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This paper investigates the maneuvers of a tethered satellite system orbit disturbed by libration 

of a single elastic tether immediately after deployment, where the tether experiences no 

electrodynamic force. An effective Lyapunov-method-based multi-input and multi-output model 

reference adaptive control scheme exhibits good qualitative TSS orbit tracking error 

convergence; the perturbed TSS orbit tracks a reference orbit precisely with 3D tether pendular 

angle suppression. Although the simulated tether dynamic motion is limited to its libration, the 

proposed mathematical model with Gauss variational equations can consider the tether’s 

pendular and dynamic motions together or separately. The latter realizes TSS orbital deviation 

by a non-conservative tether tension force acting on the primary body during tether libration. A 

feasibility study of the proposed control scheme through the maneuvers of the microsatellite 

under a zonal non-spherical harmonic gravitational perturbation (𝑱𝟐 perturbation) is conducted. 

Good tracking error convergence in the study indicates a potential high-accuracy control of the 

unstable TSS model using the proposed numerical procedure and control algorithm. 

Keywords: TSS, 𝑱𝟐 perturbation, MIMO MRAC, TSS orbital maneuver, suppression of tether 

libration. 

 

INTRODUCTION  

A tethered satellite system (TSS) is made of two cubic bodies connected by an elastic cable-type tether. Since 

the Gemini XI mission (David Darling, 2003), many space engineers have shown interest in TSS application, and the 

large body of TSS research has rapidly expanded in the last three decades. Typically, TSS-related research has focused 

on the following five topics: (1) tether dynamical modeling; (2) deployment and retrieval of a tether system and its 

control; (3) tether pendular angle analysis and control; (4) tether oscillation analysis and control; and (5) TSS 

trajectory generation and maneuver.  

The dumb-bell tether model (Cosmo & Lorenzini, 1997) was one of the most important tether systems in early 

TSS research. However, a rigid rod-type tether (Larsen, 2010) was also applied to model TSSs and, in a study on TSS 

librations, Ellis and Hall (2010) modeled a TSS as two point masses connected by a rigid body. Furthermore, Williams  

(2009) studied the dynamics of a space tether using a model divided into a finite number of masses connected by 

viscoelastic springs.  

Several studies have focused on a tether system in deployment or retrieval. For example, a simple nonlinear 

model for the motion of a tethered system in a retrieval process was proposed by Chernous’ko (1995). Further, Modi 

and Misra (1979) derived a general deployment dynamics formulation for a tether that incorporated the 3D tether 

libration and oscillation. A review article by Chen et al. (2013) introduced the feedback braking of a small expendable 

deployer system-2 for tether deployment, which limits the tether’s residual libration to 4°. In addition, discussion by 
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Misra (2008) focused on the control schemes for tether system stabilization during deployment and retrieval. 

Zabolotnov and Naumov (2012) studied the factors strongly related to the angular motion stability of a capsule 

relative to the direction of a tether in deployment. Iñarrea et al. (2014) achieved the stabilization of the periodic 

attitude motions of electrodynamic tethers in elliptically inclined orbits using two feedback control methods based 

on the time-delayed autosynchronization. Finally, Williams et al. (2009) discussed payload deployment via a tether 

system and examined the controllers for the flexible tether in the case of large disturbances using linear feedback 

gains such as the tether length and length rate. 

Study of satellite trajectory dynamics requires detailed knowledge of orbital mechanics and numerical 

methods for solving differential equations. A series of studies on the orbit dynamics of satellites and asteroids (Dong 

et al., 2016; Gonçalves et al., 2015; Scheeres, et al., 1998a; Scheeres, et al., 1998b; Scheeres, 1999) have been 

conducted over the past two decades. For example, Gonçalves et al. (2015) considered a variety of gravitational and 

non-gravitational orbital disturbances. The Gauss variational equations (GVEs) were employed in a numerical 

analysis of satellite dynamics by taking account of the non-conservative perturbation forces, such as atmospheric 

drag and solar radiation (Dong et al., 2016). In another work (Jo et al., 2011), classical Keplerian orbital elements 

(CKOEs) and equinoctial orbital elements (EOEs) were used for solution of the Lagrange planetary equations (LPEs). 

It was clear that the LPEs with the EOEs are advantageous for long-term calculation compared to the LPEs with 

CKOEs in the case of relatively small eccentricity.  

High tether flexibility increases the tether’s structural instability and alters the primary body’s acceleration, 

thereby deorbiting the TSS from the desired position. For TSS trajectory dynamic analysis and maneuvering, it is 

necessary to integrate separate mathematical models for the satellite and tether system, respectively. Thus, both the 

tether instability and TSS orbital deviation should be simultaneously predicted and suppressed. Therefore, there 

exists an extremely large body of literature on TSS control strategies (Misra, 2008; Misra and Modi et al., 1986;  Zhao 

et al., 2014; Zhong and Zhu, 2014). In 2014, Zhao et al. (2014) proposed the thrust control algorithm for a TSS with 

a dumb-bell-type tether under orbital maneuvering. In their simulation, the tether slackness was eliminated, and the 

tether pendular angles were damped out. Furthermore, a piecewise two-phased optimal control algorithm for fast 

nanosatellite deorbit by an electrodynamic tether was proposed by Zhong and Zhu (2014). In the first stage, an open-

loop control scheme was formulated for the tether libration only by assuming orbital elements as constants. The 

second stage focused on the closed-loop optimal control strategy based on a finite receding horizon control method, 

so as to track the desired reference trajectory subject to orbital perturbations.  

 Research on adaptive control for the speed and altitude of high-performance aircraft began in the 1950's. 

Notably, Tirop and Jingrui (2017) considered control of TSS pendular motion described by a classical dumb-bell 

model in an elliptic orbit; however, their discussion excluded the TSS deorbit induced by the tether libration. An 

adaptive controller with a nonzero constant plant parameter in the matrix form (Bp  ≠ 0) has been designed for a 

target plant (Polycarpou, 1996; Slotine & Li, 1991; Wang and Huang, 2005); it utilizes Lyapunov method-based 

control schemes. Furthermore, a series of remarkable studies on the design of dynamic regressor extension and 

mixing (DREM)-based adaptive controllers, including the model reference adaptive control (MRAC) scheme 

(Gerasimov et al., 2018a; Gerasimov et al., 2018b; Ortega et al., 2019), have largely reduced the prior knowledge 

required for Bp . That is, in these proposed control schemes, only a full-rank condition is imposed on Bp . The 

Lyapunov method-based multi-input and multi-output (MIMO) MRAC (Hashemi et al., 2015; Pankaj et al., 2011; 

Rao & Hassan, 2004) has attracted considerable research attention because of its intuitive mathematical concept and 

simple algorithm compared to proportional−integral−derivative (PID) controllers. Pankaj et al. (2011) compared the 

MIT and Lyapunov rules to develop an adaptation mechanism for a nonlinear single-input single-output (SISO) 

MRAC. Their analysis revealed that the Lyapunov rule reduced the MRAC configuration complexity, with physical 

realization of the applied system being more feasible than in the case of the MIT rule; this was despite the fact that 

the mathematical modeling of the system was simpler for the latter. Rao and Hassan (2004) developed new MRAC 

adaptive laws using non-quadratic Lyapunov candidate functions, which could improve the system output error 

converging to zero. Additionally, Hashemi et al. (2015) presented a tracking error convergence proof for a proposed 

MIMO MRAC design for potentially nonminimum phase square systems. Finally, El-samahy and Shamseldin (2018) 
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showed the effectiveness of an MRAC scheme with a PID compensator in the context of reference model tracking for 

brushless DC motor tracking control, regardless of the load disturbance and parameter variations.  

