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ARTICLE INFO ABSTRACT

This paper investigates the maneuvers of a tethered satellite system orbit disturbed by libration
of a single elastic tether immediately after deployment, where the tether experiences no
Revised: 14 Feb 2025 electrodynamic force. An effective Lyapunov-method-based multi-input and multi-output model
reference adaptive control scheme exhibits good qualitative TSS orbit tracking error
convergence; the perturbed TSS orbit tracks a reference orbit precisely with 3D tether pendular
angle suppression. Although the simulated tether dynamic motion is limited to its libration, the
proposed mathematical model with Gauss variational equations can consider the tether’s
pendular and dynamic motions together or separately. The latter realizes TSS orbital deviation
by a non-conservative tether tension force acting on the primary body during tether libration. A
feasibility study of the proposed control scheme through the maneuvers of the microsatellite
under a zonal non-spherical harmonic gravitational perturbation (J, perturbation) is conducted.
Good tracking error convergence in the study indicates a potential high-accuracy control of the
unstable TSS model using the proposed numerical procedure and control algorithm.
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INTRODUCTION

A tethered satellite system (TSS) is made of two cubic bodies connected by an elastic cable-type tether. Since
the Gemini XI mission (David Darling, 2003), many space engineers have shown interest in TSS application, and the
large body of TSS research has rapidly expanded in the last three decades. Typically, TSS-related research has focused
on the following five topics: (1) tether dynamical modeling; (2) deployment and retrieval of a tether system and its
control; (3) tether pendular angle analysis and control; (4) tether oscillation analysis and control; and (5) TSS
trajectory generation and maneuver.

The dumb-bell tether model (Cosmo & Lorenzini, 1997) was one of the most important tether systems in early
TSS research. However, a rigid rod-type tether (Larsen, 2010) was also applied to model TSSs and, in a study on TSS
librations, Ellis and Hall (2010) modeled a TSS as two point masses connected by a rigid body. Furthermore, Williams
(2009) studied the dynamics of a space tether using a model divided into a finite number of masses connected by
viscoelastic springs.

Several studies have focused on a tether system in deployment or retrieval. For example, a simple nonlinear
model for the motion of a tethered system in a retrieval process was proposed by Chernous’ko (1995). Further, Modi
and Misra (1979) derived a general deployment dynamics formulation for a tether that incorporated the 3D tether
libration and oscillation. A review article by Chen et al. (2013) introduced the feedback braking of a small expendable
deployer system-2 for tether deployment, which limits the tether’s residual libration to 4°. In addition, discussion by
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Misra (2008) focused on the control schemes for tether system stabilization during deployment and retrieval.
Zabolotnov and Naumov (2012) studied the factors strongly related to the angular motion stability of a capsule
relative to the direction of a tether in deployment. Ifiarrea et al. (2014) achieved the stabilization of the periodic
attitude motions of electrodynamic tethers in elliptically inclined orbits using two feedback control methods based
on the time-delayed autosynchronization. Finally, Williams et al. (2009) discussed payload deployment via a tether
system and examined the controllers for the flexible tether in the case of large disturbances using linear feedback
gains such as the tether length and length rate.

Study of satellite trajectory dynamics requires detailed knowledge of orbital mechanics and numerical
methods for solving differential equations. A series of studies on the orbit dynamics of satellites and asteroids (Dong
et al., 2016; Gongalves et al., 2015; Scheeres, et al., 1998a; Scheeres, et al., 1998b; Scheeres, 1999) have been
conducted over the past two decades. For example, Goncalves et al. (2015) considered a variety of gravitational and
non-gravitational orbital disturbances. The Gauss variational equations (GVEs) were employed in a numerical
analysis of satellite dynamics by taking account of the non-conservative perturbation forces, such as atmospheric
drag and solar radiation (Dong et al., 2016). In another work (Jo et al., 2011), classical Keplerian orbital elements
(CKOEs) and equinoctial orbital elements (EOEs) were used for solution of the Lagrange planetary equations (LPEs).
It was clear that the LPEs with the EOEs are advantageous for long-term calculation compared to the LPEs with
CKOEs in the case of relatively small eccentricity.

High tether flexibility increases the tether’s structural instability and alters the primary body’s acceleration,
thereby deorbiting the TSS from the desired position. For TSS trajectory dynamic analysis and maneuvering, it is
necessary to integrate separate mathematical models for the satellite and tether system, respectively. Thus, both the
tether instability and TSS orbital deviation should be simultaneously predicted and suppressed. Therefore, there
exists an extremely large body of literature on TSS control strategies (Misra, 2008; Misra and Modi et al., 1986; Zhao
et al., 2014; Zhong and Zhu, 2014). In 2014, Zhao et al. (2014) proposed the thrust control algorithm for a TSS with
a dumb-bell-type tether under orbital maneuvering. In their simulation, the tether slackness was eliminated, and the
tether pendular angles were damped out. Furthermore, a piecewise two-phased optimal control algorithm for fast
nanosatellite deorbit by an electrodynamic tether was proposed by Zhong and Zhu (2014). In the first stage, an open-
loop control scheme was formulated for the tether libration only by assuming orbital elements as constants. The
second stage focused on the closed-loop optimal control strategy based on a finite receding horizon control method,
so as to track the desired reference trajectory subject to orbital perturbations.

