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Online reinforcement learning (RL) loops have lately been added to augment Large Language 

Models (LLMs) so allowing constant improvement from feedback. Emphasizing scalable and 

adaptive methods, this paper reviews developing architectures and algorithms that include RL-

based feedback into LLM training. We explore how conventional offline RL fine-tuning—best 

shown by Reinforcement Learning from Human Feedback, RLHF—has developed into online 

paradigms enabling models to learn in real time from interactions. From multi-stage training 

pipelines to new RL algorithms, we show fresh approaches that improve scalability and 

adaptability, so allowing LLMs to change with dynamic surroundings. These developments 

present difficulties in stability, safety, and efficiency even as they show notable improvements in 

language model performance, alignment, and generalization. We evaluate how online RL 

integrations enhance the responsiveness of LLMs to changing data and user needs; we also 

highlight unresolved issues and future directions for the deployment of adaptive LLMs in 

practical environments. 
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1. Introduction 

Pre-training on stationary text corpora has given Large Language Models amazing powers; but, matching their behavior 

with human preferences and adjusting to new goals remain constant challenges. Most famously via Reinforcement 

Learning from Human Feedback (RLHF), reinforcement learning has become a fundamental method to tune LLMs 

beyond supervised learning [1]. Pretrained language models (the "policy") in RLHF are further trained using feedback 

signals from a reward model that codes human preferences. By optimizing the policy to maximize reward scores that 

reflect human approval, this method—used in systems like InstructGPT and ChatGPT—much improves the helpfulness 

and safety of model outputs [1]. Early RLHF systems, on the other hand, function offline: they train the reward model 

using a fixed dataset of human comparisons or ratings then apply policy optimization on that stationary reward function. 

This reduces the model's capacity to include real-time feedback or change with user needs following deployment. 

Researchers are investigating online RL loops in LLM training in order to support ongoing learning. An online RL 

paradigm lets the model interact with users or environments and iteratively update itself depending on incoming 

feedback, instead of a one-off fine-tuning with frozen feedback data. This kind of strategy guarantees more adaptability 

since the model can correct errors on demand, matching changing criteria. Anthropic's Reinforcement Learning from 

AI Feedback (RLAIF), sometimes referred to as Constitutional AI, for instance substitutes an AI evaluator following a 

set of guidelines for some human inputs, so scaling feedback and lowering reliance on human labelers [2]. This approach 

consists in the model self-critiquing and refining its outputs based on a "constitution" of rules, then using an RL phase 

where a learned preference model (built from AI-generated feedback) rewards policy training [2]. This method shows 

how new feedback loops can make alignment more scalable by substituting artificial intelligence-generated feedback for 

limited human input. 
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Early findings show that including dynamic or online RL training can significantly improve the robustness and 

performance of an LLM. Reflecting the relevance of interactive learning for alignment and capability improvement, 

recent studies highlight a fast-increasing corpus of work on RL-enhanced LLMs [3]. Simultaneously, allowing an RL 

loop in real-world implementation creates fresh difficulties guaranteeing efficiency, stability, and safety. This paper is 

structured as follows generally: Section 2 reviews the literature on aligning and training LLMs with RL; Section 3 

outlines approaches for including online RL in LLM training; Section 4 describes representative frameworks and 

architectures; Section 5 discusses practical applications of online-adaptive LLMs; Section 6 examines challenges and 

limitations; Section 7 suggests future research directions; Section 8 concludes the paper. 

2. Literature Review 

RLHF and Variants: With the advent of RLHF, where human preference data guides the learning process, the concept 

of using RL to fine-tune language models took form. Ouyang et al. [1] showed that by matching GPT-3 style models with 

user instructions, RLHF could produce much enhanced safety and helpfulness. Later work by Anthropic scaled this 

method to train useful and benign assistants, and also presented the idea of substituting artificial intelligence feedback 

loops for humans. In Constitutional AI (Bai et al., 2022), a set of written principles (a "constitution") is used to create 

AI-based feedback, which then guides the model via RL – a technique dubbed Reinforcement Learning from AI 

Feedback [2]. This invention demonstrated that by having an LLM critique and change its own outputs based on the 

constitution, one can align it to complex values (e.g., harmlessness), so greatly reducing the need for human-labeled 

examples [2]. These fundamental papers opened the path to more complex RL integrations and established the 

feasibility of RL-based fine-tuning for alignment. 

