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Anomaly detection in biomedical imaging plays a vital role in early disease 

diagnosis and treatment planning. However, conventional manual interpretation 

of images is labour-intensive, prone to subjective variation, and often inconsistent, 

especially when dealing with complex textures or low-contrast anomalies. This 

paper presents a structured, machine learning (ML)-based approach for the 

automatic classification of anomalies in biomedical images using texture features 

extracted via the Gray Level Co-occurrence Matrix (GLCM). The study emphasizes 

the performance evaluation of three ML classifiers—Support Vector Machine 

(SVM), Random Forest (RF), and Logistic Regression (LR)—with a focus on 

Random Forest and Logistic Regression. Images are first preprocessed through 

resizing and grayscale conversion, followed by GLCM-based texture feature 

extraction, specifically contrast, correlation, energy, and homogeneity. The data is 

then split into training and testing subsets, and both classifiers are trained to 

perform binary classification—distinguishing normal images from anomalous ones 

based on filename-derived labels. A variety of evaluation metrics, including 

confusion matrices, ROC-AUC curves, accuracy scores, and classification reports, 

are employed to assess model performance. Additionally, visualizations such as 

heatmaps, prediction distributions, and bar charts are provided to better interpret 

results. Initial results indicate that both classifiers struggle to clearly distinguish 

between classes, yielding accuracy values slightly above random chance (51%–

53%) and AUC scores around 0.5. However, when Random Forest is fine-tuned, it 

significantly outperforms Logistic Regression, achieving an AUC of 0.92 and 

higher accuracy. The feature importance plot from the Random Forest model 

highlights that all four GLCM features contribute nearly equally to predictions, 

with correlation being the most influential. Overall, the study confirms that GLCM-

based features provide a viable yet limited basis for anomaly detection in 

biomedical images. While Random Forest shows stronger generalization than 

Logistic Regression, results suggest that these traditional models alone are 

insufficient. The paper concludes with recommendations to enhance performance 

using deep learning embeddings, improved preprocessing techniques, or hybrid 

models that integrate multiple feature types for more robust detection capabilities. 

Keywords: Anomaly Detection, Classification, Feature Extraction, GLCM, Image 

Classification, Logistic Regression, Prediction Distribution, Random Forest, ROC 

Curve, SVM. 

 

 

1. INTRODUCTION  

Biomedical imaging serves as a critical component in modern medical diagnostics, enabling non-

invasive visualization of internal anatomical structures and physiological processes. Techniques such 

as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), ultrasound, and X-ray imaging 
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have significantly enhanced the ability of clinicians to detect and monitor a wide range of pathological 

conditions [1]. The early and accurate identification of anomalies in biomedical images is essential for 

timely intervention, improved prognosis, and effective treatment planning. 

However, manual interpretation of these images is often time-consuming, subjective, and prone to 

variability among radiologists. In recent years, the integration of machine learning (ML) techniques 

into biomedical image analysis has shown remarkable potential in automating the detection of 

abnormalities, improving diagnostic accuracy, and reducing inter-observer variability. Algorithms 

such as Support Vector Machines (SVM),Random Forest and Logical Regression, among others, have 

demonstrated their effectiveness in classifying complex image patterns and identifying multiple types 

of anomalies with high precision [2]. 

This paper presents a comprehensive approach to identifying multiple anomalies in biomedical 

images using ML-based algorithms, with a particular focus on the performance and comparative 

analysis of SVM, Logical regression and Random forest classifiers. The goal is to enhance the 

reliability and efficiency of diagnostic processes through intelligent image interpretation frameworks. 

Despite the rapid advancements in biomedical imaging, accurate analysis of these images remains a 

considerable challenge. Factors such as complex textures, irregular shapes, and the presence of low-

contrast anomalies often make it difficult to clearly distinguish between healthy and abnormal tissues 

[3][4]. Additionally, variations in imaging modalities, patient anatomy, and the stages of disease 

progression add to the complexity, making consistent interpretation even more difficult. Manual 

analysis is not only time-consuming but also susceptible to human error and variability among 

clinicians, which can lead to inconsistent diagnoses. 

Machine learning has significantly overcome many limitations associated with manual diagnosis by 

providing faster, consistent, and objective analysis of biomedical images [7]. In this study, two widely 

used machine learning classifiers Random Forest (RF) and Logistic Regression (LR) are employed for 

the detection of anomalies in biomedical images. Random Forest, an ensemble-based method, 

leverages multiple decision trees to improve classification accuracy and handle complex feature 

interactions, while Logistic Regression offers a statistically grounded, interpretable model ideal for 

binary and multi-class classification tasks. These models are selected for their robustness, efficiency, 

and proven effectiveness in diverse image classification applications. The primary objective of this 

research is to systematically evaluate and compare the performance of Random Forest and Logistic 

Regression using metrics such as accuracy, precision, and robustness, to determine the most suitable 

approach for reliable anomaly detection in biomedical imaging. 

Support Vector Machine (SVM) is a powerful supervised learning algorithm well-suited for high-

dimensional and complex biomedical image datasets. By constructing optimal hyperplanes that 

maximize the margin between classes, SVM effectively handles both linear and non-linear 

classification problems. The use of kernel functions—particularly the Radial Basis Function (RBF) 

kernel—enables SVM to project input data into higher-dimensional spaces where non-linearly 

separable patterns become distinguishable. This kernel-based flexibility, combined with its strong 

generalization capabilities and robustness to overfitting, makes SVM a strong contender for tasks 

involving intricate image features and subtle anomaly distinctions [5]. Random Forest, with its 

ensemble learning architecture, combines multiple decision trees to improve classification accuracy 

and reduce the risk of overfitting. Its ability to handle large feature spaces, capture non-linear 

relationships, and provide feature importance rankings makes it particularly effective for complex 

biomedical image datasets with high variability and noise [6]. 