Research on adaptive control for the speed and altitude of high-performance aircraft began in the 1950's.
Notably, Tirop and Jingrui (2017) considered control of TSS pendular motion described by a classical dumb-bell
model in an elliptic orbit; however, their discussion excluded the TSS deorbit induced by the tether libration. An
adaptive controller with a nonzero constant plant parameter in the matrix form (B, # 0) has been designed for a
target plant (Polycarpou, 1996; Slotine & Li, 1991; Wang and Huang, 2005); it utilizes Lyapunov method-based
control schemes. Furthermore, a series of remarkable studies on the design of dynamic regressor extension and
mixing (DREM)-based adaptive controllers, including the model reference adaptive control (MRAC) scheme
(Gerasimov et al., 2018a; Gerasimov et al., 2018b; Ortega et al., 2019), have largely reduced the prior knowledge
required for B,,. That is, in these proposed control schemes, only a full-rank condition is imposed on B,. The
Lyapunov method-based multi-input and multi-output (MIMO) MRAC (Hashemi et al., 2015; Pankaj et al., 2011;
Rao & Hassan, 2004) has attracted considerable research attention because of its intuitive mathematical concept and
simple algorithm compared to proportional-integral-derivative (PID) controllers. Pankaj et al. (2011) compared the
MIT and Lyapunov rules to develop an adaptation mechanism for a nonlinear single-input single-output (SISO)
MRAC. Their analysis revealed that the Lyapunov rule reduced the MRAC configuration complexity, with physical
realization of the applied system being more feasible than in the case of the MIT rule; this was despite the fact that
the mathematical modeling of the system was simpler for the latter. Rao and Hassan (2004) developed new MRAC
adaptive laws using non-quadratic Lyapunov candidate functions, which could improve the system output error
converging to zero. Additionally, Hashemi et al. (2015) presented a tracking error convergence proof for a proposed
MIMO MRAC design for potentially nonminimum phase square systems. Finally, El-samahy and Shamseldin (2018)
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showed the effectiveness of an MRAC scheme with a PID compensator in the context of reference model tracking for
brushless DC motor tracking control, regardless of the load disturbance and parameter variations.

This study presents the Lyapunov method-based classical MIMO MRAC scheme, which enables both linear
and nonlinear control to suppress TSS orbit deviation with the desired tether libration. A piecewise shape function is
proposed, which can support the actual mechanical properties of an elastic tether only while withstanding its axial
stretching and being free from flexural and shear rigidities. The proposed mathematical model incorporating the
shape function can consider the tether pendular motion and the actual tether oscillation both together or separately.
Thus, the interaction between the axial stretching and tether vibration, the tether libration, and the disturbance
accelerations acting on the primary body can be considered. However, the restriction of the tether vibration does not
allow a change in the magnitude of the tether tension force, as the coupling effect is not derived from all types of
tether motions.

To successfully realize the TSS controller design, the feasibility of the GVEs and the proposed control scheme
for the TSS orbit maneuvering is tested under the influence of the J, perturbation. The fourteenth-order explicit
Runge-Kutta method (RK14) is applied to those simulations. Good qualitative tracking performance is observed for
microsatellite orbital maneuvering. Thus, it is expected that the application of the numerical method (including
Jacobian linearization) combined with the proposed control scheme to TSS orbital maneuvers will yield high
accuracy. The proposed adaptive controller is designed to suppress the TSS orbit deviation and 3D pendular motion
of a single tether with length and diameter of 1.0 km and 2.0 mm, respectively, immediately after deployment. Here,
the tether experiences no electrodynamic force based on the assumption that it can be perturbed by the deployment
that results in tether swing. To realize the physical configuration, the mathematical model is established using the
simple but innovative idea that the non-conservative tether tension force has a direct influence on the TSS orbital
deviation as the tether swings. This model transforms the tether force to be equivalent to the disturbance
accelerations in the GVEs. As a specific case of the adaptive controller with B, # 0 that was previously designed for a
target plant (Polycarpou, 1996; Slotine & Li, 1991; Wang and Huang, 2005), in this study, k; - B, is tuned by
multiplying an identity matrix B, by k; = 0.01.

