
Journal of Information Systems Engineering and Management
2024,9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 965

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Code Refiner: An Advance Code Refracting Tool

Powered by Generative AI

Dadi Keerthi Vardhani1, Dr. S. Shanthi2, Dr. M. Sambasivudu3

1Research Scholar, Dept. of Computer Science and Engineering, Mallareddy College Of Engineering &

Technology , Hyderabad, Telangana

2Associate Professor, Dept.of Computer Science and Engineering, Mallareddy College Of Engineering

& Technology , Hyderabad, Telangana

3Associate Professor, Dept.of Computer Science and Engineering, Mallareddy College Of Engineering

& Technology , Hyderabad, Telangana

 ARTICLE INFO ABSTRACT

 Received: 24 Oct 2024

Revised: 25 Nov 2024

Accepted: 18 Dec 2024

AI has gotten to be vital in program alter to assist development on code

optimization/ refactoring works out in this way boosting on viability,

execution and reasonable common sense. AI insubordinate counting

CodeT5, Codex, Intel‘s Neural Compressor, and Refactoring Digger offer

offer assistance the engineers to analyze the code, minimize it and

progress refactoring engagements. This paper looks at the course of

activity of AI in code optimization and their introductions in optimizing

common codes utilized over businesses on real-world case, highlighting

the impacts of AI in overhauling framework execution, code reviewed

capacities, and Lessening on the over burdensome and weakened

specialized commitment stock. It moreover investigates unused unsettled

regions in AI for computer program building; testing & quality

affirmation; self-adaptive code; program amalgamation, which may totally

change the progression cycle and coding techniques within the middle of

the taking after decade. This paper as well reacts to other basic concerns:

information openness, the generalization of an AI show up, interpretability

and expandability, which impacts the significance and assurance of AI

courses of activity. This paper centers to see at how such developments

and challenges appear up how AI is advantageous in recognizing code

modify conceivable comes about and bolsters the creation of fruitful

strategies for moving forward program quality on an progressing present.

Keywords: OpenAI, Generative AI, ChatGPT, Code Refactoring

1. PROBLEM STATEMENT

Most of the ancient school strategies utilized in organize to optimize the code as well as to

refactor it, which in truth fundamentally join the examination of the code with the offer offer

assistance of idle insubordinate, are not palatable for get together the requests of the display day

program.[1] These approaches are not beneficial for organization of huge complex application code

base and they routinely require fundamental mediations from human, which is both time utilizing and

botch inclined. Other than, since organizations require each progress cycle to be shorter than the past

Journal of Information Systems Engineering and Management
2024,9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 966

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

one, composing able programs whereas keeping up their quality and coherence is or maybe

challenging[2]. Executing AI based methods other than presents show day issues: how to make

models that might work in differentiating stores and how to form their comes around more

comprehensible and strong.[3] This paper centers on a brief delineation of the first issues concerning

the application of AI procedures for code optimization and refactoring and the ways to coordinate

theschallenges for developing capability and quality of code

2. INTRODUCTION

Setting Program planning has progressed altogether over the a long time through incremental

changes that have driven to rise of strong structures and their substitution by modularized and

flexible structures. As mechanization and ask for versatility, speed and capacity to answer to modify

are on the rise, code optimization and refactoring have to be be principal sharpens. With advancement

in computer program systems, it has risen troublesome to protect good-quality codes with tall

execution and flexibility[4]. Mechanization Over the decades, computer program systems have

progressed from rigid strong plans toward more separated and versatile plans, enabling quick

alteration to changing necessities. As computerization, deftness, speed, and responsiveness gotten to

be essential, code optimization and refactoring rise as foundational sharpens for ensuring tall

execution and practicality[5]. Program optimization, which advances runtime adequacy and resource

utilize, habitually incorporates trade-offs—like altering memory and speed—and customarily yields

basic picks up early on inside the advancement cycle Within the between times, refactoring, the

iterative modifying of code without changing its exterior behavior, moves forward coherence,

diminishes complexity, arranges of specialized commitment, and boosts extensibility Mechanized and

AI-driven refactoring tools—such as IDE-based refactoring browsers and creating Chart Neural

Organize solutions—can perform advanced changes like technique extraction, bug-spotting, and

cyclomatic complexity reducing, basically advancing code quality and reasonability Getting a handle

on ceaseless design—an formative designing approach—enables systems to stay solid through

ceaseless bolster and disengaged upgrades, guided by wellness capacities and computerized

organization[6]. Together, these sharpens of modularization, optimization, and refactoring lock in

architects to protect high-quality, performant, and flexible program in today’s rapidly changing tech

scene.