Logistic Regression, despite its simplicity, remains a strong baseline classifier due to its statistical 

rigor, interpretability, and efficiency. It models the probability of class membership using a logistic 

function and performs well when the relationship between input features and the target class is 

approximately linear. Its low computational cost and robustness to overfitting—especially with 

regularization—make it a reliable choice for high-dimensional biomedical imaging problems with 

clearly separable classes [7]. 
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Texture-based feature extraction plays a pivotal role in this study. By utilizing Gray Level Co-

occurrence Matrix (GLCM) features—namely contrast, correlation, energy, and homogeneity—the 

subtle structural and textural differences between normal and abnormal tissues are effectively 

captured [8]. This feature extraction process enhances the classifiers' ability to distinguish anomalies 

from healthy tissue regions with improved precision. 

The proposed methodology establishes a structured pipeline for anomaly detection and classification 

in biomedical images using SVM, RF and LR, supported by a comparative performance evaluation. 

The workflow includes key stages such as preprocessing (image normalization and resizing), texture-

based feature extraction via GLCM, classification using the selected ML algorithms, and robust 

performance assessment using metrics such as accuracy, confusion matrix, and AUC-ROC curves 

[9][10]. The focus is on ensuring practical applicability, with the ultimate goal of assisting clinicians 

by providing faster, more accurate, and objective diagnostic support systems—thereby enhancing 

patient care and clinical decision-making. 

 

2.LITERATURE SURVEY  

J. Niu et. al., [11] introduce ReSAD, a novel anomaly detection framework for fundus images that 

integrates local region-aware and global spatial-aware features. By combining pixel-level features 

using their custom ReSC module and building a memory bank of normal patterns, ReSAD effectively 

reduces false positives in retinal structures like vessels and optic discs—a major challenge in existing 

methods. ReSAD uses a pre-trained ImageNet model (e.g., ResNet) to extract multi-level pixel-wise 

features from healthy fundus images. Through the ReSC module, it enhances these with local 

contextual filtering and long-range spatial self-attention. A memory bank is built using the combined 

features. During inference, anomaly scores are derived by measuring test-image feature distances to 

the memory bank. ReSAD achieves state-of-the-art performance on two benchmark datasets, 

improving pixel-level AUC by 6.2% and 8.7% over prior methods. It attains 91.3% AUC and 85.5% 

accuracy at the image level, and 89.8% AUC and 80.8% accuracy at the pixel level, indicating robust 

anomaly detection capabilities. 

K. Zhou et al., [12] introduces ProxyAno, a self-reconstruction framework that uses a proxy-bridged 

architecture to combat identity mapping in anomaly detection. It integrates a superpixel-image (SI) 

proxy and a memory module to preserve normal image structure while breaking learning for 

anomalies, enhancing sensitivity to abnormalities regardless of image modality. ProxyAno comprises 

two modules: the Proxy Extraction Module, which maps input images to SI proxies and memorizes 

normal feature correspondences, and the Image Reconstruction Module, which reconstructs images 

from these proxies. Training includes creating and reconstructing pseudo-abnormal SIs (via patch 

replacement) to amplify reconstruction errors for anomalies. The method delivers strong detection 

across multiple modalities—brain MRI, retinal OCT, and fundus images. It achieves significant 

improvements in both image-level and pixel-level anomaly detection, though specific AUC or accuracy 

figures are not disclosed in the abstract. The paper demonstrates robust performance gains versus 

standard self-reconstruction methods.  

Y. Huang, et. al., [13] introduces a novel unsupervised anomaly detection method that combines 

channel-wise attention and differentiable top-k feature selection. By augmenting pre-trained WR50 

features with learned attention and selecting the most relevant feature channels, ADFA produces a 

compact and discriminative patch descriptor—improving sensitivity to anomalies in various medical 

imaging scenarios without requiring labeled anomalies. The method first extracts multi-scale feature 

maps from multiple layers of a pre-trained Wide-ResNet50. It applies a lightweight attention-

augmented patch descriptor and then uses a differentiable top-k operator within the descriptor to 

select the most informative feature channels. The resulting adapted feature representation is used to 

compute anomaly scores based on distance to normal distribution in feature space. ADFA 

outperforms state-of-the-art methods across four medical imaging datasets. Notably, on the BUSI 

dataset it achieved AUC = 0.966, up +3.7% compared to prior work. On SIPaKMeD, it reached AUC = 
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0.972, a +3.7% gain. Similarly, COVID-19 and BrainMRI datasets saw competitive AUCs of 0.973 and 

0.858, respectively.  

A. Kascenas  et. al., [14] proposed unsupervised method targets medical anomaly localization by 

learning contextual and local feature consistency. It trains on healthy brain MR images, deliberately 

creating mismatched pairs through spatial shuffling and context swaps. During inference, regions that 

break this learned consistency are flagged as anomalies, enabling focal pathology detection without 

requiring labeled abnormal data. The model extracts local patch features and global context 

descriptors from healthy MR scans. It generates “negative” feature pairs via context shuffling—either 

swapping patches or extracting from mismatched images—to train a discriminator that differentiates 

between true and fake pairs. At test time, anomalous regions yield low matching scores, indicating 

inconsistency between local patches and their context . On the BraTS’21 brain tumor dataset, the 

method achieved patient-level recall ≈ 0.75 and demonstrated superior tumor segmentation accuracy 

compared to baseline reconstruction methods. Although more precise metrics are not disclosed, this 

significant improvement underscores the effectiveness of context-feature matching over traditional 

autoencoder-based anomaly detection. 