This study presents the Lyapunov method-based classical MIMO MRAC scheme, which enables both linear 

and nonlinear control to suppress TSS orbit deviation with the desired tether libration. A piecewise shape function is 

proposed, which can support the actual mechanical properties of an elastic tether only while withstanding its axial 

stretching and being free from flexural and shear rigidities. The proposed mathematical model incorporating the 

shape function can consider the tether pendular motion and the actual tether oscillation both together or separately. 

Thus, the interaction between the axial stretching and tether vibration, the tether libration, and the disturbance 

accelerations acting on the primary body can be considered. However, the restriction of the tether vibration does not 

allow a change in the magnitude of the tether tension force, as the coupling effect is not derived from all types of 

tether motions.  

To successfully realize the TSS controller design, the feasibility of the GVEs and the proposed control scheme 

for the TSS orbit maneuvering is tested under the influence of the 𝐽2 perturbation. The fourteenth-order explicit 

Runge-Kutta method (RK14) is applied to those simulations. Good qualitative tracking performance is observed for 

microsatellite orbital maneuvering. Thus, it is expected that the application of the numerical method (including 

Jacobian linearization) combined with the proposed control scheme to TSS orbital maneuvers will yield high 

accuracy. The proposed adaptive controller is designed to suppress the TSS orbit deviation and 3D pendular motion 

of a single tether with length and diameter of 1.0 km and 2.0 mm, respectively, immediately after deployment. Here, 

the tether experiences no electrodynamic force based on the assumption that it can be perturbed by the deployment 

that results in tether swing. To realize the physical configuration, the mathematical model is established using the 

simple but innovative idea that the non-conservative tether tension force has a direct influence on the TSS orbital 

deviation as the tether swings. This model transforms the tether force to be equivalent to the disturbance 

accelerations in the GVEs. As a specific case of the adaptive controller with Bp ≠ 0 that was previously designed for a 

target plant (Polycarpou, 1996; Slotine & Li, 1991; Wang and Huang, 2005), in this study, k1 · Bp  is tuned by 

multiplying an identity matrix Bp by k1 = 0.01. 

METHODOLOGY 

 TSS Mathematical Model 

The TSS consists of two end bodies, a primary body A and a secondary body B, which are connected by an 

elastic tether at 𝑃𝐴  and 𝑃B, respectively (see Fig. 1). The mass centers of A and B are 𝐺A and 𝐺B, respectively. The 

following assumptions are made for the mathematical modeling: (1) The central body is spherical in shape and its 

mass is distributed uniformly; (2) A and B have cubic shapes with homogeneous mass distributions as point masses, 

so that the influence of the gravitational forces of A and B on the Earth as well as on each other is nullified; (3) The 

Earth's magnetic dipole is oriented 11.5° from the Earth’s rotational axis; (4) A and B are treated as rigid bodies; 

hence, their elastic vibration is negligible; (5) Rotational motions of A and B are neglected; (6) The tether is modeled 

as an elastic cable that can resist axial stretching only, with oscillation and twisting being ignored; (7) Only the tether 

elongation causes the tether tension force in the Earth’s gravitational field; the direction of this force changes over 

time at 𝑃𝐴 through the tether libration and perturbs the TSS’s orbit.  

The TSS mathematical model is developed based on the above assumptions. The position of A is given by the 

state variables of the CKOEs, as 

𝑂℮ =  {𝑎(𝑇), 𝑒(𝑇), 𝑛(𝑇), Ω(𝑇), 𝜔(𝑇), 𝜈(𝑇)}T    (1) 

where 𝑂℮  defines the CKOE in a Keplerian orbit, 𝑎(𝑇) is the semi-major axis, 𝑒(𝑇) is the eccentricity, 𝑛(𝑇) is the 

inclination, Ω(𝑇) is the right ascension of the ascending node, and 𝜔(𝑇) and 𝜈(𝑇) are the arguments of periapsis and 

true anomaly, respectively. Note that T indicates time. Three coordinate frames are used to handle the total TSS 

dynamics. The inertial frame 𝐹𝑁 is the Earth frame, which is represented using the axes 𝒏̂𝒊 with 𝑂 as its center. The 

connection of the magnetic North Pole to the South Pole of the Earth gives 𝒏̂𝟑, and 𝒏̂𝟏 − 𝒏̂𝟐 represents the equatorial 

plane. The orbit frame 𝐹𝑂 is also established, in which A can be identified with the axes 𝒐𝒊 and 𝐺A as its center. Here, 
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𝒐𝟑 is the extension of 𝒓⃗ 𝑨(𝑻) from O to 𝐺𝐀, while 𝒐𝟐 is given by the spin axis of A and 𝒐𝟏 is normal to the 𝒐𝟐 − 𝒐𝟑 plane. 

Note that 𝒓⃗ 𝑨(𝑻) denotes the position of 𝐺A relative to O in 𝐹N. 𝒓⃗ 𝑩(𝑻) denotes the position of 𝐺𝐵 relative to O in 𝐹𝑁. The 

tether system frame 𝐹𝐸  is expressed by the 𝒆̂𝒊  axes. Here, 𝒆̂𝟑  directs from 𝑃A  to 𝑃B . Further, 𝒆̂𝟏  is aligned 

perpendicularly to 𝒆̂𝟑 and 𝒆̂𝟐 is normal to the 𝒆̂𝟏 − 𝒆̂𝟑 plane. 𝑷⃗⃗ 𝑨(𝑻) denotes the tether position 𝑃𝐴 on A relative to 𝐺𝐴 

in 𝐹𝑂 . 𝑷⃗⃗ 𝑩(𝑻)  denotes the tether position 𝑃𝐵  on B relative to 𝐺𝐵  in 𝐹𝑂 . 𝒓⃗ (𝑻)  denotes the position of the tether’s 

differential element dS relative to 𝑃𝐴  in 𝐹𝐸 . 𝒓⃗ 𝑻(𝑻) denotes the position vector of dS relative to 𝑂 in 𝐹𝑁 . 𝑷⃗⃗ (𝑻) is the 

position vector of any arbitarary point in Earth’s magnetic field relative to 𝑂 in 𝐹𝑁. In the mathematical derivation of 

the TSS model, all the position vectors identified in 𝐹𝐸  or 𝐹𝑂  must be converted for redefinition in 𝐹𝑁  using the 

direction cosine matrices (see Eqs. 2a−2d).   

 

 

Figure 1. Diagram of TSS mathematical model for CKOE. 

All the frames mentioned above can be related to each other using the direction cosine matrices shown in 

Eqs. 2a−2d. It is worth noting that the TSS dynamic analysis must be conducted in 𝐹𝑁 through multiplication of the 

direction cosine matrices DCMN←E or DCMN←O, which map 𝐹𝐸 and 𝐹𝑂, respectively, to 𝐹𝑁.  

                   DCMN←E = DCMN←O ∙ DCMO←E                (2a) 

here, DCMO←E is the direction cosine matrix that maps 𝐹𝐸 to 𝐹𝑂. A general rotation of a frame with axes “1”, “2” and 

“3” can be characterized by Euler’s angle rotation. Thus, DCMO←N and DCME←O are defined, respectively, by 3-1-1 and 

2-1 Euler’s angle rotations. DCMN←O and DCMO←E are the inverse matrices, respectively, of DCMO←N and DCME←O.  