METHODOLOGY

TSS Mathematical Model

The TSS consists of two end bodies, a primary body A and a secondary body B, which are connected by an
elastic tether at P, and Pg, respectively (see Fig. 1). The mass centers of A and B are G, and Gg, respectively. The
following assumptions are made for the mathematical modeling: (1) The central body is spherical in shape and its
mass is distributed uniformly; (2) A and B have cubic shapes with homogeneous mass distributions as point masses,
so that the influence of the gravitational forces of A and B on the Earth as well as on each other is nullified; (3) The
Earth's magnetic dipole is oriented 11.5° from the Earth’s rotational axis; (4) A and B are treated as rigid bodies;
hence, their elastic vibration is negligible; (5) Rotational motions of A and B are neglected; (6) The tether is modeled
as an elastic cable that can resist axial stretching only, with oscillation and twisting being ignored; (7) Only the tether
elongation causes the tether tension force in the Earth’s gravitational field; the direction of this force changes over
time at P, through the tether libration and perturbs the TSS’s orbit.

The TSS mathematical model is developed based on the above assumptions. The position of A is given by the
state variables of the CKOEs, as

Oc = {a(T),e(T),n(T), UT), w(T),v(T)}" (1

where O¢ defines the CKOE in a Keplerian orbit, a(T) is the semi-major axis, e(T) is the eccentricity, n(T) is the
inclination, Q(T) is the right ascension of the ascending node, and w(T) and v(T) are the arguments of periapsis and
true anomaly, respectively. Note that T indicates time. Three coordinate frames are used to handle the total TSS
dynamics. The inertial frame Fy is the Earth frame, which is represented using the axes #i; with O as its center. The
connection of the magnetic North Pole to the South Pole of the Earth gives 73, and 7i; — fi, represents the equatorial
plane. The orbit frame F, is also established, in which A can be identified with the axes 0; and G, as its center. Here,
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05 is the extension of 74 (T) from O to G,, while 8, is given by the spin axis of A and 9, is normal to the 8, — @ plane.
Note that 7, (T) denotes the position of G, relative to O in Fy. ¥5(T) denotes the position of G relative to O in Fy. The
tether system frame Fy is expressed by the &; axes. Here, €3 directs from P, to Pg. Further, &, is aligned
perpendicularly to &; and &, is normal to the &, — &; plane. P,4(T) denotes the tether position P, on A relative to G,
in F,. Pg(T) denotes the tether position Py on B relative to G, in F,. 7#(T) denotes the position of the tether’s
differential element dS relative to P, in Fy. 7r(T) denotes the position vector of dS relative to O in Fy. P(T) is the
position vector of any arbitarary point in Earth’s magnetic field relative to O in Fy. In the mathematical derivation of
the TSS model, all the position vectors identified in Fy or F, must be converted for redefinition in F using the
direction cosine matrices (see Egs. 2a—2d).

Targetforbit

Nodal line

Figure 1. Diagram of TSS mathematical model for CKOE.

All the frames mentioned above can be related to each other using the direction cosine matrices shown in
Egs. 2a—2d. It is worth noting that the TSS dynamic analysis must be conducted in Fy through multiplication of the
direction cosine matrices DCMy_g or DCMy._ o, which map Fg and F,, respectively, to Fy.

DCMN(_E = DCMNt—O * DCMO(—E (23)

PR AT

here, DCM_g, is the direction cosine matrix that maps Fy to F,. A general rotation of a frame with axes “1”, “2” and

3” can be characterized by Euler’s angle rotation. Thus, DCMy_y and DCMg_ are defined, respectively, by 3-1-1 and
2-1 Euler’s angle rotations. DCMy._o and DCM_g are the inverse matrices, respectively, of DCMy_y and DCMg_q.

DCMO‘—N =

cos(0(T)) cos(2(T)) — cos(n(T)) sin(6(T)) sin(2(T)) cos(n(T)) cos(2(T)) sin(6(T)) + cos(8(T)) sin(2(T)) sin(n(T)) sin(6(T))
(—cos(!) (T)) sin(6(T)) — cos(n(T)) cos(6(T)) sin(R2(T)) cos(n(T)) cos(8(T)) cos(2(T)) — sin(6(T)) sin(2(T)) cos(6(T)) cos(n(T)))

sin(n(T)) sin(2(T)) —cos(2(T)) sin(n(T)) cos(n(T))
(2b)
cos (a(T)) 0.0 —sin (a(T))
DCMg. o = (— sin(a(T)) sin (B(T)) cos (B(T)) —cos(a(T))sin (ﬁ(T))) (2¢)
cos(ﬁ(T)) sin (a(T)) sin (B(T)) cos(a(T)) cos (B(T))
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here, @ and g are the out-of-plane and in-plane pendular angles of the tether in F,, respectively. Further, n(T), 2(T),
w(T), and v(T) are the CKOEs constituting 0, (see section I1.A.1). 8(T)= w(T) + v(T) (2d).