Direct Preference Optimization: Along with RLHF, researchers have suggested direct optimization methods that 

avoid the explicit RL loop. Direct Preference Optimization (DPO) is one prominent method that trains the policy to 

maximize the probability of human-preferred responses over dispreferred ones, so folding the reward model into the 

loss function. Providing a simpler, more sample-efficient pipeline, DPO replaces the need for sampling-based policy 

gradients. Studies have shown, meanwhile, that simply offline preference optimization might be less adaptable than on-

policy RL approaches. Ivison et al. [4] conducted a thorough study demonstrating that although DPO-style training is 

computationally efficient, it finds difficulty adjusting to challenging tasks needing iterative feedback. By contrast, the 

online character of RL (e.g., using Proximal Policy Optimization, PPO) permits dynamic adjustment and tends to yield 

better performance on demanding reasoning or coding tasks benefiting from multi-step feedback [4]. This implies that 

an interactive RL loop has benefits in exploration and adaptation for many fields that stationary methods cannot readily 

match. Furthermore, bridging these viewpoints is recent theoretical work: Under a limited policy optimization 

framework (a KL-regularized contextual bandit), Xiong et al. [5] develop RLHF proving that a well regularized online 

RL technique can achieve good sample efficiency while maintaining the policy close to the pre-trained model. Their 

study offers theoretical support for maintaining a Kullback-Leibler (KL) penalty during RL fine-tuning to stop the model 

from veering too far from its natural distribution [5]. 

Overall, the literature indicates that offline and online approaches are complementary: offline preference 

modeling (as in DPO) offers efficiency and stability, whereas online RL can improve adaptability and peak performance, 

especially when guided by regularization to maintain stability [4][5]. This insight has guided the development of new 

training frameworks that combine the strengths of both. 

Online RL in LLM Training: Building on these foundations, very recent research has specifically investigated online 

iterative RLHF, in which the model's training consists in several cycles of producing new data and updating on it. Rather 

than doing a single RL pass on a fixed dataset, Chenlu Ye and colleagues (recorded in Xiong et al., 2024) showed an 

online RLHF workflow that routinely gathers preference feedback on the latest outputs and updates the policy in batches 

[5]. With the same volume of human input, empirically such iterative RLHF has been shown to outperform one-shot 

(offline) RLHF in alignment benchmarks, so obtaining higher reward scores and better generalization [5]. Open-source 

projects such as RLHFlow (RLHF online pipeline) have started to replicate these outcomes, suggesting that iterative 

feedback can produce performance equivalent to larger static-trained models by always fixing mistakes even with limited 

data. Moreover, a survey by Wang et al. [3] records several novel LLM systems including RL at several phases of training. 

Some projects, for instance, mix supervised and RL updates in a single training run while others use a two-stage training 
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process (supervised fine-tuning followed by multi-round RLHF). Additionally, there are cases of LLM-based agents 

trained with environment interaction—that is, in simulated games or navigation tasks—where the language model forms 

part of an RL agent loop. These initiatives follow a general trend: using reinforcement learning as a continuous learning 

tool to make language models more interactive and adaptive rather than only for conformity with fixed human 

preferences. 

3. Methodology 

Including an online RL loop into LLM training calls for changing the conventional fine-tuning flow. The basic concept 

is letting the model learn on demand from feedback signals. One may characterize a generic approach for online RL-

based training of an LLM as follows. First one needs a source of feedback or reward: this could be a human user rating 

response, a heuristic or programmatic reward (such as passing unit tests for code generation), or a learned reward model 

periodically updated. The LLM (policy) then interacts in a cycle: it generates outputs for given inputs or prompts, the 

outputs are evaluated by the feedback mechanism to produce rewards or preference labels, and finally the LLM's 

parameters are changed using an RL algorithm to maximize those rewards. This cycle either in mini-batches or 

constantly. Importantly, the model consumes and generates fresh data during training; the data distribution is not fixed 

ahead of time. This on-policy data stream lets the model investigate novel behaviors and instantly get feedback, so 

addressing distribution mismatches sometimes present in offline training [8]. (For instance, if the model's own mistakes 

differ from the training data, supervised fine-tuning on correction examples may not generalize; an online method like 

SCoRe explicitly trains on the model's own mistakes and corrections, so avoiding such mismatch [8]. 

RL Algorithms for LLMs: Most implementations in use nowadays apply policy gradient techniques modified from 

deep reinforcement learning. Common choice for RLHF and related methods is proximal policy optimization (PPO), 

which has relative stability when handling high-dimensional policies. Usually a KL-divergence penalty or clip, PPO 

balances reward improvement with a constraint to update the model and prevent the new policy from deviating too far 

from the reference (initial) policy. For LLMs, this is crucial since unconstrained optimization on a learned reward can 

result in reward hacking, the model uses flaws in the reward model to obtain high scores with arbitrary outputs. By 

maintaining the updated model close to the distribution of the pre-trained model, the KL regularization solves this 

empirically shown to stabilize training and preserve linguistic coherence [3][5]. The KL constraint also helps to 

guarantee that every incremental update in an online loop is small, so lowering the risk of divergence over several 

updates. Proposed to increase stability and efficiency even more are other algorithms. Grouped PPO approaches such 

as GRPO (Group Relative Policy Optimization) for example compute a baseline from a group of policy outputs [6][9], so 

removing the need for a separate value model (critic). This invention was demonstrated to maintain performance while 

lowering the computational cost of RL training (particularly memory use for large models), so improving scalability for 

very large LLMs [9]. Ahmadian et al. (2024) return to a simpler REINFORCE-style update with carefully tuned 

normalization and find it competitive for alignment tasks [3], so revisiting classic policy gradient algorithms. These 

methodological developments seek to reduce the rather high variance and instability of RL in the framework of large 

language models. 