 DCMO←N = 

(

   cos(𝜃(𝑇)) cos(𝛺(𝑇)) − cos(𝑛(𝑇)) sin(𝜃(𝑇)) sin(𝛺(𝑇)) cos(𝑛(𝑇)) cos(𝛺(𝑇)) sin(𝜃(𝑇)) + cos(𝜃(𝑇)) sin(𝛺(𝑇)) sin(𝑛(𝑇)) sin(𝜃(𝑇))

−cos(𝛺(𝑇)) sin(𝜃(𝑇)) − cos(𝑛(𝑇)) cos(𝜃(𝑇)) sin(𝛺(𝑇)) cos(𝑛(𝑇)) cos(𝜃(𝑇)) cos(𝛺(𝑇)) − sin(𝜃(𝑇)) sin(𝛺(𝑇)) cos(𝜃(𝑇)) cos(𝑛(𝑇))

sin(𝑛(𝑇)) sin(𝛺(𝑇)) −cos(𝛺(𝑇)) sin(𝑛(𝑇)) cos(𝑛(𝑇))
) 

                                   (2b) 

DCME←O = (

cos (𝛼(𝑇)) 0.0 −sin (𝛼(𝑇))

− sin(𝛼(𝑇)) sin (𝛽(𝑇)) cos (𝛽(𝑇)) − cos(𝛼(𝑇)) sin (𝛽(𝑇))

   cos(𝛽(𝑇)) sin (𝛼(𝑇)) sin (𝛽(𝑇))      cos(𝛼(𝑇)) cos (𝛽(𝑇))

)       (2c) 



Journal of Information Systems Engineering and Management 
2025,10(55s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

935 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

here, 𝛼 and 𝛽 are the out-of-plane and in-plane pendular angles of the tether in 𝐹𝑂, respectively. Further, 𝑛(𝑇), 𝛺(𝑇), 

𝜔(𝑇), and 𝜈(𝑇) are the CKOEs constituting 𝑂𝑒 (see section II.A.1). 𝜃(𝑇)= 𝜔(𝑇) + 𝜈(T) (2d).  

Equations of Motion of A 

This section presents the derivations of the six CKOEs (see Fig. 1 and Eqs. (3a)−(3i)). A complete set of 

equations of motion of A consists of the nonlinear differential equations governing the trajectory generation of 𝐺𝐴 

relative to 𝐹𝑁 . The evolutions of the six CKOEs defined by the GVEs (Ellis, 2010; Jo et al., 2011) under the action of 

disturbance accelerations on A are given in the time domain as follows: 

 𝑎̇(𝑇) =
2𝑎2(𝑇)

ℎ(𝑇)
{

𝑝(𝑇)

𝑟𝐴(𝑇)
𝑎𝐷𝐴1(𝑇) + 𝑒(𝑇) sin(𝜈(𝑇)) 𝑎𝐷𝐴3(𝑇)}                     (3a) 

 𝑒̇(𝑇) =
𝑎𝐷𝐴1(𝑇){(𝑝(𝑇)+𝑟𝐴(𝑇)) cos(𝜈(𝑇))+𝑒(𝑇) 𝑟𝐴(𝑇)}+𝑎𝐷𝐴3(𝑇) 𝑝(𝑇) sin(𝜈(𝑇))

ℎ(𝑇)
     (3b) 

 𝑛̇(𝑇) =
𝑎𝐷𝐴2(𝑇){𝑟𝐴 (𝑇) cos(𝜃(𝑇))}

ℎ(𝑇)
                         (3c) 

 Ω̇(𝑇) =
𝑎𝐷𝐴2(𝑇){𝑟𝐴(𝑇) sin(𝜃(𝑇))}

sin(𝑛(𝑇))ℎ(𝑇)
                    (3d) 

 𝜔̇(𝑇) =
𝑎𝐷𝐴2(𝑇) {𝑟𝐴(𝑇) sin(𝜃(𝑇)) cos(𝑛(𝑇))}

ℎ(𝑇) sin(𝑛(𝑇))
−

𝑎𝐷𝐴3(𝑇) 𝑝(𝑇) cos(𝜈(𝑇))−𝑎𝐷𝐴1(𝑇){(𝑝(𝑇)+𝑟𝐴(𝑇)) sin(𝜈(𝑇))}

ℎ(𝑇) 𝑒(𝑇)
    (3e) 

 𝜈̇(𝑇) =
𝑎𝐷𝐴3(𝑇) 𝑝(𝑇) cos(𝜈(𝑇))−𝑎𝐷𝐴1(𝑇){sin(𝜈(𝑇))(𝑝(𝑇)+𝑟𝐴(𝑇))}

 ℎ(𝑇) 𝑒(𝑇)
+

ℎ(𝑇)

𝑟𝐴
2(𝑇)

     (3f) 

 

where the orbital parameter of the osculating orbit is  𝑝(𝑇) = 𝑎(𝑇)(1 − 𝑒2(𝑇)) (3g). The instantaneous orbit 

radius of a satellite is denoted by  𝑟𝐴(𝑇) =  
𝑝(𝑇)

1+𝑒(𝑇) 𝑐𝑜𝑠 (𝜈(𝑇))
  (3h) and the specific angular momentum is ℎ(𝑇) = √𝜇 𝑝(𝑇) 

(3i). Further, 𝜇 is the gravitational parameter of the central body (the Earth) and 𝑎𝐷𝐴1(𝑇),  𝑎𝐷𝐴2(𝑇), and 𝑎𝐷𝐴3(𝑇) are 

the components of the disturbance acceleration 𝒂⃗⃗ 𝑫𝑨(𝑻) acting on A. (  )̇  represents 𝑑/𝑑𝑇.  

Note that 𝑎𝐷𝐴1
𝐽2 (𝑇), 𝑎𝐷𝐴2

𝐽2 (𝑇), and 𝑎𝐷𝐴3
𝐽2 (𝑇) are the disturbance accelerations for the microsatellite due to the 𝐽2 

perturbation. Thus, 𝑎𝐷𝐴1(𝑇), 𝑎𝐷𝐴2(𝑇), and 𝑎𝐷𝐴3(𝑇) in Eqs. (3a)−(3f) should be replaced by  

  𝑎𝐷𝐴1
𝐽2 (𝑇) = −

3 𝜇 𝐽2 𝑟𝑒
2(𝑇)

2𝑟𝐴
4(𝑇)

{ sin(𝑛2(𝑇)) sin(2 𝜃(𝑇))}        (4a) 

 𝑎𝐷𝐴2
𝐽2 (𝑇) = −

3 𝜇 𝐽2 𝑟𝑒
2(𝑇)

2 𝑟𝐴
4(𝑇)

{sin(2𝑛 (𝑇)) sin(𝜃(𝑇))}        (4b) 

 𝑎𝐷𝐴3
𝐽2 (𝑇) = −

3 𝜇 𝐽2 𝑟𝑒
2(𝑇)

2 𝑟𝐴
4(𝑇)

{1 − sin(𝑛2(𝑇)) sin(𝜃(𝑇)2)}      (4c) 

 where 𝑟𝑒(T) is the radius of the Earth. Substituting Eqs. (4a)−(4c) into Eqs. (3a)−(3f) allows solution 

of the CKOEs.  