Equations of Motion of A

This section presents the derivations of the six CKOEs (see Fig. 1 and Eqgs. (3a)—(3i)). A complete set of
equations of motion of A consists of the nonlinear differential equations governing the trajectory generation of G,
relative to Fy. The evolutions of the six CKOEs defined by the GVEs (Ellis, 2010; Jo et al., 2011) under the action of
disturbance accelerations on A are given in the time domain as follows:

. 2a%(T) [ p(T)

a(T) = 222 a0 (T) + e(T) sin(v(1) apas (1)} (32)

é(T) = ap a1 (MD{(p(M+ra(M)) cos(v(T))ZfT()T) ra(M}+apas(T) p(7) sin(v(1)) (3b)

. (T){r a (T) cos(8(T

A(T) = apaz {r/:l(T; cos(6(T))} (30)

2 _ apaz2(M){ra(T)sin(6(T))}

Q(T) - sin(n(T))h(T) (3d)

@(T) = apaz(T) {ra(r)sin(6(1)) cos(n(1))} _ apas (™) p(1) cos(v(1))=apa1 (N{(p(D)+7a(T)) sin(v(D)} (3¢)
- r(T) sin(n(T)) r(T) e(T) 3

. _ apas(T) p(T) cos(v(T)—ap a1 (M{sin(v(M) (p(M)+r4(M)} | h(D)

V1) = R(T) (D) 2 (3D

where the orbital parameter of the osculating orbit is p(T) = a(T)(1 — e%(T)) (38). The instantaneous orbit
radius of a satellite is denoted by r,(T) = I — (3h) and the specific angular momentum is h(T) = /u p(T)

1+e(T) cos (v(T))
(31). Further, u is the gravitational parameter of the central body (the Earth) and ap4,(T), aps,(T), and ap,5(T) are
the components of the disturbance acceleration @, (T) acting on A. (') represents d/dT.

Note that al’,, (T), all,, (T), and a}’,(T) are the disturbance accelerations for the microsatellite due to the J,
perturbation. Thus, ap ., (T), apa2(T), and ap,3(T) in Egs. (3a)—(3f) should be replaced by

b (1) = —HEIED (sin(n? (7)) sin(2 6(7))} (42)
aDA2 (T) = -3 Z]24Z;§T) {sm(Zn (T)) sin(@ (T))} (4b)
@b (1) = —HEED (1 — sin(m? (7)) sin(6(1)*)} (40)

where 7, (7T) is the radius of the Earth. Substituting Eqgs. (4a)—(4c) into Egs. (3a)—(3f) allows solution
of the CKOEs.

Tether Tension

In this study, the non-conservative tether tension force at P, is considered, the direction of which can be
changed over time via the tether libration. Finally, the TSS orbital deviation can be observed. Using the linear Kelvin-
Voigt law of viscoelasticity, the total tension vector of the tether defined along its unit tangent direction in Fy through
application of DCMy_g, is

T(S,T) =E - Ao (&5 + ¢+ &p(S,T)) (S, T) (5)

where c is the structural damping constant, S is the arc length parameter along the unstretched tether, E is the
Young’s modulus of the tether, 4, is the cross-sectional area of the tether, and 7 (S, T) is the unit tangent vector at a
certain point on the tether. The dynamic strain of the tether is given by the Lagrange strain:
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here, U(S,T),V(S,T), and W(S,T) represent the normal, bi-normal, and longitudinal tether displacements,
respectively, in Fy. In this study, the static strain of the tether ¢, can be considered zero when the following term (see
Eq. (22¢)) is constant over time:

C3,j (T)="—". (7)

In that case, |T(S,T)|| is time-invariant in Fz and T(S,T) can be treated as the non-conservative tether
tension force caused by the tether libration in Fy. Here, [ is the total length of the tether in an unstretched
configuration. The gravity acting on the tether, g = 8.94841 (m/s?), and the mass of B, mz = 1.0 (Kg), are applied to
compute Eq. (5).

Disturbance Acceleration Acting on the TSS
Rearrangement of the translational motion of G,, which is obtained by applying Newton's law to create
dp4(T) in Fy, yields the following disturbance acceleration:

Fea(T Y T(o,T -
LoD 4 F @ =00 =G, ®)
A mg

=1 . . . . o 2 >
where T(0,T) is the tether tension force acting at P,, m, is the mass of A, and () represents %. The Earth’s

gravitational force acting on A is determined by the Newton universal gravitation law

Foa(T) = =55 7,(T) (9)

A

where 74(T) with magnitude 7, relative to Fy is defined by

Ta(T) =14 cos(n(T)) cos(w(T) +0(T) + v(T)) iy + 14 cos(n(T)) sin(w(T) + 2(T) + v(T)) 7, + 14 sin(n) 7z