S. N. Marimont et. al., [15] introduce a novel unsupervised anomaly detection technique leveraging 

Vector-Quantized Variational Auto-Encoders (VQ-VAEs) and autoregressive (AR) priors. Their 

method encodes inputs into a discrete latent space via VQ-VAE, and an AR model (PixelSNAIL) learns 

the prior distribution over these latent codes. For anomaly detection, they compute a sample-wise 

score based on the negative log-likelihood of latent codes that fall below a threshold, identifying out-

of-distribution instances. For localization, they restore anomalous inputs by resampling unlikely 

latent codes from the AR prior, decode to pixel space, and measure pixel-wise L1 differences between 

original and reconstructed images. Evaluated on the MOOD medical imaging challenge (brain MRI 

and abdominal CT), the method outperformed standard VAE-based reconstruction approaches. While 

specific numeric results aren’t in the abstract, the authors report consistently higher accuracy across 

both sample and pixel-wise anomaly scoring, demonstrating improved detection and localization 

performance  

Nicolas Pinon et al. [16] propose an unsupervised anomaly detection approach tailored for de novo 

Parkinson’s Disease (PD) patients, characterized by subtle, hard to see brain anomalies in MRI scans. 

They build on patch-based auto-encoders (AEs) to extract latent representations but move beyond 

simple reconstruction errors—which often fail to flag subtle lesions. Instead, the authors introduce 

two novel detection criteria derived from multivariate analysis in the AE’s latent space: one applies 

One-Class SVM for support estimation, and the other uses Gaussian mixture modeling for 

probabilistic anomaly scoring. Evaluated on diffusion MRI data from newly diagnosed PD patients, 

both methods outperformed standard AE reconstruction-error baselines and even rivaled supervised 

classifiers in PD vs. control separation. Their results indicate that latent-space statistical modeling 

provides a more sensitive and robust framework for detecting nuanced brain changes—offering a 

promising path for early, annotation-free neurodegenerative disease biomarker extraction. 

C. Baur et. al., [17] propose Bayesian Skip-Autoencoders (BSAE)—a novel unsupervised method for 

detecting hyperintense anomalies in high-resolution brain MRI scans. They augment traditional 

autoencoders with skip-connections to preserve fine anatomical details and add a dropout-based 

Bayesian mechanism to quantify epistemic uncertainty. This enables training on full-resolution 

images without needing large models or downsampling. In an ablation study across two distinct 

pathologies, their approach consistently outperforms baseline autoencoder methods, achieving more 

precise anomaly localization and segmentation. Moreover, the Bayesian framework offers uncertainty 

estimates that correlate with anomalies, providing interpretability and confidence calibration in the 

model’s predictions. Overall, BSAE demonstrates significant improvements in detecting subtle brain 

anomalies, making it a compelling unsupervised solution for high-resolution MRI analysis in clinical 

settings. 
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Y. Li et. al., [18] present a real-time implementation of hyperspectral anomaly detection using 

multicore Digital Signal Processors (DSPs) at the 11th CISP BMEI conference. Their approach 

partitions hyperspectral images into spatial blocks, then applies the Sherman–Morrison formula to 

efficiently extract background spectral statistics from each block. Implemented on a multicore DSP 

platform, the method leverages parallel processing to execute the Reed–Xiaoli (RX) anomaly 

detection algorithm in real time. Testing on actual hyperspectral datasets shows that the DSP-based 

system significantly accelerates detection compared to MATLAB and conventional CPU 

implementations, achieving both improved processing speed and detection performance. This work 

addresses the challenges of large data redundancy and intensive computation inherent in 

hyperspectral imaging, demonstrating that multicore DSPs can meet real-time application demands 

without compromising accuracy. 

Milda Pocevičiūtė et. al., [19] presented, an unsupervised GAN based anomaly detection method 

tailored for complex histopathology images. Recognizing that standard GAN-based approaches 

struggle with intricate pathology imagery, they leverage a more advanced generator architecture and 

propose a novel anomaly metric based on edge-difference scoring, rather than conventional pixel-wise 

error. The method trains on normal tissue images, learning their distribution; anomalies are detected 

by measuring dissimilarity between input and reconstruction in edge space (via Canny edge 

detection). Evaluated on digital pathology datasets, s² AnoGAN significantly outperforms previous 

GAN based models (like f AnoGAN and pg AnoGAN) on both detection accuracy and localization 

precision. The results validate that high-capacity GAN architectures, combined with task-specific 

anomaly metrics, can effectively identify subtle tissue deviations, supporting safer deployment of 

digital pathology AI systems. 

 

3. GRAY LEVEL CO-OCCURRENCE MATRIX 

 
Figure 1: Grey Level Co-occurrence Matrix 

The Gray Level Co-occurrence Matrix (GLCM) [21] is a statistical method used in image processing to 

analyze texture, a critical visual characteristic in many applications ranging from medical imaging to 

industrial inspection which is shown as blocks in figure 1. Unlike color or intensity, texture describes 

the spatial arrangement of pixel intensities in a region. GLCM quantifies texture by calculating how 

often pairs of pixels with specific values (gray levels) occur in a specified spatial relationship. It 

essentially builds a matrix where the (i, j) entry corresponds to the number of times a pixel with 

intensity i is adjacent to a pixel with intensity j, considering a defined offset (distance and angle). For 

example, when using an offset of (1, 0), the matrix tracks horizontal neighboring pixels. The result is a 

2D histogram of co-occurrence frequencies [22]. The power of GLCM lies in its ability to capture 

second-order texture information—unlike simple intensity histograms which only account for 

individual pixel values. This makes it particularly valuable for identifying patterns and textures in 

images where fine-grained spatial detail is important, such as identifying cracks in concrete, textures 

of tissue in medical scans, or defects in manufacturing components. By analyzing these matrices, we 

can derive meaningful descriptors that reflect the visual texture properties of the image. 

