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ARTICLE INFO ABSTRACT
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platforms, the necessity for real-time cybersecurity solutions that can find

threats before they happen and respond automatically has grown. Traditional

Accepted: 26 Feb 2025  log-based monitoring systems frequently don't give you timely visibility and
protection against advanced assaults. This research came up with and put into
action a new self-healing monitoring architecture that is made just for multi-
tenant SaaS settings. The system included lightweight data gathering agents,
AI/ML-driven models for finding anomalies, and an autonomous remediation
engine to make sure that threats were always visible and the system was strong.
The identification engine had a very high accuracy rate of 96.2% and a very low
false positive rate of 3.2% when tested on benchmark datasets like CICIDS 2017
and UNSW-NB15. The system did better than traditional tools when it came to
Mean Time to Detect (MTTD) and Mean Time to Respond (MTTR). It was able
to recover from simulated attacks in seconds and keep service interruptions to a
minimum. The performance study also showed that the system had low
computational overhead and good scalability, which means it can be used in
real-world cloud SaaS infrastructures. This study is a big step toward smart,
automated cloud security and sets the stage for future improvements in self-
adaptive cybersecurity systems.
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INTRODUCTION

The quick rise of cloud-based Software-as-a-Service (SaaS) platforms has changed the digital architecture
of modern businesses. They now have access to a wide range of business applications that can be scaled up
or down as needed and are cost-effective. This change has also brought forth complicated cybersecurity
problems, especially when it comes to keeping an eye on changing threat landscapes in real time in dynamic,
multi-tenant settings. Old-fashioned security monitoring systems, which typically depend on human
actions, delayed log analysis, or static rule-based detection, can't keep up with the speed, size, and
complexity of today's cyberattacks.
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In this situation, it is very important to have a proactive and automated security strategy. Real-time threat
visibility and smart reaction capabilities can greatly lower the chances of data breaches, system downtime,
and not following the rules. This study came up with and put into action a new self-healing monitoring
architecture that is specifically designed for cloud SaaS platforms to deal with these problems. The
suggested solution combined lightweight data collection agents, AI/ML-powered threat detection engines,
and an autonomous remediation module that could find, analyze, and respond to threats in real time
without any help from people.

The study's goal was to examine the system's performance in terms of detection accuracy, reaction latency,
resource efficiency, and recovery capabilities by simulating different types of attacks in a cloud-native
testbed, such as ransomware, insider threats, and privilege escalation. The results showed that the
architecture could keep providing protection and services without much further work. This study adds a
useful and scalable way to protect next-generation cloud environments, bringing the industry closer to fully
autonomous and smart cybersecurity systems.

LITERATURE REVIEW

Rouholamini et al. (2024) did a thorough systematic study of proactive self-healing methods in cloud
settings. Their research divided self-healing methods into three groups: rule-based, machine learning-
based, and hybrid models. They stressed how important it is to find faults in real time and fix them on their
own to keep services available. They stressed how important predictive analytics is for reducing downtime
and operational problems.

Rawas, Samala, and Fortuna (2024) included CRISP, a cloud-resilient infrastructure made for self-
healing platforms that can change on the go. Their research was mostly about how elastic cloud
environments can leverage automated feedback loops and adaptive setups to deal with threats from both
inside and outside the cloud. They showed that dynamic adaptation and context-aware automation together
make distributed systems far more fault-tolerant.

Johnphill et al. (2023) critically looked at how self-healing and machine learning work together. They
looked at a variety of theoretical models and practical tools and found flaws in the methods that are
currently used, especially when it comes to generalizability and learning in real time. Their results showed
that machine learning has some interesting techniques to uncover anomalies and recover from them on its
own, but it is still very hard to make sure that it works well in all kinds of CPS situations.

Gupta (2024) gave a practical point of view by working on the design and deployment of resilient multi-
cloud systems. He gave specific plans for how to make cloud systems secure and fault-tolerant, stressing
the importance of a multi-layered strategy that includes redundancy, real-time monitoring, and smart
automation. His advice was helpful for anyone who wanted to use strong self-healing systems in production-
scale settings.

Repetto (2023) examined adaptive monitoring and detection frameworks tailored for digital service
chains. His study underscored the importance of agile response mechanisms, proposing a continuous
feedback architecture that facilitates early detection and mitigation of failures. By integrating contextual
awareness into monitoring systems, his approach improved the responsiveness and adaptability of digital
infrastructures.
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RESEARCH METHODOLOGY
1.1. Research Design

This study used a Design Science Research (DSR) method to create and test a self-healing monitoring
system that shows real-time cyber threats in cloud-based SaaS applications. The design science process
made it possible to build a new security architecture by going through several rounds of identifying
problems, designing the system, making a prototype, and testing it. The fundamental goal of this strategy
was to fix the problems with standard log-based security monitoring systems and create an operational
artifact that could find threats before they happen and fix them on its own.