(10)
Finally, dp,(T) in Eq. 10, which causes the TSS orbit perturbation, must be redefined as follows:
Apy(T) = apsy (T) Ry + apap (T + apas(T) g (11)
Equation of Motion of Tether Pendular Angles
Similar to the above, the translational motion of Gy is defined in Fy by
Fep(D) TAT _ =
"y = 8D (12)
here, T (1, T) is the tether tension force acting at P,. The Earth’s gravitational force acting on B is
Fep(T) = 73 75(T) (13)
where 7 (T) with magnitude r; relative to Fy is defined using the position vectors as
To(T) + Pa(T) +7(L,T) — Pp(T) = Tp(T) (14)
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here, 7(I, T) relative to Fy is given at S = [ as the multiplication of (S, T) by DCMy.g, and the reidentification of p,(T)
and pg(T) relative to Fy requires their multiplication by DCMy.o. The second derivative of (I, T) with respect to T
yields

F(AT) =iy (L T) Ay + F(1, T) A, + 3L T) Aig (15)

where r; (1, T), 1,(1, T), and r5(1, T) are the components of (1, T). The second derivative of Eq. (14) with respect to T
and its rearrangement about (I, T) considering 7,(T) in Eq. 10 and F(T) in Eq. (12) gives

a,(T) = ay (T) Ay + a,,(T) Ay + a;3(T) g (16a)
here, a;;(T), a;,(T), and a;3(T) are the components of a@;(T) acting at Pg. The equations of motion of the tether
pendular angles, a and S, are expressed as

(I, T) = d,(T) (16b)
therefore, ¥, (I, T) = a;1(T) (16¢), (I, T) = a;5(T) (16d) and #;3(, T) = a;5(T) (16€). The motions of @ and B are
observed, respectively, along &; and in the &, — &5 plane.

Equations of Dynamic Motion of Tether

The equations of dynamic motion of the tether can be defined by Newton’s second law, considering the
gravitational force and the electrodynamic force acting at dS due to an interaction of the current, i and Earth’s
magnetic field:

u -
_ng(S' T) +— p2

1 TGsT | i ST | 3(@PM)PD
p(T) 8s p(T) as p3

} —Ta(D) = PaM =7(S,T) (17
here, p(T) is the linear mass density for the unstretched tether, which is regarded as constant along the tether in this
study. Further, 7;(S, T) with the magnitude r; is expressed as
Tr(S,T) = 7(S,T) + Pa(T) + 74 (T) (18)
The Earth’s magnetic field has a dipole centered at 0 with dipole axis i and strength u,,,. P(T) is defined as
BP(T) =P cos(w(T)) cos(Q(T)Hn, +P cos(w(T)) sin(Q(T)) n, +P sin(w(T)) 13 (19a)

here, P denotes the magnitude of P(T). The Earth’s magnetic field with i tilted at angle I' relative to 715 is constant.
O denotes the angle between the ti—7i; and #fi; — i3 planes, as shown in Fig. 2, and can be viewed as the local sidereal
time of the unit dipole axis. Using the angles @ and I, & must be defined as follows:

U = cosOsinyfi; +sinOsiny n, + cosl 13 (19b)

where 6 = 0, + w, T (19¢) with w, being the constant angular speed of the Earth and @, is the value of @ at T = o.
Further,

y=90—-T (10d).

Figure 2. Unit dipole axis
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Finite Element Method (FEM) Formulation

Using the FEM, to achieve discretization of a strong form (see Eq. 19), conversion to a weak form should be
performed by multiplying the former by @; (S) followed by integration over [. The substitution of 74(T) and #5(T) of

Egs. (8) and (12), respectively, along with the second derivative of (I, T) of Eq. (14) into the weak form gives the
following through integration by parts for a tension-related term:

[, 7(S,T) 8;(S) dS + ?(l T) 8;(1) = q1,; Fa(T) + 43, Pa(T) + 45, Pp(T) + by (T) + k; (T) (20a)
where,
l

Gy == [y 0,(8)dS = ~%0;(1) = 40,(0) (20b)
G2 = = [, 0;(S)dS = 720, (200)
qs,j = ;r(lf)(ﬁ (D (20d)
“’ _ _ lTT(S T) mp rB(T) ma TA(T)

By (T) = u{ iR 0,(5) ds + 2 ED g, 1) + 24 74D 0, (o) (20¢)
- _ dQ)](S) i LOFSD)

k;(T) = (T) T(S T)——= dS+p o Js — x B(T) 0;(S)ds (20f)

Weddle’s integration is applied for the discretization. Interpolation within the finite elements is achieved through a
shape function for a single tether:

S—(j-2)-lem

Jor(j—2)-lem<S<(—-1)1
0, =1 o or (j ) -lem @ ) lem (o1)

-lem—S . .
4 li:nn Jor(j—1)-lem<S<j-lem

where @; (S) is a piecewise shape function, j represents the node number, lem = é (m) is the length of each finite

element, and ne is the total number of elements. The tether trail functions are given as

UGS, T) = 23, c1;(T) - ¢;(5) (222)
V(S,T) = 271, €25(T) - ;(S) (22b)
WS, T) =, c35(T) - $,(S) (220)

here, ¢, ;(T), c;;(T), and c3;(T) are time-dependent vectors and nj is the total number of nodes. Boundary conditions
are imposed on the discretized system by fixing P, and letting P; be free. In this study, application of three finite
elements to the tether during discretization creates a set of nine second-order nonlinear ordinary differential
equations (ODEs).