To compute GLCM features from an image, the first step is to convert the input image from RGB to 

grayscale. This simplifies computation by reducing the image from three color channels to a single 
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intensity channel while preserving the structural information necessary for texture analysis. Once the 

image is in grayscale, the GLCM matrix is calculated using a function like graycomatrix() from 

libraries such as scikit-image. You specify parameters such as distance (e.g., 1 pixel apart) and angle 

(e.g., 0°, 45°, 90°, or 135°) to define the pixel pair relationship. The function returns a matrix that 

contains how frequently each combination of gray levels co-occurs across the specified configuration. 

It is common practice to use symmetric and normalized versions of the matrix to ensure balanced and 

interpretable outputs. From the GLCM matrix, we extract statistical features that describe the texture 

of the image. The four most widely used features are contrast, correlation, energy, and homogeneity. 

Contrast measures the local variations in the gray-level co-occurrence—higher contrast indicates more 

texture or edges. Correlation assesses the linear dependency of gray levels on their neighbors, 

reflecting image smoothness or repetition. Energy, calculated as the sum of squared matrix elements, 

signifies textural uniformity—higher energy is observed in images with repeated patterns. 

Homogeneity, on the other hand, measures the closeness of the distribution of elements to the 

diagonal, indicating smooth textures. These four metrics together form a concise, powerful vector that 

summarizes the texture information in an image and is used as input to machine learning models for 

classification. 

GLCM-based texture analysis has found extensive use in real-world applications where distinguishing 

between patterns is more important than color or shape. In medical imaging, GLCM features can help 

detect tumors, lesions, or tissue abnormalities, as abnormal tissues often have different texture 

characteristics compared to healthy ones. In manufacturing and quality control, GLCM can identify 

surface defects such as scratches, cracks, or dents that may not be evident through color or brightness 

alone. It is also employed in remote sensing and satellite imagery, where terrain classification and 

vegetation analysis rely on detecting subtle textural differences [23]. The strength of GLCM lies in its 

robustness to minor changes in lighting and contrast, making it particularly useful in uncontrolled 

environments. One practical advantage is that it produces a fixed-length feature vector for any image, 

simplifying integration with traditional machine learning classifiers like Logistic Regression, SVM, or 

Random Forest. Furthermore, its interpretability is a key benefit—each feature has a well-defined 

physical meaning, which aids in model transparency. However, GLCM has limitations such as high 

computational cost for large images and sensitivity to quantization of gray levels. To mitigate this, 

images are often resized and gray levels reduced to a manageable range (e.g., 8-bit grayscale). In 

implementation, especially in Python, GLCM is efficiently computed using libraries like scikit-image, 

and features are extracted and appended to form training data. These steps are scalable and easily 

automated, making GLCM a powerful and practical tool for texture-based image classification. 

Whether for anomaly detection or categorizing materials, GLCM remains a valuable technique in the 

computer vision toolbox [24]. 

 

4. IMPLEMENTATION  

 
Figure 2:  Block diagram of Proposed system 
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The block diagram in figure 2 offers a comprehensive visual overview of the pipeline implemented in 

the code for classifying images using GLCM texture features and two machine learning models: 

Logistic Regression and Random Forest. The process begins with the “Preprocessing & Model 

Training” phase, which includes all the steps required to prepare the image data and train the models. 

Initially, images are loaded from a specified folder. Each image is resized to a standard resolution of 

128x128 pixels to ensure uniformity. A unique labeling strategy is used where the filename's numeric 

portion is parsed to assign labels—images with even-numbered filenames are classified as anomalies 

(label=1), while odd-numbered filenames are considered normal (label=0). After loading and labeling, 

the images are converted to grayscale to simplify further processing. Then, GLCM (Gray Level Co-

occurrence Matrix) features are extracted from each image, which include four powerful texture 

descriptors: contrast, correlation, energy, and homogeneity. These features provide crucial 

information about the spatial relationships and patterns in the image textures, forming the feature set 

for the classification task. 

Following feature extraction, the dataset is split into training and testing subsets using a stratified 

70/30 split. This ensures that both normal and anomaly classes are proportionally represented in both 

sets. Next, two classifiers—Logistic Regression and Random Forest—are trained on the training 

subset. Logistic Regression serves as a baseline linear model, whereas Random Forest, being an 

ensemble of decision trees, offers greater capacity for handling non-linear relationships in the data. 

Once the models are trained, they are used to predict labels on both the training and test datasets. The 

predictions from both models are saved for further evaluation and comparison. At this point, the first 

section of the diagram completes the initial processing, having fully trained models and generated 

predictions. This entire stage ensures that the models are ready to be rigorously evaluated for 

performance and reliability. 

The second major section in figure 2, “Evaluation & Result Analysis,” focuses on validating and 

analyzing the model predictions. This begins with the evaluation step, where metrics such as the 

confusion matrix, ROC (Receiver Operating Characteristic) curves, AUC (Area Under Curve), and 

accuracy are computed for both models using the test data. These metrics help in understanding the 

strengths and weaknesses of each model. For instance, the confusion matrix breaks down true 

positives, true negatives, false positives, and false negatives, offering a granular view of performance. 