Tether Tension 

In this study, the non-conservative tether tension force at 𝑃𝐴 is considered, the direction of which can be 

changed over time via the tether libration. Finally, the TSS orbital deviation can be observed. Using the linear Kelvin-

Voigt law of viscoelasticity, the total tension vector of the tether defined along its unit tangent direction in 𝐹𝑁 through 

application of DCMN←E is  

 𝑻⃗⃗ (𝑺, 𝑻) = 𝐸 · 𝐴𝑂 (𝜀𝑠 + 𝑐 · 𝜀𝐷(𝑆, 𝑇)) 𝝉⃗ (𝑺, 𝑻)        (5) 

where 𝑐  is the structural damping constant, S is the arc length parameter along the unstretched tether,  𝐸  is the 

Young’s modulus of the tether, 𝐴𝑂 is the cross-sectional area of the tether, and 𝝉⃗  (𝑺, 𝑻) is the unit tangent vector at a 

certain point on the tether. The dynamic strain of the tether is given by the Lagrange strain:  
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 𝜀𝐷(𝑆, 𝑇) =
𝜕𝑊(𝑆,𝑇)

𝜕𝑆
+

1

2
{(

𝜕𝑈(𝑆,𝑇)

𝜕𝑆
)

2

+ (
𝜕𝑉(𝑆,𝑇)

𝜕𝑆
)

2

+ (
𝜕𝑊(𝑆,𝑇)

𝜕𝑆
)

2

 }               (6) 

here, 𝑈(𝑆, 𝑇), 𝑉(𝑆, 𝑇), and 𝑊(𝑆, 𝑇)  represent the normal, bi-normal, and longitudinal tether displacements, 

respectively, in 𝐹𝑁. In this study, the static strain of the tether 𝜀𝑠 can be considered zero when the following term (see 

Eq. (22c)) is constant over time: 

 𝑐3,𝑗(𝑇) = 
‖𝑻⃗⃗ (𝑺,𝑻)‖ 𝑙

 𝐸 𝐴𝑂
 .          (7)  

In that case, ‖𝑻⃗⃗ (𝑺, 𝑻)‖  is time-invariant in 𝐹𝐸  and 𝑻⃗⃗ (𝑺, 𝑻)  can be treated as the non-conservative tether 

tension force caused by the tether libration in 𝐹𝑁 . Here, 𝑙  is the total length of the tether in an unstretched 

configuration. The gravity acting on the tether, 𝑔 = 8.94841 (m s2⁄ ), and the mass of B, 𝑚𝐵 = 1.0 (Kg), are applied to 

compute Eq. (5).  

Disturbance Acceleration Acting on the TSS 

Rearrangement of the translational motion of 𝐺𝐴 , which is obtained by applying Newton's law to create 

𝒂⃗⃗ 𝑫𝑨(𝑻) in 𝐹𝑁, yields the following disturbance acceleration:  

 −
𝑭⃗⃗ 𝑮𝑨(𝑻)

𝑚𝐴
  + 𝒓⃗ 𝑨

̈ (𝑻) =
𝑻⃗⃗ (𝟎,𝑻)

𝑚𝐴
 = 𝒂⃗⃗ 𝑫𝑨(𝑻)               (8) 

where 𝑻⃗⃗ (𝟎, 𝑻)  is the tether tension force acting at 𝑃𝐴 ,  𝑚𝐴  is the mass of A, and ( )̈  represents 
𝑑2

𝑑𝑇2 . The Earth’s 

gravitational force acting on A is determined by the Newton universal gravitation law  

 𝑭⃗⃗ 𝑮𝑨(𝑻) = −
𝑚𝐴 𝜇

𝑟𝐴
3 𝒓⃗ 𝑨(𝑻)                      (9) 

where 𝒓⃗ 𝑨(𝑻) with magnitude 𝑟𝐴  relative to 𝐹𝑁 is defined by 

  𝒓⃗ 𝑨(𝑻) = 𝑟𝐴 cos(𝑛(𝑇)) cos(𝜔(𝑇) + 𝛺(𝑇) + 𝜈(𝑇)) 𝑛̂1 + 𝑟𝐴 cos(𝑛(𝑇)) sin(𝜔(𝑇) + 𝛺(𝑇) + 𝜈(𝑇)) 𝑛̂2 + 𝑟𝐴 sin(𝑛) 𝑛̂3   

             (10) 

Finally, 𝒂⃗⃗ 𝑫𝑨(T) in Eq. 10, which causes the TSS orbit perturbation, must be redefined as follows: 

 𝒂⃗⃗ 𝑫𝑨(𝑻) =  𝑎𝐷𝐴1(𝑇) 𝒏̂𝟏 + 𝑎𝐷𝐴2(𝑇)𝒏̂𝟐 + 𝑎𝐷𝐴3(𝑇) 𝒏̂𝟑                  (11) 

 

Equation of Motion of Tether Pendular Angles 

Similar to the above, the translational motion of 𝐺𝐵 is defined in 𝐹𝑁 by 

 

 
𝑭⃗⃗ 𝑮𝑩(𝑻)

𝑚𝐵
−

𝑻⃗⃗ (𝒍,𝑻)

𝑚𝐵
= 𝒓⃗ 𝑩

̈ (𝑻)                 (12) 

 

here, 𝑻⃗⃗ (𝒍, 𝑻) is the tether tension force acting at 𝑃𝐵. The Earth’s gravitational force acting on B is  

 𝑭⃗⃗ 𝑮𝑩(𝑻) =
𝑚𝐵 

𝑟𝐵
3 𝒓⃗ 𝑩(𝑻)                                                                      (13) 

 

where 𝒓⃗ 𝑩(𝑻) with magnitude 𝑟𝐵  relative to 𝐹𝑁 is defined using the position vectors as 

𝒓⃗ 𝑨(𝑻) + 𝒑⃗⃗ 𝑨(𝑻) + 𝒓⃗ (𝒍, 𝑻) − 𝒑⃗⃗ 𝑩(𝑻) = 𝒓⃗ 𝑩(𝑻)                  (14) 
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here, 𝒓⃗ (𝒍, 𝑻) relative to 𝐹𝑁 is given at S = 𝑙 as the multiplication of 𝒓⃗ (𝑺, 𝑻) by DCMN←E, and the reidentification of 𝒑⃗⃗ 𝑨(𝑻) 

and 𝒑⃗⃗ 𝑩(𝑻) relative to 𝐹𝑁 requires their multiplication by DCMN←O. The second derivative of 𝒓⃗ (𝒍, 𝑻) with respect to T 

yields 

 𝒓⃗ ̈(𝒍, 𝑻) = 𝒓̈𝒍𝟏(𝒍, 𝑻) 𝒏̂𝟏 + 𝒓̈𝒍𝟐(𝒍, 𝑻) 𝒏̂𝟐 + 𝒓̈𝒍𝟑(𝒍, 𝑻) 𝒏̂𝟑               (15) 

where 𝑟𝑙1(𝑙, 𝑇), 𝑟𝑙2(𝑙, 𝑇), and  𝑟𝑙3(𝑙, 𝑇) are the components of 𝒓⃗ (𝒍, 𝑻). The second derivative of Eq. (14) with respect to T 

and its rearrangement about 𝒓⃗ ̈(𝒍, 𝑻) considering 𝒓⃗ 𝑨
̈ (𝑻) in Eq. 10 and 𝒓⃗ 𝑩

̈ (𝑻) in Eq. (12) gives 

 

  𝒂⃗⃗ 𝒍(𝑻) = 𝑎𝑙1(𝑇) 𝒏̂𝟏 + 𝑎𝑙2(𝑇) 𝒏̂𝟐 + 𝑎𝑙3(𝑇) 𝒏̂𝟑        (16a)                                     

here, 𝑎𝑙1(𝑇) ,  𝑎𝑙2(𝑇), and  𝑎𝑙3(𝑇) are the components of 𝒂⃗⃗ 𝒍(𝑻)  acting at 𝑷𝑩.  The equations of motion of the tether 

pendular angles, 𝛼 and 𝛽, are expressed as 

 𝒓⃗ ̈(𝒍, 𝑻) = 𝒂⃗⃗ 𝒍(𝑻)                                                                 (16b)  

therefore, 𝒓̈𝒍𝟏(𝒍, 𝑻) = 𝑎𝑙1(𝑇) (16c) ,   𝒓̈𝒍𝟐(𝒍, 𝑻) = 𝑎𝑙2(𝑇) (16d) and 𝒓̈𝒍𝟑(𝒍, 𝑻) = 𝑎𝑙3(𝑇)  (16e). The motions of 𝛼 and 𝛽  are 

observed, respectively, along 𝒆̂𝟏 and in the 𝒆̂𝟐 − 𝒆̂𝟑 plane. 