Jacobian Linearization

After discretization, the total system of nonlinear first-order ODEs is expressed as
Xp(T) = £ (X, (D) (232)

where X, (T) = {x,,, (T), x,,(T), xp, (T), ..., X, . (T)}T (23b) denotes a set of state variables in the total set of nonlinear
ODEs describing an unstable plant. f,¥ represents a system of nonlinear ODEs, where ns is the number of system
variables. The Jacobian linearization of Eq. (23a), through Taylor series expansion with elimination of the negligible
higher-order derivatives, is performed using the following equation
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fis (% (1) = FX (X5 (T)) +1 - (X,(T) = X5(T0)) (242)
here, the Jacobian matrix is given as
ot . o
dxp, (T) 0xpps(T)
J= : : (24b)
ofms . Off%
9xp, (T) 0xpps(T)

Xp(T)=X5(To)

and Xg(Ty) = {xg, (To), xg,(To), x5, (To), .., xgns(TO)}T(24c) is an equilibrium point where a set of initial conditions is
applied at T = 0. Order reduction to construct Eq. (23a) is achieved for Egs. (16¢) and (16d) and discrete Eq. (20a),
and the final number of equations is doubled.

Lyapunov-Method-Based MIMO MRAC Algorithm

In this study, the set of nonlinear differential equations defined by Eqs. 25a, b is used for both microsatellite
dynamics and microsatellite orbital maneuvering. However, linearization is applied to the TSS dynamics and TSS
orbital maneuvering (see Egs. 26a—c). The proposed TSS control scheme should have the ability to suppress the
tether’s pendular motion and the TSS orbital deviation. This section discusses the design of the Lyapunov-method-
based MIMO MRAC, which enables control of both unstable linear and nonlinear plants. Let us consider a continuous
time-variant unstable system expressed by

X,(T) = =Ap - X,(T) — Cpp * f,(T) + B, - u(T) (25a)
where Ap, B, and C,, are constant plant parameters in matrix form.

Ap = —lhsxns (25b),

By = k1 * Insxns (25¢)
and

Cp = lnsxns (25d).

here I,,5.ns denotes an identity matrix, u(T) is the control input, and f,,(T) can be defined as

£ = =[x, + £2(X,(D)] (25€)

The superscript Q is set to N or L for a nonlinear or a linearized plant, respectively. A reference model is chosen to
characterize the desired closed-loop system as

Xn(T) = =Ap  Xpu(T) — Coy * fin(T) + By - 7(T) (26a)

where,

X () = {2, (T, Xy (T, Xy (T, e X, ()} (26b)

is the set of state variables for the reference model.
r(T) = Onsx1 (26¢)

denotes a reference signal and O, is the zero matrix. Further, A, B,,,and C,, are constant parameters of the
reference model in matrix form. A solution of the reference model is assumed to be a vector with the desired initial
conditions such that

Ap=—-Ch= — k2 ' Insxns (26d)
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and B, can be a random matrix.

fm(T) = Insxns * Xm(T) (26e)
can be a linear or nonlinear term in the reference model. Further, k, is required to determine the P, matrix for the
adaptation laws (see Egs. (29a)—(29d)) using the Lyapunov equation (see Eq. (29d)). Substituting Egs. (26d) and
(26e) into Eq. (26a) gives

Xm(T) =0 (26f)

The change between the outputs of the unstable plant and reference model at every iteration is calculated as the
tracking error A(T), given by

A(T) = X, (T) — X (T) (27)
The control law is
w(T) = ax(T) - X, (T) + @.(T) - v(T) + @p(T) - f,(T) (28)

where @,(T), @,(T),and @(T) are the variable feedback gains. These can be identified using the following
adaptation laws:

ax(T) = —B, P, - A(T) - X, (DT (29a)
a.(T) =B, B, - A(T) - r(D" (29b)
a;(T)=-B," P, - A(T) - f,(T)T (290)

The adaptation laws necessary to enforce the closed loop stability of the control scheme are defined based on a
quadratic Lyapunov function candidate. Here, P;, is obtained from the Lyapunov equation:

AmT P+ P Ap = —lhsxns (29d)

To track the reference model, the iterative process should continue until the closed-loop dynamics yield zero A(T).
The tracking error performance of the control scheme depends on fine tuning of k; and k, (see Egs. 25¢ and 26d,
respectively.)