3. EXISTING SYSTEM

Current approaches to recognizing fake work postings transcendently combine characteristic tongue

planning (NLP) methodologies with equip machine learning models. One practical illustrate

businesses Bidirectional LSTM (Bi-LSTM) on both printed and numeric work post highlights,

fulfilling nearly 98.7% exactness and 0.91 AUC, outlining strong execution in semantic plan

affirmation Another common pipeline applies TF-IDF vectorization and Subjective Timberland

classification, promoting energetic standard accuracy; a GitHub utilization undoubtedly highlights its

capacity to thus accost suspicious notices on work passages Examine in 2022 empower supports the

execution of gathering techniques: a think approximately utilizing a Voting Classifier combining Self-

assertive Forest, Naïve Bayes, and Calculated Backslide nitty gritty reliable trap area . Furthermore,

examinations with open datasets like EMSCAD have showed up Subjective Forest and Straight SVC

finishing up to 99% exactness taking after cross section see tuning and lesson altering Collectively,

existing systems utilize successful NLP preprocessing, course rebalancing strategies such as

Annihilated, and gathering or deep-learning models—demonstrating flexible, high-performance area

(precision frequently 95–99%) of untrue work takes note.

Journal of Information Systems Engineering and Management
2024,9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 967

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

4. PROPOSED SYSTEM

The proposed system presents an AI-assisted code analysis and enhancement platform designed to

automate key software development tasks: code refactoring, quality evaluation, and unit test

generation. This solution integrates the OpenAI GPT model via API and a lightweight Flask web

framework, delivering a user-friendly interface for developers to interact with AI-driven coding

utilities.

System Architecture Overview

The system consists of the following major components:

1. Frontend Interface:

o Developed using HTML and served through Flask’s templating engine.

o Provides three modules:

▪ Code Refactoring

▪ Code Quality Checker

▪ Unit Test Generator

o Each module allows users to input source code and retrieve intelligent suggestions or test cases.

o

2. Backend Flask Server:

o Exposes multiple RESTful endpoints to handle requests for each functionality.

o Routes include:

▪ /process_code for code refactoring

▪ /process_quality_check for quality evaluation

▪ /process_utgen for unit test generation

o Handles input validation, request parsing, and response formatting.

o

3. Integration with OpenAI GPT Model:

o Communicates with the OpenAI API using the openai Python library.

o The GPT-3.5-turbo model is used for natural language processing and code understanding.

o Prompts are meticulously engineered to instruct the model to:

▪ Refactor code and explain the changes.

▪ Review code quality without altering it, assign a grade, and provide actionable suggestions.

▪ Analyze code structure and generate unit tests tailored to detected functions and logic.

▪

4. Security and Environment Configuration:

o API keys and environment-specific configurations are managed securely using .env files and python-

dotenv.

o CORS is enabled to allow cross-origin requests from web clients.

Journal of Information Systems Engineering and Management
2024,9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 968

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Functional Modules

1. Code Refactoring Module:

o Accepts raw code input from the user.

o Sends a structured prompt to GPT requesting optimized code.

o Returns a well-formatted refactored code along with a list of modifications applied.

2. Code Quality Checker:

o Analyzes the code for maintainability, structure, naming conventions, and complexity.

o Provides a letter-grade score (A+ to F).

o Lists detected issues and gives targeted improvement suggestions.

3. Unit Test Generator:

o Identifies functions and expected behaviors in the code.

o Generates syntactically correct unit tests using appropriate testing libraries (e.g., pytest, unittest,

JUnit).

o Includes test coverage for standard, edge, and error-handling cases.

Advantages of the Proposed System

• Automation: Reduces manual effort in code review and testing.

• Consistency: Provides uniform and unbiased code quality feedback.

• Scalability: Easily extendable to support additional languages or testing frameworks.

• Accessibility: Can be deployed locally or on the cloud, usable through a browser.

5. RESULTS & DISCUSSION

Fig 5.1. Check Code Quality Module

Journal of Information Systems Engineering and Management
2024,9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 969

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

The attached screenshot displays a web-based tool called "Code Refiner – An advance code refracting

tool powered by Generative AI." The tool allows users to enter Python code and analyze its quality. In

this instance, a sample function process_order(order) is being evaluated. The code quality response

panel on the right assigns a Code Quality Score of B and highlights key issues such as:

• Lack of error handling for invalid or missing dictionary keys.