Equations of Dynamic Motion of Tether 

The equations of dynamic motion of the tether can be defined by Newton’s second law, considering the 

gravitational force and the electrodynamic force acting at 𝑑𝑆  due to an interaction of the current, 𝑖  and Earth’s 

magnetic field:  

−
𝜇

𝑟𝑇
3 𝒓⃗ 𝑻(𝑺, 𝑻) +

1

𝜌(𝑇)

𝝏𝑻⃗⃗ (𝑺,𝑻)

𝜕𝑆
+

𝑖

𝜌(𝑇)

𝝏𝒓⃗ (𝑺,𝑻)

𝜕𝑆
×

𝜇𝑚

𝑃3 {𝑢̂ −
3(𝒖̂∙𝑷⃗⃗ (𝑻))𝑷⃗⃗ (𝑻)

𝑃2 } − 𝒓⃗ ̈𝑨(𝑻) − 𝒑⃗⃗ ̈𝑨(𝑻) = 𝒓⃗ ̈(𝑺, 𝑻)  (17) 

here, 𝜌(T) is the linear mass density for the unstretched tether, which is regarded as constant along the tether in this 

study. Further, 𝒓⃗ 𝑻(𝑺, 𝑻) with the magnitude  𝑟𝑇  is expressed as  

 𝒓⃗ 𝑻(𝑺, 𝑻) =  𝒓⃗ (𝑺, 𝑻) + 𝒑⃗⃗ 𝑨(𝑻) + 𝒓⃗ 𝑨(𝑻)        (18) 

The Earth’s magnetic field has a dipole centered at 𝑂 with dipole axis 𝒖̂ and strength 𝜇𝑚. 𝑷⃗⃗ (𝑻) is defined as 

 𝑷⃗⃗ (𝑻) = 𝑃 cos(𝜔(𝑇)) cos(Ω (𝑇))𝒏̂𝟏 + 𝑃 cos(𝜔(𝑇)) sin(Ω(𝑇)) 𝒏̂𝟐  + 𝑃 sin(𝜔(𝑇)) 𝒏̂𝟑    (19a) 

here, P denotes the magnitude of 𝑷⃗⃗ (𝑻). The Earth’s magnetic field with 𝒖̂ tilted at angle 𝛤 relative to 𝒏̂𝟑 is constant. 

𝛩 denotes the angle between the 𝒖̂− 𝒏̂𝟑 and 𝒏̂𝟏− 𝒏̂𝟑 planes, as shown in Fig. 2, and can be viewed as the local sidereal 

time of the unit dipole axis. Using the angles 𝛩 and 𝛤, 𝒖̂ must be defined as follows: 

  𝒖̂ = cos𝛩 sin 𝛾 𝒏̂𝟏 + sin 𝛩 sin 𝛾 𝒏̂𝟐 + cos 𝛤 𝒏̂𝟑       (19b) 

where 𝛩 = 𝛩0 + 𝜔𝑐  𝑇 (19c) with 𝜔𝑐 being the constant angular speed of the Earth and 𝛩0 is the value of 𝛩 at T = 0. 

Further,  

𝛾 = 90 −  𝛤           (19d). 

 

Figure 2. Unit dipole axis 



Journal of Information Systems Engineering and Management 
2025,10(55s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

938 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Finite Element Method (FEM) Formulation 

 Using the FEM, to achieve discretization of a strong form (see Eq. 19), conversion to a weak form should be 

performed by multiplying the former by ∅𝑗 (𝑆) followed by integration over 𝑙. The substitution of 𝒓⃗ ̈𝑨(𝑻) and 𝒓⃗ ̈𝑩(𝑻) of 

Eqs. (8) and (12), respectively, along with the second derivative of 𝒓⃗ (𝒍, 𝑻) of Eq. (14) into the weak form gives the 

following through integration by parts for a tension-related term:  

 ∫ 𝒓⃗ ̈(𝑺, 𝑻) ∅𝒋
𝑙

0
(𝑆) 𝑑𝑆 +

𝑚𝐵

𝜌(𝑇)
𝒓⃗ ̈(𝒍, 𝑻) ∅𝑗(𝑙) = 𝑞1,𝑗  𝒓⃗ 𝑨

̈ (𝑻) + 𝑞2,𝑗 𝒑⃗⃗ 𝑨
̈ (𝑻) + 𝑞3,𝑖  𝒑⃗⃗ 𝑩

̈ (𝑻) + 𝒉⃗⃗ 𝒋 (𝑻) + 𝒌⃗⃗ 𝒋 (𝑻)  (20a)                                    

    

where,  

 𝑞1,𝑗 = − ∫ ∅𝑗(𝑆)
𝑙

0
𝑑𝑆 −

𝑚𝐵

𝜌(𝑇)
∅𝑗(𝑙) −

𝑚𝐴

𝜌(𝑇)
∅𝑗(0)        (20b) 

 𝑞2,𝑗 = −∫ ∅𝑗(𝑆)
𝑙

0
𝑑𝑆 −

𝑚𝐵

𝜌(𝑇)
∅𝑗(𝑙)             (20c) 

 𝑞3,𝑗 =
𝑚𝐵

𝜌(𝑇)
∅𝑗(𝑙)                (20d) 

 𝒉⃗⃗ 𝒋(𝑻) = −𝜇 {∫
𝒓⃗ 𝑻(𝑺,𝑻)

𝑟𝑇
3 ∅𝑗(𝑆)

𝑙

0
𝑑𝑆 +

𝑚𝐵

𝜌(𝑇)

𝒓⃗ 𝑩(𝑻)

𝑟𝐵
3 ∅𝑗(𝑙) +

𝑚𝐴

𝜌(𝑇)

𝒓⃗ 𝑨(𝑻)

𝑟𝐴
3 ∅𝑗(0)}     (20e) 

 𝒌⃗⃗ 𝒋(𝑻) = −
1

𝜌(𝑇)
∫ 𝑻⃗⃗ (𝑺, 𝑻)

𝑑∅𝑗(𝑆)

𝑑𝑆

𝑙

0
𝑑𝑆 +

𝑖

𝜌(𝑇)
∫

𝝏𝒓⃗ (𝑺,𝑻)

𝜕𝑆
× 𝑩⃗⃗ (𝑻) ∅𝑗(𝑆)

𝑙

0
𝑑𝑆      (20f) 

Weddle’s integration is applied for the discretization. Interpolation within the finite elements is achieved through a 

shape function for a single tether:  