Online vs. Offline Training Regimes: Methodologically, a main difference is between online iterative training and 

offline fine-tuning (one-pass RL on a fixed dataset). Usually involving gathering a sizable static dataset of human 

comparisons, training a reward model, and then running a fixed number of RL updates on the LLM using that reward 

model, Offline RLHF—as in the original ChatGPT training—typically looks like By means of an online approach, on the 

other hand, data collecting and training are interleaved: following an initial model's alignment on an existing dataset, it 

continues to gather fresh feedback during deployment and regularly updates its parameters. To strike a mix between 

short-term and long-term learning, researchers have developed hybrid schedules. Conditional Online RLHF (COOL), 

for instance, proposed in InternLM2 uses a two-path strategy: a "Fast Path" applies instantaneous small-scale PPO 

updates for quick fixes (addressing acute issues like discovered reward hacking instances), while a "Slow Path" 

constantly refines the reward model and policy over longer horizons for more general improvements [6]. Through the 

fast path, running two feedback loops in parallel allows the model to quickly react to new user preferences or discovered 

failures without destabilizing the general training since the slow path guarantees more complete, stable optimization 

[6]. Such multi-timescale methods show the methodological creativity required to integrate constantly running RL 

loops; they basically run a small RL fine-tuning session whenever required on top of a continuous background training 
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process. Another method used in online environments is uncertainty-based exploration: the LLM can prioritize 

questions or responses concerning which the reward model (or preference function) is uncertain instead of exploring 

randomly. Based on bandit theory, this approach can increase sample efficiency by concentrating human feedback on 

areas most likely to affect the policy [5]. Online RL for LLMs uses overall careful coordination of when and how to gather 

feedback, what algorithm to apply for updates, and how to regularize those updates to preserve model quality. These 

elements will enable the stage to be set for design full frameworks using online learning for big language models. 

4. Framework 

Recent projects have proposed integrated frameworks to realize online RL training for LLMs. These frameworks 

typically consist of multiple modules (policy model, reward model or feedback provider, data buffer, etc.) and define a 

training workflow that can run continually or in cycles. We describe a few representative architectures and algorithms 

that have been reported in the literature: 

• InternLM2 – Conditional Online RLHF: An open-source LLM, InternLM2 presented a fresh RLHF 

architecture termed COOL RLHF [6]. This design uses conditioning on a prompt that specifies the intended 

criterion to encode several preference dimensions (e.g., helpfulness and harmlessness) using only one reward 

model. By concentrating on the pertinent aspect per query, this conditional reward mechanism enables one 

reward model to manage conflicting preferences by so addressing the preference conflict problem [6]. The 

training architecture then divides the RL feedback loop into two concurrent paths: (1) a Fast Path, which 

continuously monitors the model's outputs and applies targeted PPO updates to rapidly correct undesirable 

behaviors (for instance, if the model starts exploiting the reward function in a harmful way, this path issues an 

immediate "patch"; and (2) a Slow Path, which retrains or updates the reward model itself over longer intervals 

using accumulated new preference data, then periodically fine-tune the policy on this refined reward model for 

more comprehensive improvement [6]. InternLM2's approach reduces reward hacking in the long run (since 

the reward model is always realigned to true preferences) by combining fast reaction with slow, robust 

optimization, so improving the capacity of the model to quickly adapt to new feedback. This two-path online 

RLHF strategy exemplifies an architecture designed for real-time alignment updates without sacrificing 

stability. 