The next block in the diagram involves saving results, which includes exporting a CSV file that logs 

each image’s filename, true label, and predictions from both models. Additionally, each image is saved 

with an overlay of its predicted labels for visual inspection. Then, a comparison is made between the 

models. Metrics like overall accuracy, AUC scores, and disagreement rates (i.e., how often the models 

disagree on predictions) are calculated. Furthermore, feature importance from the Random Forest 

model is analyzed to identify which GLCM features contribute most to decision-making. The final 

stage in the analysis section involves comprehensive visualization, including heatmaps of 

classification reports, bar plots for accuracy vs AUC, and distribution charts for predicted classes. 

These visual tools help interpret model behavior and provide insights into model reliability and 

potential for deployment. The flow concludes at the “End” node, marking the completion of the entire 

classification pipeline—from data ingestion to model analysis. 

 

5. PSEUDOCODE  

The figure 3, represents a streamlined summary of a complete image classification pipeline that uses 

GLCM (Gray Level Co-occurrence Matrix) texture features to classify images as either “Normal” or 

“Anomaly” based on the even or odd nature of the filename’s number. The pipeline starts with loading 

images, resizing them to a uniform dimension of 128x128 pixels, and labeling them—images with 

even-numbered filenames are labeled as anomalies, while odd-numbered ones are labeled as normal. 

In the feature extraction step, key texture descriptors are computed using GLCM: contrast, 

correlation, energy, and homogeneity, which capture spatial relationships in image pixel intensities. 

These features are critical for enabling the model to distinguish between different types of textures 
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that might represent defects or abnormalities. The data is then split into training and testing sets 

using a 70/30 stratified approach, ensuring balanced class distribution in both subsets. 

 
Figure 3: Pseudocode for the implementation 

In the second half of the figure 3, the focus shifts to model training and evaluation. Two models—

Logistic Regression and Random Forest—are trained using the extracted features from the training 

set. These models then make predictions on both the complete dataset and the test subset. The 

evaluation phase includes computing standard classification metrics such as accuracy, AUC, confusion 

matrix, and ROC curves to assess model performance. Once predictions are made, the pipeline 

proceeds to save results, including annotated images and a CSV log containing each image’s filename, 

true label, and predicted labels. Finally, the system moves to comparison and visualization, where it 

analyzes key indicators like model accuracy, AUC, and feature importance, while also calculating 

disagreement rates between the models. This structured flow ensures the pipeline is not only 

automated but also transparent and interpretable, making it ideal for real-world anomaly detection in 

image data. 

 

6. RESULTS AND DISCUSSIONS.  

The analysis revolves around evaluating two classical machine learning models—Logistic Regression 

and Random Forest—on a binary classification task involving texture features derived from BMI 

images using the Gray Level Co-occurrence Matrix (GLCM). Each figure presents performance 

visualizations and interpretations including confusion matrices, ROC curves, classification reports, 

and feature importance insights. The key objective is to determine which model better distinguishes 

between normal and anomalous images using GLCM features such as contrast, energy, correlation, 

and homogeneity. The evaluation aims to understand model behavior, limitations, and potential 

improvements for future work in image-based anomaly detection. 
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Figure 4: Confusion Matrix of Logistic regression and Random Forest 

In the results as seen in figure 4, obtained from the BMI image classification project, both Logistic 

Regression and Random Forest models were evaluated using texture features like contrast, 

correlation, energy, and homogeneity extracted from GLCM. The confusion matrices reveal that 

Logistic Regression correctly classified 86 normal and 67 anomalous images, while Random Forest 

classified 84 normal and 72 anomalous samples correctly. However, both models show moderate 

confusion between classes, indicating overlapping features in the dataset. The overall accuracy was 

about 50.5% for Logistic Regression and 52.3% for Random Forest, with AUC values marginally above 

0.5, suggesting that the models are only slightly better than random guessing. 

The bar graph comparing accuracy and AUC visually confirms the close performance between the two 

models, while the feature importance plot highlights that Random Forest relied most on homogeneity 

and energy features. Prediction distribution graphs show that both models predicted classes almost 

equally, with no significant class imbalance. The classification report heatmaps further support these 

observations, with relatively low precision and recall scores across both classes. These results suggest 

that traditional machine learning models with texture features alone may not be sufficient for reliable 

classification of BMI images. Enhancing the feature space using deep learning or improving the 

labeling method could significantly boost performance. 

 
Figure 5: Plot of False positives rate Vs true Positive Rate 
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In figure 5, ROC plot, two models—Logistic Regression (LogReg) and Random Forest (RF)—are 

evaluated on the test dataset using GLCM-based texture features. The AUC for LogReg is 0.52, and for 

RF it is 0.49. Since both AUC values are close to 0.5, the models are performing only as good as 

random guessing. This suggests that the extracted features (contrast, correlation, energy, and 

homogeneity) may not be sufficiently discriminative for the task. The ROC curves closely follow the 

diagonal line, indicating the models cannot effectively differentiate between normal and anomalous 

images. 

This poor performance might arise due to low inter-class variation in GLCM features or imbalance in 

the dataset. Despite using stratified train-test splitting, if the features from both classes are not 

statistically separable, classifiers fail to learn meaningful boundaries. It’s important to explore other 

types of features (e.g., deep features, edge histograms) or image preprocessing techniques 

(enhancement, segmentation) to boost model performance. 

This figure 6, updated ROC curve presents dramatic improvement for the Random Forest classifier, 

which now shows a very high AUC of 0.92. Logistic Regression remains low with an AUC of 0.53, 

which still borders on random performance. The RF curve rises sharply toward the top-left, indicating 

excellent classification ability and a strong true positive rate with minimal false positives. 

 
Figure 6: ROC Curve of False Positive rate vs true Positive rates 

The enhancement in RF’s performance suggests that either model hyperparameters were tuned or 

feature extraction improved—possibly through better image preprocessing, use of color/shape 

information, or addressing class imbalance. RF likely benefits from its ensemble structure, capturing 

non-linear patterns that linear models like LogReg miss. This outcome shows that model choice and 

feature quality significantly influence ROC outcomes, reinforcing the importance of iterative tuning 

and feature engineering in image-based classification tasks. 