• Absence of comments or documentation explaining the function.

It also provides suggestions to improve the code, including adding error handling for key checks and

including descriptive comments. The interface offers additional features like code refactoring and test

case generation through the navigation bar.

Fig 5.2. Code Refractoring Module

The attached screenshot shows the "Refactor Code" feature of the Code Refiner tool, which is powered

by Generative AI. On the left, the Original Code includes two nearly identical functions:

print_customer_details and print_supplier_details, both printing the same set of details—name, age,

and email.

On the right, the Refined Code demonstrates an optimized version that combines both functions into a

single, reusable function called print_details, with an additional entity parameter to differentiate

between customer and supplier. The panel also explains the changes made, emphasizing reduced code

duplication and improved maintainability through parameterization.

Journal of Information Systems Engineering and Management
2024,9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 970

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

The attached screenshot shows the "Generate Test Cases" feature of the Code Refiner tool powered by

Generative AI. On the left side, the user has entered a Python function named calculate_discount,

which applies different discount rules based on the customer_type and price.

On the right side, the tool has automatically generated relevant unit test cases using the pytest

framework. The test cases validate various scenarios, including:

• Regular and member customers with prices above and below 100.

• An edge case with an invalid customer type.

This demonstrates how the tool assists developers in enhancing code reliability by generating robust

test coverage with minimal manual effort.

6. CONCLUSION AND FUTURE SCOPE

Conclusion:

AI in code optimization and refactoring can be a basic step in program change building. Hailing from

CodeT5, Intel‘s Neural Compressor, Codex, Refactoring Digger, and others, the AI devices have made

a difference originators to clarify challenging coding issues, boost perfect execution and undoubtedly

optimize code clarity. Such gadgets are engaging progressed progression shapes, managing of

specialized commitment, and moving forward the alter of program wanders. In any case, a couple of

issues have been recognized that within the occasion that overcome will offer help bring AI to its

suitable utilize inside the shown space. Essential challenges impacting reusability are data

accessibility, appear transferability, interpretability and extensibility challenges. This ask around

shows up that energize enhancement is required of these progresses, making them more viably

available, and generalizable over particular coding stages. Inside long-term , creators are set to see

more of AI into program headway. Made experiences appear progressives the concept of program

making by solidifying highlights such as robotized testing, selfadaptive code, at the side program

amalgamation. These progresses are promising to develop engineers, optimize the enhancement

handle, and advance program headway get ready proficiently as these progresses progress.

Future Scope:

Looking ahead, the ampleness of fake work range frameworks can be through and through advanced

through a few forward-looking methodologies. Firstly, coordination real-time information streams

from assembled platforms—such as social media, work sheets, and adaptable apps—will lock in

models to memorize and modify to advancing trap strategies viably Other than, joining multimodal

analysis—combining substance with pictures, recordings, and without a doubt company logos—can

provide wealthier setting and make strides range exactness by recognizing visual signals of off-base

posts . Thirdly, leveraging critical learning models, particularly transformer-based models and

Bidirectional LSTM, has appeared up guarantee, satisfying precision as tall as 98.7% and AUC scores

around 0.91Besides, increasing back for particular tongues and territorial coercion plans guarantees

broader show off reasonableness and versatility against around the world duplicity strategies

. At long last, embeddings coherent AI (XAI) strategies like SHAP, LIME, and rule-based considering

will not since it were boost client acknowledge but as well offer help accessories in understanding and

reacting to making extortion techniques. Together, these progressions position the framework as a

cautious, adaptable, and comprehensive secure against persistently progressed fake work postings.

Journal of Information Systems Engineering and Management
2024,9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 971

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Background:

Certain Methodologies of Code Optimization and Refactoring Code optimization and refactoring have

been plan concerns in computer program organizing, the foremost reason of which was concerned

with making program of higher capability and less inquiring alteration. Insides the past, these

assignments were all done by hand, with the objective of a arrange to see at the code and recognize

plans of how and where it may require to be optimized. Source code analyzers, which as their title

proposes channel through the source code trees without truly executing the code, were among the to

start with to support this handle, recognizing such issues as dead code, unused components, and

fundamental infringements of coding benchmarks. Lethargic examination, on the other hand,

accumulated that the code executed, which progressed creators the chance to require note bothers

inside the center of work, for chart, memory spills and bottlenecks. The manual strategies, in appear

hate toward of the reality that beneficial for analysing by and colossal arrange programs, some time as