• Qwen-2 – Two-Stage Offline+Online Alignment: Alibaba's Qwen-2 model integrates RL loops using a 

different but instructive paradigm [7]. Training for Qwen-2 consists in an online and an offline stage. Under the 

offline stage, the model first aligns with human preferences using Direct Preference Optimization on a stationary 

dataset – so initializing the policy to a good state without any on-policy exploration [7]. Qwen-2 then enters a 

continuous learning loop online: the reward model (which is also being updated) chooses the best responses or 

pairs to create new preference data; the policy is then further optimized on these fresh examples in real time 

[7]. Qwen-2 generates several candidate responses for each new user prompt. An intriguing element of Qwen-

2's architecture is the Online Merging Optimizer [7], an algorithm that effectively combines the gradients from 

online updates with the current model without incurring excessive "alignment tax," or degradation of base 

capabilities. This optimizer guarantees that alignment improvements—higher rewards—are obtained with 

minimum sacrifice to the pre-trained knowledge or diversity of the model and helps minimize the computational 

cost of frequent online updates. The result is an LLM that continuously improves through deployment, 

effectively learning from each batch of interactions. Such a framework is well-suited for production scenarios 

where a model might receive a stream of queries and can be periodically fine-tuned to better handle the ones it 

struggled with, all while maintaining a stable core behavior anchored by the initial offline training. 

• DeepMind’s SCoRe – Self-Correction via RL: Another architecture emphasizes on helping the model to 

improve its reasoning by means of iterative development. Recently presented multi-turn online RL method Self- 

Correction via Reinforcement Learning (SCoRe) trains a single LLM to both generate answers and iteratively 

correct itself using its own feedback [8]. Under this framework, the model generates an initial solution and then 

enters a loop of self-reflection: it evaluates or "critiques" its solution (using an internal rubric or by spotting 

mistakes) and tries to improve it in next turns. Say a math question or code assignment here. Treating this self-

correction process as an RL scenario whereby the model's policy comprises not only final answers but also 
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intermediate "thoughts" or revisions and a reward signal is given for successful corrections is the main novelty. 

For training, SCoRe uses entirely model-generated feedback: it first runs a first phase of RL on a base model to 

initialize a policy that does not collapse to trivial behavior, then applies a reward bonus that especially 

incentivizes making corrections that fix mistakes [8]. Training on its own error and fix distribution helps the 

model to acquire general ability to identify and correct mistakes. With their Gemini models, DeepMind proved 

this method by showing significant increases in tasks including mathematical reasoning and code generation 

when the model is let to iteratively improve its answers [8]. The SCoRe framework emphasizes a new 

architecture whereby the model's own chain-of-thought serves as the "environment" for RL; this internal 

feedback loop increases adaptability in difficult, multi-step problem solving situations. It also emphasizes how 

current-time Feedback need not always come from an outside human or system; if guided properly, an LLM can 

learn using self-generated signals. 

• Other Notable Frameworks: Many more developments merit discussion. Through a customized RL training 

schedule that promotes long-chain-of-thought reasoning before final answers [3], OpenAI's latest "o1" model is 

optimized for high-level reasoning. In o1's training, the model participates in an internal debate or reasoning 

sequence (not shown to the user) and gets reward for solutions that show great depth without punishing the 

model's natural thought process with alignment constraints [3][11]. Architecturally, this means separating the 

reasoning module of the model from its responding module during RL training such that alignment—to user 

preferences—is only enforced on the final output. On coding and math benchmarks, this framework significantly 

raised o1's performance, showing that architectural separation of concerns—reasoning against compliance—

during RL can produce both high capability and alignment. The DeepSeek model series provides still another 

illustration: DeepSeek-V2 is a mixture-of-experts LLM with a two-stage RL training pipeline in which the first 

stage aligns the reasoning process of the model with verifiable steps and the second stage aligns the model with 

human preferences [6][ 9]. DeepSeek was able to address different objectives (truthfulness vs. style alignment) 

in a targeted manner [9] and use a smaller subset of experts for each stage by separating the RL training into 

specialized stages, so improving efficiency. Just a fraction of the model's parameters (experts) is active and 

updated for a given query, hence using a Mixture-of- Experts architecture in this context is an architectural 

advance that can make RL more scalable – hence, reducing computation. At last, models for multi-agent or 

multi-model integration are developing: one study linked an LLM with a conventional RL agent in a cooperative 

loop, where the LLM supplied high-level guidance and the RL agent executed in an environment, returning 

feedback to the LLM [3]. These designs suggest LLMs that might use RL to close the loop between language and 

environment, coupling with agents that see and act to enable adaptation to real-world environments. 

These models show generally the variety of ways in which online RL can be included into LLM training. From fast/slow 

dual loops for alignment to staged pipelines to self-play style self-correction, the common thread is that the model is no 

longer trained in a single forward pass over stationary data. Rather, training turns into an interactive, continuous 

process that represents a major paradigm change in our understanding of "deploying" artificial intelligence models. We 

then discuss the applications of such adaptive LLMs in the next part. 