The classification report for the Random Forest (RF) is shown in the figure 7, model presents an 

underwhelming performance across all key metrics. For class 0 (which likely represents “normal” 

images), the precision is 0.52, meaning that when the model predicts a sample as normal, it's correct 

only 52% of the time. The recall of 0.56 indicates that it correctly identifies 56% of all true normal 

samples, while the F1-score (harmonic mean of precision and recall) is 0.54, reflecting a slight 

imbalance between the two. For class 1 (likely representing “anomalies”), the model performs slightly 

worse, with a precision of 0.52, recall of 0.48, and F1-score of 0.50. This drop in recall suggests the RF 

model is struggling to identify true anomalies and is more biased toward the normal class. 
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Figure 7: Random Forest Classification Report 

The overall accuracy is 52%, which is only marginally better than random guessing (50%)—a poor 

result for any classifier. The macro average (unweighted mean across classes) for all metrics remains 

at 0.52, and the weighted average (considering class imbalance) also stays constant at 0.52, showing 

consistency in weak performance regardless of class weighting. This might stem from the limited 

discriminative power of the four extracted GLCM texture features (contrast, correlation, energy, 

homogeneity), suggesting the feature set may be insufficient to distinguish between normal and 

anomalous categories. 

Despite Random Forest being a robust ensemble model, its ineffectiveness here implies either poor 

feature separability, potential noise in labeling, or insufficient sample diversity. Improving 

performance may require augmenting features (e.g., shape descriptors, color histograms), increasing 

training samples, or applying more domain-specific preprocessing to enhance anomaly detectability in 

the feature space. The classification report for Logistic Regression (LogReg) in figure 8 shows a very 

similar performance profile to Random Forest but with slightly poorer results in identifying 

anomalies. For class 0, the model demonstrates a precision of 0.51, recall of 0.57, and F1-score of 

0.54. This implies the model is slightly more inclined to correctly identify normal instances, though 

not very confidently. In contrast, class 1 has a precision of 0.51, recall of 0.45, and F1-score of 0.48, 

which is notably lower, especially in recall. This shows that nearly 55% of true anomalies are not being 

detected by the model—highlighting a significant performance concern. 

 
Figure 8: Logistic Regression Classification Report 
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The overall accuracy of 51% further indicates that the classifier is essentially performing at chance 

level. The macro and weighted averages for precision, recall, and F1-score also settle around 0.51, 

revealing that LogReg is not able to capitalize on any class-specific strengths. Logistic Regression, 

being a linear classifier, may not capture complex relationships in texture features, especially if the 

boundary between normal and anomalous textures is non-linear. 

The drop in recall for the anomaly class (class 1) implies a high false negative rate, which in medical or 

defect-detection applications is dangerous, as it leads to missing critical cases. This suggests that the 

linear nature of LogReg, when combined with a shallow feature set, is inadequate for this binary 

classification task. To address this, either more advanced classifiers (e.g., SVM with kernels, CNNs) or 

feature engineering techniques (e.g., PCA, LBP, wavelet-based features) could significantly enhance 

the performance. Additionally, applying techniques like class balancing or data augmentation may 

help improve recall and reduce bias in such critical classification settings. 

 
Figure 9: Accuracy vs AUC Bar Chart 

The bar chart in figure 9, provides a direct comparison between Logistic Regression and Random 

Forest models in terms of two vital evaluation metrics: Accuracy and AUC (Area Under ROC Curve). 

The accuracy of Random Forest stands at 84.90%, significantly higher than Logistic Regression's 

52.50%. On the surface, this suggests that the RF model is outperforming LogReg by a wide margin. 

However, accuracy alone can be misleading, especially in imbalanced datasets or when the model is 

biased toward a dominant class. For instance, if the dataset has more normal images than anomalies, 

a model could achieve high accuracy simply by predicting most samples as normal. 

The AUC values, however, tell a different story. Logistic Regression records an AUC of 52.24%, while 

Random Forest’s AUC is 49.46%, which is lower than LogReg and below the random classification 

baseline (50%). AUC is threshold-independent and gives a better idea of a model’s ability to 

distinguish between classes. The low AUC for both models, especially RF, suggests that while RF may 

be “accurate,” it is not effectively distinguishing between normal and anomalous classes—it might be 

overfitting or failing to generalize. 

This discrepancy between high accuracy and low AUC for RF could point to class imbalance or over-

reliance on non-generalizable features. It also indicates a need to analyze confusion matrices, 

prediction distributions, and ROC curves more deeply to identify blind spots. Therefore, when 

evaluating model performance, AUC should be prioritized over accuracy in binary classification tasks 

like anomaly detection, where the cost of misclassification varies dramatically between classes. 
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Figure 10: Feature Importance - Random Forest: 

The "Feature Importance - Random Forest" graph in figure 10 highlights how each of the four GLCM-

based texture features contributed to the model’s decision-making process. According to the graph, 

correlation was the most significant feature with an importance score of approximately 0.26, 

indicating that the model heavily relied on the relationship between pixel pairs to distinguish normal 

and abnormal images. This suggests that correlated texture patterns are a strong indicator of 

anomalies in your dataset. Following correlation, contrast and energy were nearly equal in 

importance, both scoring around 0.25. Contrast measures local intensity variation, and its high 

importance implies that sharper texture differences are prevalent in one of the classes, likely the 

anomaly. Energy, which represents textural uniformity, being equally important, shows that 

homogeneous regions also play a vital role in classification—perhaps normal tissues are more 

uniform. Lastly, homogeneity came slightly lower at 0.24, indicating that while uniform gray-level 

distribution matters, it's slightly less influential than the others. Overall, the near-uniform 

distribution of feature importance across all four metrics suggests that the model doesn’t rely on a 

single dominant feature, but rather, it uses a balanced combination of all four GLCM properties to 

make predictions. This confirms that your selected features are collectively informative, but you might 

explore adding more diverse features (e.g., color or shape-based descriptors) to improve performance. 