1.2.Architecture Design and Component Development

The system architecture was made to be modular and ready to grow. The architecture included lightweight
monitoring agents that kept track of real-time logs, API activity, and user behavior across the SaaS
infrastructure. These agents were made to use as few resources as possible while still making sure that data
kept flowing into the detection engine.

An AI/ML-based detection engine was the most important part of the architecture. This engine used
machine learning algorithms like Support Vector Machines (SVM), Random Forest, and Isolation Forest to
find both known and new assaults. To make sure they were accurate and could be used in other situations,
the models were trained and tested using cybersecurity datasets.

The system included a self-healing controller module that would automatically respond to threats that were
found. When it found something, it took pre-planned steps to fix issue, including isolating the service,
restarting the container, or taking away privileges. It did this with technologies like Kubernetes Operators
and AWS Lambda functions. A centralized SIEM dashboard was also set up to show security information,
combine logs, and prepare for audits using Grafana and the ELK stack (Elasticsearch, Logstash, and
Kibana).

1.3.Implementation Environment

The proposed system was put into action in a controlled, cloud-based simulation environment. Amazon
Web Services (AWS) and Kubernetes (via EKS) were used to create a realistic multi-tenant SaaS
infrastructure. Several application services, such as document sharing, messaging, and user identity
management, were set up across containers.

Using penetration testing tools like Metasploit, Apache JMeter, and Atomic Red Team, we simulated threat
scenarios like ransomware encryption, privilege escalation, and insider misuse. This made it possible to
fully test the system's detection and response systems in a cloud environment with high fidelity.

1.4.Dataset and Model Training

We employed two well-known cybersecurity datasets, CICIDS 2017 and UNSW-NB15, to train and test the
threat identification engine. These datasets had labeled examples of different kinds of network traffic and
attacks. Also, synthetic data was made to show behaviors that are peculiar to multi-tenant SaaS, such as
insider abuse, session hijacking, and lateral movement.

We preprocessed the datasets by normalizing features, balancing classes, and organizing time series to
make the ML models better at predicting things. To avoid overfitting and make sure the model worked well
in a variety of situations, cross-validation techniques were applied.
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1.5.Evaluation Strategy

We looked at four primary factors to see how well the system worked: how accurately it detected threats,
how quickly it responded, how well it recovered, and how well it used resources. We used the ground truth
labels from the test datasets to quantify detection accuracy with metrics including precision, recall, F1-
score, and false positive rate.

We used the metrics Mean Time to Detect (MTTD) and Mean Time to Respond (MTTR) to measure
response time. We did this by looking at system logs and timestamps of when problems were found and
fixed. We tested recovery performance by simulating ransomware and DoS assaults and keeping track of
how long the system was down and how often automated recovery worked.

To find out how well the system worked, we tracked how much CPU and memory it used when it was
working normally and when it was at its busiest. We tested the architecture's scalability under multi-tenant
load by measuring latency and throughput with 10, 50, and 100 tenants.

1.6.Comparative Benchmarking

A comparison test was done between the proposed system and traditional security tools like Splunk and
AWS CloudTrail to see if the changes made were real. We ran the same assault simulations on all of these
systems to see how MTTD, MTTR, alert noise, and recovery management differed.

Performance benchmarks showed that the suggested system had much shorter detection and reaction times
and could handle incident recovery on its own. In contrast, older systems had more false positives, longer
latency, and needed manual remediation.

RESULT AND DISCUSSION

This part talks about the results of using and testing the self-healing monitoring system in a simulated
multi-tenant cloud SaaS scenario. We looked at the findings using pre-set performance indicators, such as
how accurate the detection was, how many false positives there were, how long it took the system to recover,
and how much extra work it needed to do. We compared the suggested architecture to traditional
monitoring systems to see if it worked as well as we thought it would. The results showed that the self-
healing system greatly improved threat visibility, cut down on the need for manual intervention, and made
sure that threats were dealt with in real time with little effect on performance.

1.7. Threat Detection Performance

The AI/ML-based detection engine was quite good at finding several forms of attacks, such as ransomware,
privilege escalation, and lateral movement. We used the CICIDS 2017 and UNSW-NB15 datasets to train
and test the detection models. The table below shows a summary of the performance:

Table 1: Detection Engine Performance Metrics

Metric Value (%)
Detection Accuracy 96.2
Precision 94.7

Recall (True Positive Rate) | 95.8

False Positive Rate 3.2
F1 Score 95.2
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Table 1 shows how well the AT/ML-based detection engine works when it is part of the self-healing
monitoring system. With a detection accuracy of 96.2% and an F1 score of 95.2%, the system was able to
find both known and new threats in the cloud SaaS environment. The model's high precision (94.7%) and
recall (95.8%) show that it can correctly identify real threats while missing as few as possible. Also, the low
false positive rate of 3.2% means that alert fatigue is less likely to happen and operations are more reliable.
These results show that the detection engine was very reliable and efficient, giving accurate, real-time
visibility of cyber threats with very few mistakes.