5. Applications 

The integration of online RL loops unlocks a range of new application scenarios for LLMs that require adaptability and 

continuous learning. We highlight several areas where these techniques are making an impact: 

Adaptive Dialogue Systems: Conversational artificial intelligence and chatbots learning from user interactions seem 

to be the most immediately relevant applications. After training, traditional deployed models exhibit fixed behavior; an 

online RL-enhanced chatbot can update its policy depending on live user feedback (explicit ratings or implicit signals 

like user engagement). This lets personal assistant AIs or customer service bots progressively specialize to fit the tastes 

of a given user or corporate style rules. A support chatbot might, for instance, continuously improve its dialogue strategy 

by using a reinforcement signal connected to customer satisfaction—that is, whether a problem was fixed. Early ChatGPT 

deployments have indicated this potential by gathering user thumbs-up/down feedback; an online RL loop would go 

one step further by routinely fine-tuning the model on such feedback rather than merely using it for offline analysis. 

Safety is one issue here; a hostile or biassed user might try to "game the model" by providing distorted comments. 
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Research prototypes, however, are looking at protections so that only accurate feedback is utilized, so ensuring the model 

adapts in a positive manner. Learning conversational nuances, new slang or terms, and changing preferences in real 

time, the outcome would be customized LLMs that remain current and matched with their particular user base over 

time. 

Continuous Learning in Dynamic Domains: In fields where the underlying data or necessary knowledge shifts 

quickly, online RL loops are especially useful. Real-time information assistants are one such model that respond to 

inquiries concerning current events or up-to-date knowledge. In principle, coupling an LLM with an online learning 

mechanism could update itself as new data comes (for example, using reward signals for accuracy against a trusted 

source). Under these lines, a research prototype is the "Learned in Deployment" paradigm, in which a model can be 

guided to learn ([3] describes an interface where users can activate learning mode to update the model with fresh facts). 

In such situations, by considering correct prediction of new data as a reward, RL could be applied to choose which 

additional information to incorporate. Robotics and embodied agents are another field; LLMs are being applied to create 

code for control policies or to process instructions for robots. Integration of an RL loop allows a language model to 

modify its instructions depending on the success or failure of the robot's activities in the surroundings. An LLM guiding 

a household robot, for example, might get a reward should the robot finish the task and modify its next directions. Some 

recent work combines low-level RL controllers with LLM planners in interactive environments; the feedback of the RL 

controller efficiently trains the LLM to produce better high-level plans [3]. This shows application in interactive planning 

and reasoning, where environmental feedback—even if nonverbal—is looped back into the training language model. 

Enhanced Reasoning and Tool Use: Complex reasoning tasks including coding, mathematics, or multi-step 

problem solving have also benefited from LLM augmented with RL. As said, the SCoRe method directly relates to coding 

assistants who can iteratively debug and fix code since it uses an internal RL loop for self-correction. Such a coding 

assistant could run test cases on its produced code—the test results act as a reward signal—then modify its code-

generating policy to generate more accurate solutions in deployment. The model learns from the execution feedback 

instead of depending just on static training pairs of code and outputs, so this is an RL-driven analog of automated 

debugging. For math problem solvers, an LLM could similarly try a solution, confirm it (maybe using a built-in calculator 

or symbolic checker), and highlight logical sequences of events leading to right answers. This produces a model over 

time that is better at solving issues it first struggled with, so learning from its errors by means of experience. LLMs that 

can determine when and how to employ outside tools—such as search engines, calculators, APIs—are another developing 

use. Reinforcement learning can thus be applied to teach the tool-use policy of the model: those actions are reinforced 

if using a tool produces a better final answer (greater reward). Online instruction can enable the model to over time 

adjust to new tools or changing tool outputs. A model might learn, for instance, to call a real-time stock price API when 

asked financial questions since past successes have reinforced this behavior. An LLM's flexibility in open-ended 

environments is much enhanced by this capacity to interact with outside systems and learn best strategies for using 

them. 

Multi-Agent and Social Environments: Online RL loops let LLMs operate and learn in multi-agent systems or 

social environments outside of single-agent contexts. Imagine an artificial intelligence helping to run a forum or working 

on group projects with humans. Such an artificial intelligence can get comments not only from individual users but also 

from community results (e.g., did a conversation stay civil, was a group goal fulfilled). By means of composite reward 

signals that capture the quality of interactions, reinforcement learning offers a natural framework to update the AI's 

policy in these environments. Preliminary research on using LLMs in game-playing or negotiating environments where 

they must adjust to other agents' actions exists. An online learning loop could enable an LLM-based agent to improve 

its approach across many interactions, so producing more cooperative and efficient behavior. In summary, applications 

of online RL-trained LLMs span any scenario where learning from experience is beneficial: from personalized chat 

services and continuously learning knowledge bases to autonomous agents that use language for decision-making. While 

many of these are in experimental stages, they point toward AI systems that do not remain static after deployment, 

but improve through use. 
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6. Challenges and Limitations 