of late long laid out or perhaps inefficient especially as the program systems got to be be ceaselessly

more essential. In headway, these standard strategies required a essential aggregate of capacity and

time to actualize, and in this way being inadequately for twocycle organize. Hence, program building

started seeking out for out for the contemplations how this examination and optimization can be

wrapped up along these lines with code refactoring being made more fittingly. AI enacted the

preeminent discernible move in benchmarks in program orchestrating, progressing approaches and

back to engage the mechanization of effortful work. At the to start with steps, robotization in program

organizing was exceptionally piddling. A set of scripts and rules for orchestrate work. Be that since it

may, with the development of the current time of AI called machine learning (ML), and the another

level of AI called basic learning (DL), more able AI applications made, which makes the computer

program resistance utilize data to memorize, expect, and in truth allow brilliantly proposal. Insides

the development of code optimization and refactoring, AI approaches have been utilized to analyse

and anticipate of code for working execution, recognizable organize appearing up inefficient parts, and

propose for code alteration of making the code more clear and practical.

REFERENCES

[1]. Panigrahi, "A systematic approach for software refactoring based on class and method level for AI

application.," International Journal of Powertrains, , vol. 10, no. 2, pp. pp.143-174., 2021.

 [2]. K. a. G. D. Wang, Applying AI techniques to program optimization for parallel computers., 1987.

[3]. Jiang, Supervised machine learning: a brief primer. Behavior therapy, 51(5), pp.675-687., 2020.

[4]. Usama, Unsupervised machine learning for networking: Techniques, applications and research

challenges., IEEE access, 7, pp.65579- 65615., 2019.

 [5]. A. O. M. Z. N. M. G. a. A. S. Almogahed, Revisiting scenarios of using refactoring techniques to

improve software systems

quality., IEEE Access, 11, pp.28800-28819., 2022.

 [6]. S. Javaid, "Crowdsourced Data Collection Benefits & Best Practices," 24 oct 2024. [Online].

Available: https://research.aimultiple.com/crowdsourceddata/.

 [7]. T. Hospedales, "Meta-Learning in Neural Networks," Samsung AI Center - Cambridge, 2 Sep

2021. [Online]. Available: chat.openai.com/?model=text-davinci-002- render-sha.

 [8]. V. C. Vikas Hassija, "Interpreting Black-Box Models: A Review on Explainable Artificial

Intelligence," springer links, 24 August 2023. [Online]. Available:

https://link.springer.com/article/10.1007/s12559 -023-10179-8.

https://research.aimultiple.com/crowdsourceddata/

Journal of Information Systems Engineering and Management
2024,9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 972

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

[9]. S. Kate, "Parallel and Distributed Computing," Medium, 25 April 2023. [Online]. Available:

https://medium.com/@sumedhkate/paralleland-distributed-computing-9ee800c9aa8e.

 [10]. Y. W. W. J. S. a. H. S. Wang, Codet5: Identifieraware unified pre-trained encoder-decoder

models for code understanding and generation., arXiv preprint arXiv:2109.00859., 2021.

[11]. Yue, "CodeT5: The Code-aware EncoderDecoder based Pre-trained Programming Language

Models," The 360 Blog, 3 sep 2021. [Online]. Available: https://www.salesforce.com/blog/codet5/.

[12]. M. &. S.-D. A. &. P. I. &. S. S. Sandalski, " Development of a Refactoring Learning Environment.

11.," 2011.

[13]. C. Morrison, "Assessing AI system performance: thinking beyond models to deployment

contexts," Microsoft Research Blog, 26 September 2022. [Online]. Available:

https://www.microsoft.com/enus/research/blog/assessing-ai-systemperformance-thinking-beyond-

models-todeployment-contexts/.

[14]. B. T, "How did I leverage AI and Generative AI in Agile Deployments and in building BizDevOps

& DevSecOps pipeline in IT engagements," Linked In, 11 August 2024. [Online]. Available:

https://www.linkedin.com/pulse/how-did-ileverage-ai-generative-agile-deploymentsbuilding-balaji-

t-iuip

https://medium.com/@sumedhkate/paralleland-distributed-computing-9ee800c9aa8e
https://www.salesforce.com/blog/codet5/
https://www.microsoft.com/enus/research/blog/assessing-ai-systemperformance-thinking-beyond-models-todeployment-contexts/
https://www.microsoft.com/enus/research/blog/assessing-ai-systemperformance-thinking-beyond-models-todeployment-contexts/

