on improving data quality and governance to ensure that the data used for analytics is accurate, consistent, and compliant with regulations.

DISCUSSION

In conclusion, the financial industry must embrace data analytics to remain competitive in the digital era. By integrating advanced analytics into their operations, financial institutions can gain new insights, enhance decision-making, and stay ahead of the competition. Tools such as Python, R, and SAS are particularly valuable for handling large datasets, performing statistical analysis, and building predictive models. Meanwhile, Tableau and Power BI are increasingly adopted for their data visualization capabilities, enabling effective communication of insights to stakeholders. Cloud-based platforms like Azure and IBM Watson are revolutionizing big data handling and machine learning, providing scalable solutions for predictive modeling and automated decision-making. However, challenges such as limited resources, skills gaps, and data privacy concerns must be addressed to fully realize the potential of data analytics in the Albanian financial sector. The ability to manage and analyze data effectively will be crucial for institutions seeking to improve efficiency, mitigate risks, and offer personalized services. As the industry continues to evolve, the adoption of modern analytics tools and a focus on digital transformation will be critical for driving growth, enhancing competitiveness, and ensuring regulatory compliance. Financial institutions that successfully integrate these technologies into their operations will be well-positioned to thrive in an increasingly data-driven and competitive market.

REFERENCES

- [1] AAB Albania. (2022). Annual Report for 2022. Retrieved from https://aab.al/publikime/raportet-vjetore/
- [2] Konsultimi Publik. (2021). Draft National Strategy for Development and Integration 2021–2030. Retrieved from https://konsultimipublik.gov.al/documents/RENJK_538_Draft-Strategjia-Kombetare-per-Zhvillim-dhe-Integrim-2021-2030-.pdf
- [3] European Central Bank. (2023). Financial Stability Review. Retrieved from https://www.ecb.europa.eu/pub/financial-stability/fsr/html/ecb.fsr202305~65f8cb74d7.en.html
- [4] World Financial Review. (2023). The Role of Data Analysts in the Financial Sector. Retrieved from https://worldfinancialreview.com/the-role-of-data-analysts-in-the-financial-sector/
- [5] Akter, S., et al. (2019). Analytics-Based Decision-Making for Service Systems. International Journal of Information Management, 48, 85–95.
- [6] Kelleher, J. D., & Tierney, B. (2020). Data Science: An Introduction (2nd ed.). Springer.
- [7] Sathyendra, S. S., & Rani, K. (2021). A Comprehensive Review of Python in Data Science and Machine Learning Applications. Journal of Computational and Theoretical Nanoscience, 18(5), 1–16.

2025, 10(56s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

- [8] SAS Institute Inc. (2021). SAS® Viya™: Getting Started with Data Analytics. SAS Press.
- [9] Tableau Software. (2021). Tableau 2021.1 Release Notes. Retrieved from https://www.tableau.com/learn/whitepapers
- [10] Microsoft Corporation. (2021). Power BI User Guide and Reference. Retrieved from https://powerbi.microsoft.com/en-us/documentation/
- [11] Aleksandrova, M. (2019). Big Data in the Banking Industry: The Main Challenges and Use Cases. Retrieved January 31, 2020, from https://easternpeak.com/blog/big-data-in-the-banking-industry-themain-challenges-and-use-cases/.
- [12] R Core Team. (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org/
- [13] Jiang, Y., & Wang, Z. (2020). "Data Analytics and Predictive Modeling in Finance Using SAS." Journal of Financial Data Science, 6(1), 1–18. https://doi.org/10.2139/ssrn.3541138
- [14] Sarrafzadeh, A., & Shams, H. (2020). "Machine Learning Algorithms in MATLAB for Data Analysis." Advanced Engineering Informatics, 45, 101110. https://doi.org/10.1016/j.aei.2020.101110
- [15] ATLAB Documentation (2021). MATLAB for Data Analytics. MathWorks. https://www.mathworks.com/help/matlab/
- [16] Ghosh, M., & Shah, S. (2021). "Enhancing Decision-Making through Data Visualization: An Exploration of Tableau's Capabilities." Journal of Data Science and Analytics, 15(1), 19–33. https://doi.org/10.1007/s41060-021-00229-1
- [17] Kim, H., & Seo, S. (2021). "Survey of Statistical Methods and Applications with IBM SPSS." Journal of Modern Statistical Techniques, 12(2), 55-68. https://doi.org/10.21307/jmst-2021-032
- [18] IBM Corporation. (2021). IBM SPSS Statistics 27: Documentation and User Guide. IBM. https://www.ibm.com/products/spss-statistics
- [19] Moser, L., & Roberts, G. (2020). "Econometric Analysis Using STATA: Statistical Modeling of Financial Data." Journal of Econometrics and Statistics, 7(4), 10–25. https://doi.org/10.1016/j.jes.2020.07.004
- [20] STATA Corporation. (2021). STATA 17: User Manual. STATA Press.
- [21] Wu, L., & Zhang, X. (2020). "Data Analytics with MS Excel: Techniques for Predictive Modeling." Journal of Business Analytics, 5(2), 49–62. https://doi.org/10.21307/jba-2020-010
- [22] Microsoft Corporation. (2021). Excel Data Analysis Tools. Microsoft. https://support.microsoft.com/en-us/excel
- [23] RapidMiner, Inc. (2021). RapidMiner Studio User Guide. https://docs.rapidminer.com/
- [24] Microsoft Corporation. (2021). Azure Synapse Analytics Documentation. Microsoft. https://learn.microsoft.com/en-us/azure/synapse-analytics/
- [25] IBM Corporation. (2021). IBM Watson Studio Documentation. IBM. https://www.ibm.com/cloud/watson-studio