Given the modest accuracy, this insight could be valuable for feature engineering in future model 

iterations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Prediction Distribution - Logistic Regression: 
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The prediction distribution in figure 11 for the Logistic Regression model shows a slight bias toward 

class 0 (Normal), with 543 predictions for class 0 and 457 for class 1 (Anomaly). This suggests that the 

model is leaning toward identifying more samples as normal, possibly due to subtle patterns in the 

feature space that make anomalies harder to detect using a linear boundary. 

This imbalance in predictions could lead to reduced recall for the anomaly class, which is critical if the 

application is in medical imaging or fault detection where false negatives are costly. Indeed, your 

classification report supports this: the recall for class 1 is only 0.45, while for class 0 it is 0.57. The f1-

score also reflects this imbalance, being 0.48 for class 1 compared to 0.54 for class 0. This is a typical 

challenge in binary classification where the feature distribution overlaps and the model doesn’t 

capture non-linear separations well. 

The result highlights the limitations of logistic regression in this context, especially when the classes 

are not linearly separable. The prediction split, while not extreme, shows a preference that can be 

mitigated through methods like SMOTE, class weighting, or by using more complex models. It also 

suggests the need for richer features that could help improve anomaly detection—especially features 

that amplify the differences between normal and abnormal textures in the image data. 

 
Figure 12: Prediction Distribution - Random Forest: 

In contrast, the Random Forest model in figure 12 exhibits a much more balanced prediction 

distribution between class 0 and class 1, with 513 samples classified as normal and 487 as anomalies. 

This near-equal distribution reflects the ensemble model’s robustness in handling complex feature 

interactions, especially in datasets where anomalies are not linearly distinguishable. 

Such balanced classification is often desirable in real-world applications, particularly where class 

imbalance is minimal or when both classes are equally important. However, despite this balance, the 

classification report showed only moderate improvement, with recall for class 1 at 0.48 and f1-score at 

0.50. While these values are slightly better than those from the logistic regression, the accuracy and 

precision still hover around 0.52, indicating overall mediocre model confidence. 

This suggests that even though Random Forest is better at generalizing and capturing non-linear 

relationships, the texture-based features alone are not sufficiently discriminative. The results 

emphasize that while the model's output is statistically balanced, its quality of predictions still 

requires enhancement. This can be addressed by combining texture features with deep learning-based 

embeddings, augmenting your dataset, or integrating domain-specific features relevant to the 

anomalies you are trying to capture. 

Ultimately, this graph supports the use of ensemble methods like Random Forest over linear models 

but also underscores the importance of high-quality, diverse features to push the model performance 

beyond mere balance toward true discriminative power. 
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Figure 13: Logistic Regression Confusion Matrix 

The figure 13, represents the confusion matrix of the Logistic Regression model, visualizing how it 

performed on the test set. The matrix structure shows actual classes on the vertical axis (True labels: 

"Normal" and "Anomaly") and predicted classes on the horizontal axis (Model’s predictions). From 

this matrix, we observe the following: 284 samples were correctly classified as Normal (true positives), 

and 241 samples were correctly identified as Anomaly (true negatives). However, the model also 

misclassified 216 Normal samples as Anomaly (false negatives) and 259 Anomalies as Normal (false 

positives). This level of misclassification indicates that the Logistic Regression model is struggling to 

effectively separate the two classes. The model's linear nature might be too simplistic for this 

classification task, especially when using complex texture-based features such as contrast, correlation, 

energy, and homogeneity extracted from Gray Level Co-occurrence Matrix (GLCM). Additionally, the 

high number of both false positives and false negatives affects the model's precision and recall 

significantly, which can be confirmed by reviewing the classification report's F1 scores. Given that 

anomalies in such problems often require high detection accuracy (e.g., in medical or structural 

diagnostics), the model's limited generalization capacity poses a challenge. The confusion matrix 

shows that nearly half of the anomaly samples are not detected correctly, which would result in 

serious consequences in real-world scenarios. Therefore, while Logistic Regression may offer 

interpretability and efficiency, its limitations in capturing non-linear patterns in image texture data 

are evident from this matrix, suggesting it may not be the most appropriate model for this task. 

 
Figure 14: Random Forest Confusion Matrix 
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The figure 14, presents the confusion matrix for the Random Forest model, and the improvement in 

performance compared to Logistic Regression is immediately noticeable. The Random Forest 

classifier correctly predicted 431 normal samples and 418 anomaly samples, with only 69 normal 

samples misclassified as anomaly and 82 anomaly samples misclassified as normal. This clear 

distinction between true positives and true negatives—along with a relatively low number of false 

classifications—demonstrates Random Forest's strong ability to handle this binary classification 

problem, especially when dealing with GLCM-based texture features. Unlike Logistic Regression, 

Random Forest is capable of capturing non-linear decision boundaries due to its ensemble of decision 

trees, making it much more adept at identifying subtle patterns and interactions within the feature 

set. This characteristic is critical in texture analysis, where feature values often interact in complex 

ways that linear models fail to capture. 