1.8. Mean Time to Detect and Respond

The real-time detection and self-healing controller module worked in tandem to achieve faster incident
resolution compared to traditional tools. The metrics were measured using timestamped logs and
automated response triggers:

Table 2: Response Time Comparison

Monitoring Tool MTTD (seconds) | MTTR (seconds)
Proposed Self-Healing System | 2.8 5.6
Traditional Log-Based STEM 15.2 120.4

Table 2 shows that the suggested self-healing monitoring system has a much faster response time than
typical log-based SIEM products. The system's Mean Time to Detect (MTTD) was only 2.8 seconds and its
Mean Time to Respond (MTTR) was 5.6 seconds. In contrast, older systems took 15.2 seconds and 120.4
seconds, respectively. This shows that the self-healing architecture could find and fix threats almost right
away, which kept damage and service interruptions to a minimum. On the other hand, traditional STEM
technologies take longer to respond, which makes systems more vulnerable for longer periods of time and
requires more manual intervention. These results show how important it is to have real-time automation
in cloud security operations.

1.9.System Recovery and Downtime

During simulated ransomware attacks and denial-of-service (DoS) events, the self-healing system
successfully restored affected services without human intervention. The recovery included rollback from
backups, container redeployment, and re-authorization of user access.

Table 3: System Recovery Performance

Incident Type Downtime (seconds) | Automated Recovery Success (%)
Ransomware Simulation | 12.4 100

DoS Attack 18.6 95.8

Insider Threat 9.1 98.6
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Figure 1: System Recovery Performance

Table 3 shows how well the system can recover from different types of simulated cyber incidents, which
shows how well the self-healing mechanism works. During a ransomware simulation, the system was able
to fully recover on its own, without any help from a person, in just 12.4 seconds. This shows how quickly it
can find encryption behavior and start rollback protocols. When there was a DoS assault, the system was
able to restore services in 18.6 seconds with a success rate of 95.8%. This shows that it is quite resilient even
when the network is under a lot of stress. For insider threats, the system responded in 9.1 seconds and had
a success rate of 98.6%, which shows that it can handle stealthier, behavior-based anomalies well. Overall,
the design regularly kept downtime to a minimum and recovery accuracy high, showing that it is a feasible
way to keep services running in real-world Saa$S systems.

1.10. Computational Overhead and Scalability

To assess resource efficiency, CPU and memory usage of the monitoring components were measured during
peak workload conditions. Additionally, system behavior was analyzed under scaled tenant loads to
determine horizontal scalability.

Table 4: Resource Consumption of Monitoring Agents

Metric Average Usage (%)

CPU Usage 6.3

Memory Usage | 4.1
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Figure 2: Resource Consumption of Monitoring Agents

Table 4 shows that the monitoring agents built into the self-healing system use resources efficiently. The
agents didn't put much extra load on the host environment because they only used 6.3% of the CPU and
4.1% of the memory. The fact that it uses so few resources means that the system can run in the background
all the time without slowing down main SaaS apps or making the user experience worse. Because these
agents are so light, the architecture is good for use in big, multi-tenant cloud systems where resource
efficiency is very important. These results show that the system can provide strong security monitoring
without slowing down operations.

Table 5: Scalability Metrics

Number of Tenants | Avg. Latency (ms) | Detection Accuracy (%)
10 15.3 96.2
50 19.7 95.8
100 24.1 95.2

Table 5 shows how well the self-healing monitoring system can handle different numbers of tenants. As the
number of tenants grew from 10 to 100, the average latency went up from 15.3 ms to 24.1 ms. This shows
that the response time was still tolerable even though the data processing needs were higher. At the same
time, the system's ability to detect threats stayed high, with only a small drop from 96.2% to 95.2%. This
shows how strong the system is at keeping up with heavy workloads while still detecting threats. These
results show that the proposed architecture scaled well, making sure that performance was steady and
security monitoring stayed trustworthy in multi-tenant SaaS systems without a big drop in speed or
accuracy.
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CONCLUSION

The proposed self-healing monitoring solution for real-time cyber threat visibility in cloud SaaS systems
showed that automated security management has come a long way. The architecture, which included
lightweight monitoring agents, AI/ML-based detection, and autonomous remediation, was able to
accurately and quickly identify and stop a wide range of attacks, including ransomware, privilege escalation,
and insider threats, with few false positives. The system had far lower Mean Time to Detect (MTTD) and
Mean Time to Respond (MTTR) than previous SIEM solutions. This improved incident response and
reduced downtime for operations. Also, the system was very scalable and efficient with resources, so it kept
working well even when the number of tenants grew. These results show that the suggested architecture is
realistic and works well in dynamic, multi-tenant cloud systems. They also provide a strong base for future
research and enterprise-level cybersecurity automation.
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