  ∅𝑗 (𝑆) = {

𝑆−(𝑗−2)·𝑙𝑒𝑚

𝑙𝑒𝑚
, for (𝑗 − 2) · 𝑙𝑒𝑚 ≤ 𝑆 ≤ (𝑗 − 1) 𝑙𝑒𝑚

𝑗· 𝑙𝑒𝑚−𝑆

𝑙𝑒𝑚
, for (𝑗 − 1) · 𝑙𝑒𝑚 < 𝑆 ≤ 𝑗 ·  𝑙𝑒𝑚                   

        (21) 

where ∅𝑗 (𝑆) is a piecewise shape function, 𝑗 represents the node number, 𝑙𝑒𝑚 =
𝑙

𝑛𝑒
 (m) is the length of each finite 

element, and 𝑛𝑒 is the total number of elements. The tether trail functions are given as 

 𝑈(𝑆, 𝑇) = ∑ 𝒄𝟏,𝒋(𝑻) · 𝜙𝑗(𝑆)𝑛𝑗
𝑗=1           (22a) 

 𝑉(𝑆, 𝑇) = ∑ 𝒄𝟐,𝒋(𝑻) · 𝜙𝑗(𝑆)𝑛𝑗
𝑗=1          (22b) 

 𝑊(𝑆, 𝑇) = ∑ 𝒄𝟑,𝒋(𝑻) · 𝜙𝑗(𝑆)𝑛𝑗
𝑗=1          (22c) 

here, 𝒄𝟏,𝒋(𝑻), 𝒄𝟐,𝒋(𝑻), and 𝒄𝟑,𝒋(𝑻) are time-dependent vectors and 𝑛𝑗 is the total number of nodes. Boundary conditions 

are imposed on the discretized system by fixing 𝑃𝐴 and letting 𝑃𝐵 be free. In this study, application of three finite 

elements to the tether during discretization creates a set of nine second-order nonlinear ordinary differential 

equations (ODEs).  

Jacobian Linearization 

 After discretization, the total system of nonlinear first-order ODEs is expressed as  

        𝑋̇𝑝(𝑇) = 𝑓𝑛𝑠
𝑁 (𝑋𝑝(𝑇))           (23a) 

where 𝑋𝑝(𝑇) = {𝑥𝑝1
(𝑇), 𝑥𝑝2

(𝑇), 𝑥𝑝3
(𝑇), … , 𝑥𝑝𝑛𝑠

(𝑇)}𝑇 (23b) denotes a set of state variables in the total set of nonlinear 

ODEs describing an unstable plant. 𝑓𝑛𝑠
𝑁 represents a system of nonlinear ODEs, where 𝑛𝑠 is the number of system 

variables. The Jacobian linearization of Eq. (23a), through Taylor series expansion with elimination of the negligible 

higher-order derivatives, is performed using the following equation 
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 𝑓𝑛𝑠
𝐿 (𝑋𝑝(𝑇)) = 𝑓𝑛𝑠

𝑁 (𝑋𝑝
𝑒(𝑇0)) + 𝐽 ∙ (𝑋𝑝(𝑇) − 𝑋𝑝

𝑒(𝑇0))       (24a) 

here, the Jacobian matrix is given as  

               𝐽 =

[
 
 
 
 

𝜕𝑓1
𝑁

𝜕𝑥𝑝1
(𝑇)

⋯
𝜕𝑓1

𝑁

𝜕𝑥𝑝𝑛𝑠(𝑇)

⋮ ⋱ ⋮
𝜕𝑓𝑛𝑠

𝑁

𝜕𝑥𝑝1
(𝑇)

⋯
𝜕𝑓𝑛𝑠

𝑁

𝜕𝑥𝑝𝑛𝑠(𝑇)]
 
 
 
 

𝑿𝒑(𝑇)=𝑿𝒑
𝒆(𝑇𝟎)

         (24b) 

and 𝑋𝑝
𝑒(𝑇0) = {𝑥𝑝1

𝑒 (𝑇0), 𝑥𝑝2
𝑒 (𝑇0), 𝑥𝑝3

𝑒 (𝑇0), … , 𝑥𝑝𝑛𝑠
𝑒 (𝑇0)}

𝑻
(24c) is an equilibrium point where a set of initial conditions is 

applied at T = 0. Order reduction to construct Eq. (23a) is achieved for Eqs. (16c) and (16d) and discrete Eq. (20a), 

and the final number of equations is doubled.  

Lyapunov-Method-Based MIMO MRAC Algorithm 

 In this study, the set of nonlinear differential equations defined by Eqs. 25a, b is used for both microsatellite 

dynamics and microsatellite orbital maneuvering. However, linearization is applied to the TSS dynamics and TSS 

orbital maneuvering (see Eqs. 26a−c). The proposed TSS control scheme should have the ability to suppress the 

tether’s pendular motion and the TSS orbital deviation. This section discusses the design of the Lyapunov-method-

based MIMO MRAC, which enables control of both unstable linear and nonlinear plants. Let us consider a continuous 

time-variant unstable system expressed by 

 𝑋̇𝑝(𝑇) = −Ap ∙ 𝑋𝑝(𝑇) − Cp ∙ 𝑓𝑝(𝑇) + Bp ∙ 𝑢(𝑇)        (25a) 

where Ap, Bp, and Cp are constant plant parameters in matrix form. 

  Ap = −Ins×ns            (25b),  

 Bp = 𝑘1 ∙ Ins×ns            (25c)  

and 

  Cp = Ins×ns            (25d).  

here Ins×ns denotes an identity matrix, 𝑢(𝑇) is the control input, and 𝑓𝑝(𝑇) can be defined as 

 𝑓𝑝(𝑇) =  − [Ap ∙ 𝑋𝑝(𝑇) + 𝑓𝑛𝑠
𝑄 (𝑋𝑝(𝑇))]        (25e) 

The superscript Q is set to N or L for a nonlinear or a linearized plant, respectively. A reference model is chosen to 

characterize the desired closed-loop system as 

 𝑋̇𝑚(𝑇) = −Am ∙ 𝑋𝑚(𝑇) − Cm ∙ 𝑓𝑚(𝑇) + Bm ∙ 𝑟(𝑇)        (26a) 

where, 

  𝑋𝑚(𝑇) = {𝑥𝑚1
(𝑇), 𝑥𝑚2

(𝑇), 𝑥𝑚3
(𝑇), … , 𝑥𝑚𝑛𝑠

(𝑇)}
𝑇

       (26b)  

 

is the set of state variables for the reference model. 

 𝑟(𝑇) = Ons×1            (26c)  

denotes a reference signal and Ons×1  is the zero matrix. Further, Am, Bm, and Cm  are constant parameters of the 

reference model in matrix form. A solution of the reference model is assumed to be a vector with the desired initial 

conditions such that 

  Am = −Cm = − 𝑘2 ∙ Ins×ns          (26d)  
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and  Bm can be a random matrix. 