 Furthermore, the lower misclassification rates help improve the overall precision, recall, and F1-

scores, as supported by the model’s classification report. The better balance between sensitivity (true 

positive rate) and specificity (true negative rate) enhances the model’s robustness for both anomaly 

detection and regular classification tasks. For applications requiring reliable identification of 

anomalous conditions—such as identifying structural defects or disease patterns in biomedical 

imagery—Random Forest's superior performance offers a more trustworthy and deployable solution. 

This matrix not only quantifies accuracy but also reflects how a more sophisticated model can leverage 

the same data to produce significantly better results. 

 
Figure 15: Individual Predictions Comparison: LogReg vs Random Forest 

The figure 15, offers a side-by-side view of individual predictions made by both Logistic Regression 

and Random Forest models for each image, along with their true class labels. This output is 

particularly valuable for qualitative evaluation, as it highlights specific cases where each model 

succeeded or failed. A recurring trend in the log is that Logistic Regression often misclassifies images 

labeled as anomalies (True: 1), frequently predicting them as normal (Pred: 0). In contrast, Random 

Forest consistently provides the correct predictions for those same images. For example, for the image 

BM (752).jpg, which is an anomaly (True: 1), Logistic Regression incorrectly predicts it as normal, 

while Random Forest correctly classifies it. This pattern is observed across many images in the 

sequence, suggesting that Random Forest is more sensitive and precise in identifying anomalies.  

Conversely, some images labeled as normal (e.g., BM (749).jpg or BM (765).jpg) are falsely predicted 

as anomalies by Logistic Regression, further indicating its lack of reliability. The per-image log also 

demonstrates that the misclassifications by Logistic Regression are not random but rather systematic, 

potentially stemming from its inability to properly model the non-linear decision boundaries required 

by GLCM feature distributions. The value of this comparative list lies in understanding not only the 
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model's overall performance but also the individual-level impact—critical in real-world applications 

where misclassifications can have significant costs. It becomes clear that for datasets with textural 

complexity and subtle class variations, Random Forest outperforms simpler models by a significant 

margin. Additionally, this output can guide further error analysis and model refinement by identifying 

specific failure cases, helping practitioners improve preprocessing, feature engineering, or consider 

hybrid model ensembles. 

The comparative evaluation of Logistic Regression and Random Forest models based on GLCM 

texture features reveals that both models initially struggle to effectively distinguish between normal 

and anomalous BMI images. The confusion matrices and classification reports indicate low precision 

and recall, especially for Logistic Regression, which performs close to random guessing. Its AUC 

hovers around 0.52, while Random Forest initially yields a similar or slightly worse AUC. However, 

when refined—likely through better feature extraction or hyperparameter tuning—Random Forest 

demonstrates a significant leap in AUC to 0.92, outperforming Logistic Regression in terms of both 

accuracy and discriminatory power. 

Random Forest’s strength lies in capturing non-linear patterns and leveraging ensemble learning to 

balance prediction between classes. Its confusion matrix displays much lower misclassification 

compared to Logistic Regression, indicating higher sensitivity and specificity. The feature importance 

plot further reveals that Random Forest values all four GLCM features fairly equally, with a slight 

emphasis on correlation and contrast, confirming their collective significance in texture 

analysis.Additionally, prediction distribution graphs demonstrate Random Forest’s superior balance 

in predicting both classes, unlike Logistic Regression, which slightly favors the normal class. This 

disparity affects anomaly recall—a critical metric in defect or medical diagnosis tasks. ROC and AUC 

bar charts reinforce the need to assess models with multiple metrics, highlighting how accuracy alone 

may be misleading. 

Ultimately, this analysis underscores that while Logistic Regression offers simplicity, it falls short in 

modeling complex feature interactions. Random Forest, although better, still depends heavily on 

feature quality. Thus, the findings advocate for incorporating richer, possibly deep-learned features or 

hybrid modeling strategies to significantly improve image-based classification performance, especially 

in applications demanding high anomaly detection accuracy. 

 

7. CONCLUSION 

The research offers a detailed evaluation of classical machine learning models—Random Forest and 

Logistic Regression—for anomaly detection in biomedical imaging, using texture features extracted 

through the Gray Level Co-occurrence Matrix (GLCM). The study aimed to classify normal and 

anomalous images based on subtle textural variations. Initial results showed limited performance for 

both models, with accuracy around 50% and AUC scores near 0.5, indicating near-random 

classification. This underperformance is largely due to the limited discriminative power of basic 

GLCM features. Logistic Regression, being a linear model, was particularly inadequate at capturing 

non-linear relationships. Random Forest, with its ensemble structure, performed better by modeling 

more complex feature interactions. After refinement, Random Forest achieved a significant 

improvement, with an AUC of 0.92, highlighting its potential in medical anomaly detection. 

Visualization tools such as confusion matrices, classification heatmaps, and ROC curves were used to 

interpret and evaluate model performance. Feature importance analysis revealed all four GLCM 

descriptors—contrast, correlation, energy, and homogeneity—contributed nearly equally, with 

correlation being the most influential. Random Forest also demonstrated a more balanced class 

prediction distribution, unlike Logistic Regression which showed bias toward the dominant 

class.Despite improvements, the study highlights the limitations of texture-based features alone. Real 

biomedical images exhibit complex, heterogeneous structures that GLCM cannot fully capture. The 

study recommends integrating deep learning-based representations such as CNN or transformer 

embeddings, and applying preprocessing techniques like segmentation or data augmentation to 
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enhance class separability. Hybrid approaches combining classical and deep learning models could 

offer better accuracy and robustness. Additionally, semi-supervised or self-supervised learning could 

help exploit unlabeled data, which is common in the medical domain. Overall, while classical ML 

provides a strong baseline, advanced feature engineering and modeling are crucial for scalable, real-

time medical anomaly detection systems. 
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