RESULTS
Validation of Lyapunov-method-based MIMO MRAC Scheme

A simulation on microsatellite orbital maneuvering as the feasibility study is reported to examine the
potential of the TSS control in this section. It can be argued that the good qualitative result for the microsatellite orbit
control indicates considerable promise for application of the proposed control scheme to the TSS orbital
maneuvering. The microsatellite subjected to the J, pertubation was considered based on the following initial values:
a, = 1, + 300,000 (m), e, = 0.07, nyg = 50.0°% £, = 300.0°% w, = 45.0° and v, = 0.0°. As input values for the
simulation, 7,= 6,378,137 (m), u = 3.986 x 10* (m3/s?), and J, = 1082.6267 x 10~° were considered. The control
scheme included RK14 to trace solutions on not only microsatellite orbital maneuvering but the TSS position control.

Both the nonlinear and linearized models described by the GVEs were considered for the unstable plant. To
achieve the orbital maneuver of the microsatellite, deorbit due to the J, perturbation, the proposed control algorithm
was applied. Note that, for the reference model, Eq. 28b must be exchanged with

X (T) = {am (T, e (T), iy (T), Uy (T), 0 (T), Vi (T} (30)
and to identify the unstable plant, Eq. 25a should become the following, with ns = 6:
{a(m), (), (M), A1), &(T), ¥ (DY = £2 (X, (1) (312)
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Xp(T) = {a(D), e(T), n(T), UT), w(T),v(D)}" (31b)

and Q can be set to L or N. Eq. 26¢ should be replaced by the following expression for the linearized unstable plant:

here

e — T
Xp (To) = {ao(To), e9(To), 10(Ty), Qo (Tp), wo (To), vo(To)} (310)
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Figure 3. Tracking error convergence for linearized GVEs, for a)-f) q, e, n, Q, w, and v, respectively
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Figure 4. Tracking error convergence for nonlinear GVEs, for a)-f) a, e, n, Q, w, and v, respectively

The tracking convergence performance of the proposed controller for the unstable model is shown in Figs. 3

and 4. These simulations were performed for 2,000 s using the step size of 0.0001 (s). Regarding the unstable plant,
the initial and input values used for the microsatellite orbit dynamic analysis in section V were also applied to this
analysis. For the reference orbit, the following values were used: a,, = a, — 0.0001a, (m), e,, = ¢, — 0.0001 ¢,,

n, =ny—0.0001n, (deg), Q, = Q,+ 0.0001 Q, (deg), w,, = w, + 0.0001 w, (deg), and v,, = 60ij (deg). In

addition, k; = 0.01, k, = 0.0001, and ns = 6 were used. Each response time was 250—260 (s), except for the v case,
which appeared to converge in less than 1.0 (s). All the steady-state errors remained within the tolerance range of
108-107*. The identical tracking error performances of the linearized and nonlinear (see Figs. 3 and 4, respectively)
plants for each CKOE clearly indicate the strong potential application of the linearized GVEs to TSS orbital maneuvers
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using the proposed control scheme. The results also validate the good tracking error performance of the proposed
control scheme.

TSS ORBITAL MANEUVERS

This section reports on the TSS maneuvers using the linearized model. The influence of tether libration on
the TSS orbital deviation is analyzed, and the tracking error performance of the control scheme for the TSS maneuvers
is discussed. The TSS subjected to a non-conservative tether tension force of 8.94841 (N) was used. The mathematical
model enabled the TSS to separately go through the in-plane and out-of-plane pendular motions of the tether or its
libration in a 3D configuration. For the CKOEs, the initial values used for the microsatellite orbit control dynamic
analysis were employed. The additional initial and input values were as follows: 6, = 0.0°, I =11.5°,
P = 7, + 1,000,000 (m), &, = 12.566 x 10~7 (g) ¢=05(s), [ = 1,000 (m),p = 2.5 x 1073 (%)E A = 55,000 (N),
¢1,j(T) = c;(T) = 0.0 (m), c3 ;(T) = 0.162698 (m), ¢, ;(0) = ¢, ;(0) = ¢53;(0) = 0.0 (m/s) ,w, = 460.0 (m/s), my =
12.5 (Kg), mp = 1.0 (Kg). P4 = (0.0,—2.5x 107%,0.0) (m,m,m), and pg = (0.0,5.0 X 1072,0.0) (m, m, m), defined in
F,. In addition, ne = 3 and ns = 8 were used for consideration of a or 8, while ns = 10 was used to investigate the
effects of the combined angle of a and . The initial values used to investigate the effects of @ were the following:
ay = 0.1°, B, = 0.0°, &, = 0.3247 (deg/s), and S, = 0.0 (deg/s). The initial values used to examine the effects of
B were a, = 0.0°, B, = 0.1°, ¢, = 0.0 (deg/s), and B, = 0.3247 (deg/s). Finally, the initial values for consideration of
the combined effect of a and §B were a,=0.1° , By=0.1° , ¢, =0.3247 (deg/s) , and
Bo = 0.3247 (deg/s).