  𝑓𝑚(𝑇) = Ins×ns ∙  𝑋𝑚(𝑇)           (26e)  

can be a linear or nonlinear term in the reference model. Further, 𝑘2 is required to determine the PL matrix for the 

adaptation laws (see Eqs. (29a)−(29d)) using the Lyapunov equation (see Eq. (29d)). Substituting Eqs. (26d) and 

(26e) into Eq. (26a) gives  

 𝑋̇𝑚(𝑇) = 0              (26f) 

The change between the outputs of the unstable plant and reference model at every iteration is calculated as the 

tracking error ∆(𝑇), given by 

 ∆(𝑇) = 𝑋𝑝(𝑇) − 𝑋𝑚(𝑇)            (27)                                             

The control law is  

 𝑢(𝑇) = 𝒂̂𝑿(𝑻) ∙ 𝑋𝑝(𝑇) + 𝒂̂𝒓(𝑻) ∙ 𝑟(𝑇) + 𝒂̂𝒇(𝑻) ∙ 𝑓𝑝(𝑇)       (28) 

where 𝒂̂𝒙(𝑻), 𝒂̂𝒓(𝑻), and 𝒂̂𝒇(𝑻) are the variable feedback gains. These can be identified using the following 

adaptation laws:  

 𝒂̇̂𝑿(𝑻) = −Bp
T ∙ PL ∙ ∆(T) ∙ Xp(T)T        (29a) 

 𝒂̇̂𝒓(𝑻) = −Bp
T ∙ PL ∙ ∆(T) ∙ r(T)T           (29b) 

 𝒂̇̂𝒇(𝑻) = −Bp
T ∙ PL ∙ ∆(T) ∙ fp(T)T         (29c) 

The adaptation laws necessary to enforce the closed loop stability of the control scheme are defined based on a 

quadratic Lyapunov function candidate. Here, PL is obtained from the Lyapunov equation: 

  Am
T ∙ PL + PL ∙  Am = −Ins×ns          (29d) 

To track the reference model, the iterative process should continue until the closed-loop dynamics yield zero ∆(𝑇). 

The tracking error performance of the control scheme depends on fine tuning of 𝑘1 and 𝑘2 (see Eqs. 25c and 26d, 

respectively.)  

RESULTS 

Validation of Lyapunov-method-based MIMO MRAC Scheme 

A simulation on microsatellite orbital maneuvering as the feasibility study is reported to examine the 

potential of the TSS control in this section. It can be argued that the good qualitative result for the microsatellite orbit 

control indicates considerable promise for application of the proposed control scheme to the TSS orbital 

maneuvering. The microsatellite subjected to the 𝐽2 pertubation was considered based on the following initial values: 

𝑎0 = 𝑟𝑒 + 300,000 (m) , 𝑒0  = 0.07, 𝑛0 = 50.0°, Ω0  = 300.0°, 𝜔0 = 45.0°, and ν0 = 0.0°. As input values for the 

simulation, 𝑟𝑒= 6,378,137 (m), 𝜇 = 3.986 × 1014 (m3 s2⁄ ), and  𝐽2  = 1082.6267 × 10−6  were considered. The control 

scheme included RK14 to trace solutions on not only microsatellite orbital maneuvering but the TSS position control.  

 Both the nonlinear and linearized models described by the GVEs were considered for the unstable plant. To 

achieve the orbital maneuver of the microsatellite, deorbit due to the 𝐽2 perturbation, the proposed control algorithm 

was applied. Note that, for the reference model, Eq. 28b must be exchanged with  

                 𝑋𝑚(𝑇) = {𝑎𝑚(𝑇), 𝑒𝑚(𝑇), 𝑛𝑚(𝑇), Ω𝑚(𝑇), 𝜔𝑚(𝑇), 𝜈𝑚(𝑇)}T                                                                               (30)  

and to identify the unstable plant, Eq. 25a should become the following, with ns = 6: 

 { 𝑎̇(𝑇), 𝑒̇(𝑇), 𝑛̇(𝑇), Ω̇(𝑇), 𝜔̇(𝑇), 𝜈̇(𝑇)}𝑇 = 𝑓𝑛𝑠
𝑄 (Xp(T))      (31a) 
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here 𝑋𝑝(𝑇) = {𝑎(𝑇), 𝑒(𝑇), 𝑛(𝑇), Ω(𝑇), 𝜔(𝑇), 𝜈(𝑇)}𝑇        (31b)  

and Q can be set to L or N. Eq. 26c should be replaced by the following expression for the linearized unstable plant: 

 𝑋𝑝
𝑒(𝑇0) = {𝑎0(𝑇0), 𝑒0(𝑇0), 𝑛0(𝑇0), Ω0(𝑇0), 𝜔0(𝑇0), 𝜈0(𝑇0)}

𝑇      (31c) 

 

 

a) b) 

 

c) 
d) 

e) 
 

f) 

Figure 3. Tracking error convergence for linearized GVEs, for a)−f) a, e, n, Ω, 𝜔, and ν, respectively 
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a) b) 

 

c) 

 

d) 

 

e) 

 

f) 

Figure 4. Tracking error convergence for nonlinear GVEs, for a)−f) a, e, n, Ω, 𝜔, and ν, respectively 

  The tracking convergence performance of the proposed controller for the unstable model is shown in Figs. 3 

and 4. These simulations were performed for 2,000 s using the step size of 0.0001 (s). Regarding the unstable plant, 

the initial and input values used for the microsatellite orbit dynamic analysis in section V were also applied to this 

analysis. For the reference orbit, the following values were used: 𝑎𝑚 =  𝑎0 − 0.0001𝑎0  (m), 𝑒𝑚  = 𝑒0 − 0.0001 𝑒0 , 

𝑛𝑚  = 𝑛0 − 0.0001 𝑛0 (deg),  Ω𝑚  = Ω0 + 0.0001 Ω0 (deg) , 𝜔𝑚  = 𝜔0 + 0.0001 𝜔0 (deg) , and 𝜈𝑚 = 
7

60000
𝑇 (deg).  In 

addition, 𝑘1 = 0.01, 𝑘2 = 0.0001, and 𝑛𝑠 = 6 were used. Each response time was 250–260 (s), except for the ν case, 

which appeared to converge in less than 1.0 (s). All the steady-state errors remained within the tolerance range of 

10−8–10−4. The identical tracking error performances of the linearized and nonlinear (see Figs. 3 and 4, respectively) 

plants for each CKOE clearly indicate the strong potential application of the linearized GVEs to TSS orbital maneuvers 



Journal of Information Systems Engineering and Management 
2025,10(55s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

943 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

using the proposed control scheme. The results also validate the good tracking error performance of the proposed 

control scheme. 

 TSS ORBITAL MANEUVERS 

 This section reports on the TSS maneuvers using the linearized model. The influence of tether libration on 

the TSS orbital deviation is analyzed, and the tracking error performance of the control scheme for the TSS maneuvers 

is discussed. The TSS subjected to a non-conservative tether tension force of 8.94841 (N) was used. The mathematical 

model enabled the TSS to separately go through the in-plane and out-of-plane pendular motions of the tether or its 

libration in a 3D configuration. For the CKOEs, the initial values used for the microsatellite orbit control dynamic 

analysis were employed. The additional initial and input values were as follows: 𝛩0 = 0.0°,  𝛤 = 11.5°,  

𝑃 =  𝑟𝑒 + 1,000,000 (m), 𝜇𝑚 = 12.566 × 10−7 (
H

m
), 𝑐 = 0.5 (s), 𝑙 = 1,000 (m), 𝜌 = 2.5 × 10−3  (

Kg

m
) , 𝐸 · 𝐴 =  55,000 (N),

𝑐1,𝑗(𝑇) = 𝑐2,𝑗(𝑇) = 0.0 (m), 𝑐3,𝑗(𝑇) = 0.162698 (m), 𝑐̇1,𝑗(0) =  𝑐̇2,𝑗(0) =  𝑐̇3,𝑗(0) =  0.0 (𝑚/𝑠)  , 𝜔𝑐 = 460.0 (m/s),𝑚𝐴 =