Incorporating online RL loops into LLM training, while powerful, introduces several significant challenges and 

limitations that must be addressed: 

Stability and Safety: Maintaining the stability of the model during ongoing updates is maybe the main issue. Under 

RL training, large neural networks are prone to instability; little changes can lead to surprising behavior changes. An 

online RL loop might cause catastrophic forgetting of the core knowledge or grammar without careful regularization—

that is, reference models or KL penalties. If a reward model is flawed, for example, the policy may take advantage of it 

and produce degenerate outputs—a phenomena sometimes known as reward hacking. Online environments increase 

this risk since the model is always optimizing, thus maybe aggravating any misalignment. Empirically, methods such as 

those applied in ChatGLM's RLHF pipeline – e.g. reducing reward variance, applying parameter constraints, and 

gradual learning rates – are crucial to prevent divergence [3][10]. Safety is another consideration: if the feedback signals 

are not tightly regulated, an online learning model may unintentionally pick up negative behaviors. One interesting 

event is the possibility of a chatbot learning harmful language from trolling users who offer positive reward for negative 

behavior. Preventing such exploitation calls for strong feedback filtering and maybe human loop control. Safe 

exploration techniques from RL research (like conservative or pessimistic updates [5]) are being adapted to limit the 

model’s deviation into unsafe regions. In summary, ensuring that each update helps and does not harm the model is a 

complex challenge, and it becomes harder as the model continually evolves. 

Reward Specification and Bias: "You get what you measure," is a well-known RL proverb. Creating a suitable 

reward signal for language activities is rather challenging. Human preference models can be biassed or inconsistent; 

automated rewards—e.g., those resulting from programmatic checks or AI feedback—may overlook minute quality 

issues. Any bias in the reward is reinforced over time in online training. Should users unintentionally reward too 

simplified responses, the model could get overly simple. Furthermore, there is the problem of multi-objective trade-offs 

since LLM behavior entails concurrently being honest, useful, benign, etc. Reducing these multifarious goals to a single 

reward score is lossy. While some sophisticated methods (such as the conditional reward model of InternLM2) try to 

balance several rewards, this too is difficult when updating in real time. Moreover, reward models themselves may need 

re-training as the policy changes to prevent non-stationarity—a fixed reward model evaluating an evolving policy can 

become outdated). This creates a complex dual-loop: both the policy and reward model might be learning together, 

which can destabilize if not properly synchronized. Research is ongoing into more robust reward modeling – for 

instance, using uncertainty estimates from the reward model to know when it’s unreliable, or even learning reward 

functions that generalize better to new policy behaviors [5]. 

Scalability and Computational Cost: Online RL training on a deployed LLM calls for large computational 

resources. Even once, large models with billions of parameters are costly to fine-tune; hence, doing so either 

continuously or repeatedly can be impossible. Although some techniques such as GRPO reduce cost by streamlining the 

RL objective [9], the fact is that maintaining an LLM "live-updating" calls for a strong infrastructure. This creates 

pragmatic problems: updates might be done rather than really streaming on a delayed cycle (e.g., nightly fine-tuning 

runs). Storing and analyzing the stream of interaction data is also non-trivial; one must choose how much history to 

retain and how to sample it for training (to prevent overfit to recent interactions or skewing the model with too narrow 

data). Though they complicate things, techniques from lifelong learning—such as memory systems or experience replay 

buffers—can help control this. Evaluation presents another difficulty since the model is always changing and we need 

accurate automated metrics to determine whether an update has really brought regressions or actually improved things. 

Therefore, constant deployment requires constant evaluation pipelines, which by themselves are computationally 

demanding. 

Generalization vs. Specialization: Adaptation in dynamic surroundings is a two-edged blade. One could argue that 

an online RL loop can make a model quite precisely matched to the current environment or user base. Conversely, this 

specialization might reduce the generalization of the model. For instance, a model may perform worse for other 

communities or on unrelated tasks if it customizes itself greatly to the vernacular of one community through online 

learning (this is like overfitting in a non-stationary sense). A classic challenge in lifelong learning, the stability-plasticity 

dilemma is keeping a balance between plasticity—ability to learn new information—and stability—retaining existing 
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knowledge. After strong fine-tuning, LLMs show a type of "loss of plasticity" whereby they may find it difficult to learn 

new patterns without forgetting past ones. To address this in the RL setting, some methods including regularization or 

model expansion—adding new parameters for new knowledge—are under investigation. To reduce interference, one 

could set the remaining capacity of the model to be fixed while allocating a small part to absorb online updates—like 

low-rank adaptation modules. An open research question is determining the correct methods to make sure an LLM stays 

generally capable even as it specializes on current data. 

Ethical and Control Issues: Letting a model change in reaction to outside comments also begs governance issues. 