Based on the result of the feasibility study, the linearized unstable TSS model was used for application of the
proposed control scheme. For the case of an unstable plant, the initial and input values used for the TSS orbit
dynamics were applied to the analysis. The initial values for the reference model were as follows: a,, = a, —
0.0001 ay(m) , e,= e —0.000le, , mn, = ny—0.0001n,(deg), 2, = Qy+0.0001 Q; (deg), w,, = wy +
0.0001 w, (deg), and v,, = 0.0001 T (deg) . To consider the « effects, a,, = a; — 0.0001 a,(deg) and ¢,, = @, —
0.0001¢, (deg/s) were used. To investigate the 3 effects, B, = B, — 0.0001 3, (deg) and 3,,, = B, — 0.0001 B,(deg/s)
were used. Further, k; = 0.01 and k, = 0.00023218 were employed to tune the plant input gain. Finally, ns = 8 was
used for investigation of the effects of a or g only, while ns = 10 was employed when the effects of the a and 8
combined angle were considered.

T (sec)

a) b)
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Figure 5. Tracking error convergence for simultaneous control of a and TSS orbit perturbed by a, for a)-g) q, e, n,

Q, w, v, and a, respectively
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Figure 7. Tracking error convergence for simultaneous control of combined pendular angle of a and 8 and TSS
orbit perturbed by 3D libration of tether for a)-h) a, e, n, Q, w, v, a and B, respectively.

Fig. 5 shows the TSS orbital maneuvers obtained when the CKOEs and a are controlled simultaneously by
the control scheme. In Fig. 6, the results for simultaneous control of both the TSS orbital position and 8 are shown.
Finally, Fig. 7 displays the orbital maneuvers of the TSS perturbed by the combined angle of a and 8. In Figs. 5-7, all
the tracking errors converge within the limit of 10~*. Further, it is apparent from Fig. 5 that the controller stabilizes
all plant outputs (except for e) in less than 1,000 (s). In detail, a and e become stable after approximately 240 and
15,000 (s), respectively, with a increasing by 0.19° and stabilizing within the range of 10~7 degree. In Fig. 6, for the
pcase, it is observed that stabilization of a, n, 2, and w requires almost double the time periods of those reported in
Fig. 5. However, e stabilizes more quickly under the influence of 8 than a. It should be noted from Fig. 7 that all plant
outputs (except for e and v) stabilize very quickly after exhibiting one or two peak overshoots. Hence, the control
scheme is more effective for the maneuvers of the TSS allowing for the combined pendular angle of a and 8 compared
to the individual pendular angles. The tracking error performance is so sensitive to k, for suppression of the TSS
orbital deviation and the tether pendular angles that highly precise turning of k, is required for the controller, even
to eight decimal places.

DISCUSSION

The orbital deviation of a TSS subjected to a non-conservative tether tension force was observed, and
simultaneous suppression of both the tether pendular angles and the TSS orbital deviation was achieved using the
proposed control scheme. The key findings of this work are listed below.
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(1) Good tracking error performance was observed based on the microsatellite orbit maneuvering, which
indicates the strong potential application of the proposed numerical approach and control scheme to TSS
maneuvering.

(2) The TSS orbit perturbation analysis clearly indicates that a and e deviate more strongly under the
influence of a compared to [, and that interaction of a and § suppresses a in a short period of time.

(3) In this investigation, the coupling effect due to interaction of the pendular and dynamic motions of the
tether was unquestionably limited because of the simplification of the tether’s dynamic behavior. That is, the energy
exchange through the couplings in the differential equations, which describe the actual interactions of the tether
oscillation and libration over time, was not wholly considered, and only a one-way interaction between the tether
tension force and tether libration was achieved.

(4) Both the TSS orbital maneuvering and the suppression of the tether libration were well achieved using
both the proposed control scheme and the numerical approach. Implementation of the control scheme with k; =
0.01 and k, = 0.00023218 yielded good tracking error convergence for the linearized unstable TSS model
incorporating the plant outputs, such as a,  and the TSS orbital-position-related elements. Thus, the perturbed TSS
tracks the desired orbit effectively while the controller simultaneously attenuates the tether pendular motion.
Further, this analysis revealed that the unstable TSS orbit stabilizes more quickly to the desired orbit when the TSS
allows the combined pendular angle of a and 3 rather than each pendular angle.

(5) The proposed control scheme requires very sensitive and precise turning of k, for desired suppression of
both the TSS orbital deviation and tether pendular angles.

In the simulations, the tether dynamic motion was limited to the tether libration (as noted in point (3) above).
As a result, the coupled effect of all the tether motions were not reflected in changing the magnitude of the tether
tension force at every single time step, which caused an actual disturbance and deorbited the TSS. The combined
effect of the tether oscillation and the tether pendular motion on the TSS orbital deviation will be treated by the
present authors in a series of separate research articles, using the mathematical model presented herein. In addition,
the future research will investigate a link between the distributed form of the electrodynamic force along the tether
and trajectory of the TSS while the proposed control scheme is applied to suppress the tether vibration.
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