12.5 (Kg),  𝑚𝐵 = 1.0 (Kg).  𝒑⃗⃗ 𝑨 = (0.0, −2.5 × 10−1, 0.0)  (m,m,m), and 𝒑⃗⃗ 𝑩 = (0.0, 5.0 × 10−2, 0.0) (m,m,m), defined in 

𝐹𝑂. In addition, 𝑛𝑒 = 3 and  𝑛𝑠 = 8 were used for consideration of α or 𝛽, while 𝑛𝑠 = 10 was used to investigate the 

effects of the combined angle of α and 𝛽. The initial values used to investigate the effects of 𝛼 were the following: 

𝛼0 = 0.1° , 𝛽0 = 0.0° , 𝛼̇0 = 0.3247 (deg/s),  and 𝛽̇0 = 0.0 (deg/s). The initial values used to examine the effects of 

𝛽 were 𝛼0 = 0.0°, 𝛽0 = 0.1°, 𝛼̇0 = 0.0 (deg/s), and 𝛽̇0 = 0.3247 (deg/s). Finally, the initial values for consideration of 

the combined effect of α  and 𝛽  were  𝛼0 = 0.1° , 𝛽0 = 0.1° , 𝛼̇0 = 0.3247 (deg/s) , and 

𝛽̇0 = 0.3247 (deg/s).  

 Based on the result of the feasibility study, the linearized unstable TSS model was used for application of the 

proposed control scheme. For the case of an unstable plant, the initial and input values used for the TSS orbit 

dynamics were applied to the analysis. The initial values for the reference model were as follows: 𝑎𝑚 = 𝑎0 −

0.0001 𝑎0(m) ,  𝑒𝑚 = 𝑒0 − 0.0001 𝑒0 , 𝑛𝑚 = 𝑛0 − 0.0001 𝑛0 (deg), Ω𝑚 = Ω0 + 0.0001 Ω0 (deg), 𝜔𝑚 = 𝜔0 +

0.0001 𝜔0 (deg), and 𝜈𝑚 =  0.0001 𝑇 (deg) . To consider the 𝛼  effects, 𝛼𝑚 = 𝛼0 − 0.0001 𝛼0(deg)  and 𝛼̇𝑚 = 𝛼̇0 −

0.0001𝛼̇0 (deg/s) were used. To investigate the β effects, 𝛽𝑚 =  𝛽0 − 0.0001 𝛽0 (deg) and 𝛽̇𝑚 = 𝛽̇0 − 0.0001 𝛽̇0(deg/s) 

were used. Further, 𝑘1 = 0.01 and 𝑘2 = 0.00023218 were employed to tune the plant input gain. Finally, 𝑛𝑠 = 8 was 

used for investigation of the effects of 𝛼  or 𝛽  only, while 𝑛𝑠 = 10 was employed when the effects of the 𝛼  and 𝛽 

combined angle were considered.  

 

a) 

 

b) 
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c) 

 

d) 

 

e) 

 

f) 

 

g) 

Figure 5. Tracking error convergence for simultaneous control of α and TSS orbit perturbed by α, for a)−g) a, e, n, 

Ω, 𝜔, ν, and α, respectively 

 



Journal of Information Systems Engineering and Management 
2025,10(55s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

945 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

a) 

 

b) 

 

c) 
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g) 

Figure 6. Tracking error convergence for simultaneous control of β and TSS orbit perturbed by β, for a)−g) a, e, n, 

Ω, 𝜔, ν, and β, respectively 

 

 

a) 

 

b) 

 

c) 

 

d) 
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e) 

 

f) 

 

g) 

 

h) 

Figure 7. Tracking error convergence for simultaneous control of combined pendular angle of α and β and TSS 

orbit perturbed by 3D libration of tether for a)−h) a, e, n, Ω, 𝜔, ν, α and β, respectively. 

 Fig. 5 shows the TSS orbital maneuvers obtained when the CKOEs and α are controlled simultaneously by 

the control scheme. In Fig. 6, the results for simultaneous control of both the TSS orbital position and 𝛽 are shown. 

Finally, Fig. 7 displays the orbital maneuvers of the TSS perturbed by the combined angle of α and 𝛽. In Figs. 5−7, all 

the tracking errors converge within the limit of 10−4. Further, it is apparent from Fig. 5 that the controller stabilizes 

all plant outputs (except for 𝑒) in less than 1,000 (s). In detail, α and 𝑒 become stable after approximately 240 and 

15,000 (s), respectively, with α increasing by 0.19° and stabilizing within the range of 10−7 degree. In Fig. 6, for the 

 case, it is observed that stabilization of a, n, Ω, and ω requires almost double the time periods of those reported in 

Fig. 5. However, 𝑒 stabilizes more quickly under the influence of 𝛽 than α. It should be noted from Fig. 7 that all plant 

outputs (except for 𝑒 and ν) stabilize very quickly after exhibiting one or two peak overshoots. Hence, the control 

scheme is more effective for the maneuvers of the TSS allowing for the combined pendular angle of α and 𝛽 compared 

to the individual pendular angles. The tracking error performance is so sensitive to 𝑘2 for suppression of the TSS 

orbital deviation and the tether pendular angles that highly precise turning of 𝑘2 is required for the controller, even 

to eight decimal places.     

DISCUSSION 

The orbital deviation of a TSS subjected to a non-conservative tether tension force was observed, and 

simultaneous suppression of both the tether pendular angles and the TSS orbital deviation was achieved using the 

proposed control scheme. The key findings of this work are listed below.  
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(1) Good tracking error performance was observed based on the microsatellite orbit maneuvering, which 

indicates the strong potential application of the proposed numerical approach and control scheme to TSS 

maneuvering.  

(2) The TSS orbit perturbation analysis clearly indicates that a and e deviate more strongly under the 

influence of α compared to β, and that interaction of α and β suppresses α in a short period of time. 

(3) In this investigation, the coupling effect due to interaction of the pendular and dynamic motions of the 

tether was unquestionably limited because of the simplification of the tether’s dynamic behavior. That is, the energy 

exchange through the couplings in the differential equations, which describe the actual interactions of the tether 

oscillation and libration over time, was not wholly considered, and only a one-way interaction between the tether 

tension force and tether libration was achieved. 

(4) Both the TSS orbital maneuvering and the suppression of the tether libration were well achieved using 

both the proposed control scheme and the numerical approach. Implementation of the control scheme with 𝒌𝟏 = 

0.01 and 𝒌𝟐 =  0.00023218 yielded good tracking error convergence for the linearized unstable TSS model 

incorporating the plant outputs, such as α, β and the TSS orbital-position-related elements. Thus, the perturbed TSS 

tracks the desired orbit effectively while the controller simultaneously attenuates the tether pendular motion. 

Further, this analysis revealed that the unstable TSS orbit stabilizes more quickly to the desired orbit when the TSS 

allows the combined pendular angle of α and β rather than each pendular angle. 

(5) The proposed control scheme requires very sensitive and precise turning of 𝒌𝟐 for desired suppression of 

both the TSS orbital deviation and tether pendular angles.     

In the simulations, the tether dynamic motion was limited to the tether libration (as noted in point (3) above). 

As a result, the coupled effect of all the tether motions were not reflected in changing the magnitude of the tether 

tension force at every single time step, which caused an actual disturbance and deorbited the TSS. The combined 

effect of the tether oscillation and the tether pendular motion on the TSS orbital deviation will be treated by the 

present authors in a series of separate research articles, using the mathematical model presented herein. In addition, 

the future research will investigate a link between the distributed form of the electrodynamic force along the tether 

and trajectory of the TSS while the proposed control scheme is applied to suppress the tether vibration. 
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