Who manages the comments and hence the direction the model picks? Feedback attacks—malicious actors could 

coordinate to provide a model misleading reward signals to drive it toward undesirable behavior—have potential in a 

live environment. Online training exposes the learning process to the wild, blurring the line between deployment and 

learning unlike controlled environments in which static training occurs. Strong protections are therefore needed: e.g., 

weighting feedback by trustworthiness, including people in the loop for critical updates, or sandboxing the model's 

updates prior to official publication. Moreover, openness gets more difficult when the parameters of a model are always 

changing. Examining an always changing model for biases or compliance is like aiming toward a moving target. This 

complicates the application of rules or ethical guidelines presuming a more stationary artificial intelligence system. 

From an ethical perspective, then, deployment of self-learning LLMs must be done carefully to guarantee responsibility 

for how the model is evolving with time. 

In general, online RL integration introduces significant complexity in preserving model quality even if it brings 

flexibility. Active areas of study abound in issues of stability, reward design, cost, overfitting, and misuse. Many present 

systems use semi-online strategies (e.g., gathering feedback but updating just periodically after careful review, rather 

than immediately) to help to overcome these difficulties. Although the above restrictions are not too great to overcome, 

addressing them will be essential for the safe and efficient application of always learning language models. 

7. Future Work 

The convergence of reinforcement learning and large language models is still in its early days, and numerous avenues 

exist to enhance scalability and adaptability further: 

Improving Sample Efficiency: Reducing the required feedback data for successful online learning is one future path. 

Methods like meta-learning or few-shot RL could let models improve behavior more broadly from fewer interactions. A 

meta-learned policy might, for example, internalize a fast-adapting learning algorithm, so reflecting "learning to learn" 

within the model weights. Reward learning from implicit signals is another method whereby models could deduce 

rewards from user behavior (e.g., whether the user followed a suggestion, or how long they interacted with the answer), 

so substituting for reliance just on explicit human ratings. Reliable methods to extract feedback signals from implicit 

user interactions would significantly scale up the accessible training signal and enable online adaptation in practice. 

Unified Multi-Objective Alignment: As noted, modern approaches sometimes combine several goals—truthfulness, 

helpfulness, etc.—via a single reward or by alternating optimization. More complex solutions, such hierarchical reward 

models or multi-objective RL, could result from future studies. One concept is to have the policy optimized by a 

composite reward that guarantees none of the important criteria are regressed and train separate reward models for 

different aspects. Alternatively, hierarchical approaches may train an LLM in stages – e.g., first ensure a basis level of 

safety, then let it adapt for usefulness – with mechanisms to prevent forgetting the earlier objective. Including symbolic 

or rule-based constraints into the RL loop—sometimes known as limited RL—is a direction with promise. For instance, 

even as a model learns from reward, it could be forbidden from using hard constraints into areas known to violate 

particular safety regulations. It is an open issue to integrate such constraints in a way that fits gradient-based learning; 

success there would allow adaptability without compromising fundamental alignment characteristics. 

Dynamic Reward Modeling: The reward models themselves might get more dynamic and sophisticated. Research 

on LLMs as reward models—using big models to offer more contextually aware feedback outside of a single scalar—may 

be forthcoming. For instance, the policy model could be trained to maximize those multi-dimensional signals while an 

LLM-based judge could provide thorough comments on why an answer is good or bad. This relates to concepts of using 

explanations or criticisms (akin to those of Constitutional AI's self-critiques [2]) not only to train the model once, but 



Journal of Information Systems Engineering and Management 
2024, 9(4s) 
e-ISSN: 2468-4376 
https://www.jisem-journal.com/ Research Article 

 

 

 1025 

 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

constantly. Moreover, including uncertainty estimation in reward models could enable an RL system to identify when 

the reward signal is unreliable and defer to human input in those circumstances – a kind of active learning for rewards. 

Perhaps via periodic human review or AI cross-checks, future frameworks could routinely retrain or calibrate reward 

models on the fly so that the benchmark for "good behavior" remains strong as the policy develops. 

Memory and Continual Learning Mechanisms: Future LLM designs may have dedicated components for 

continuous learning to handle the stability-plasticity problem. Adding a long-term memory to LLM systems, for 

example, where the model can save fresh data acquired from interactions, without rewriting its parametric knowledge, 

is of great interest. Such memory could be non-parametric, meaning that the model consults a growing knowledge base 

updated with new facts or dialog snippets along with meta-data regarding their validity). Then, rather than only 

changing the massive weight matrix of the neural network, reinforcement learning could function partly by writing to 

and reading from this memory. This would let models change quickly by updating memory, while the fundamental 

language skill stays the same. Research on architectures including differentiable neural storage, context retrieval, or 

dual-network designs—one network learns new information rapidly, another retains long-term data—will be quite 

pertinent. Furthermore, applied to RL fine-tuning could be methods from continuous learning research, such elastic 

weight consolidation, knowledge distillation from the new model to the old to retain knowledge, etc. Another interesting 

direction is the concept of an LLM that can expand its capacity over time: instead of a fixed-size model, picture one that 

adds neurons or layers as new data comes in, somewhat like how humans gather knowledge without superseding old 

competencies. 

Human-in-the-Loop and Oversight Tools: Human supervision will always be crucial even as we advocate really 

real-time learning LLMs. Future research will probably look at tools and interfaces allowing human supervisors to track 

and direct the online learning process. One could create dashboards showing how the behavior of the model is evolving 

following each update, flags possible drifts or emergent behaviors, and let a human intervene (approve, reverse, or 

change updates). This could be combined with explainable RL methods to understand why the model is changing – e.g., 

which feedback resulted in a clear change. Transparency of the continuous learning process helps developers to create 

better guardrails. Regarding algorithms, future study subjects of great relevance will be rewarding auditing and feedback 

robustness analysis: Stress-testing the system with adversarial feedback will help to guarantee that the outputs of the 

reward model really match desired outcomes even as the policy enters new spheres. 

Applications and Benchmarks: At last, future research should also set accepted standards for adaptive LLMs. Most 

assessments nowadays take place on stationary test sets, which do not reflect a model's capacity for change with time. 

We hope to develop evaluation systems whereby a model is subjected to a series of tasks or interactions and the metric 

is the degree of learning or improvement from one episode to the next. Such benchmarks might be in interactive games, 

simulated dialogues, or constant knowledge updates—a "streaming QA" benchmark whereby questions include current 

facts. Measuring learning dynamics helps researchers to evaluate improvement in online RL integration. Regarding 

applications, we anticipate more real-world pilots—for instance, limited deployments of a continuously learning 

customer support model in a controlled environment or LLM assistants in education learning to better assist every 

student individually. These will offer insightful commentary on what goes right and what dangers still exist. 

Future studies will thus seek to make online RL loops in LLMs more safe, efficient, and strong overall. The aim is an 

LLM that can be trusted to learn autonomously – adjusting to new data and objectives as they develop, so preserving 

the integrity of its aligned behavior. Reaching this probably calls for developments in machine learning subfields, from 

improved algorithms and architectures to fresh ideas in line with ethics and human-AI interaction. 

8. Conclusion 

A major step toward artificial intelligence systems capable of real-time adaptation and evolution is the inclusion of online 

reinforcement learning into the training of big language models. We have investigated the new architectures and 

algorithms that allow an LLM to remain a moving target – improving constantly by feedback loops instead of being 

stationary following pre-training. By adding adaptability and interactivity to the learning process, these developments—

which include multi-round RLHF strategies, artificial intelligence-feedback techniques, iterative on-policy training, and 

specialized optimization algorithms—collectively address important constraints of earlier static models. Empirical 

findings thus far indicate that online RL helps LLMs in terms of alignment with human preferences, error correction 
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and handling of challenging tasks, and resilience against changing input distributions. Especially PPO-based online 

updates and hybrid offline-online pipelines have scaled to significant models, suggesting that the method is practical 

even for state-of- the-art systems [4][7]. 

Still, performance improvements bring fresh difficulties as well. Key issues still are keeping stability, stopping reward 

hacking, and guaranteeing safety in an autonomous learning environment. The work examined makes it abundantly 

evident that these training approaches will co-evolve with mechanisms including KL regularization, careful reward 

design, and human supervision. The scalability of constantly learning models also requires more creative ideas in 

effective memory systems to manage the computational load. 

An online RL-enabled LLM could constantly adapt itself to user feedback in dynamic real-world deployments, so 

attaining a degree of personalizing and domain adaptation hitherto impossible. It could also be the basis for agents that 

learn to make better decisions using language; for instance, enhancing the task performance of a virtual assistant by 

stressing successful results. The possible benefits are great: AI models that improve with use will lower failure rates over 

time and remain in line with human users even as those needs evolve. Realizing this vision responsibly, however, will 

need addressing the described constraints. Future studies should guarantee that, even if we let our language models to 

grow from the environment, they remain under significant control and in line with our values. 

Ultimately, including online RL loops into LLM training seems to be a road towards really adaptive language 

intelligence. The innovations covered in this work show that this evolution is being driven by both architectural changes 

(e.g., new training loops, memory components) and algorithmic advances (e.g., improved RL algorithms, reward 

modeling techniques). We get closer to AI systems that not only are strong and aligned at deployment but can also keep 

learning safely and effectively over their lifetime, so enabling more resilient and capable AI in our daily life as we 

continue to improve these techniques. 
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