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Playing a pivotal role in software development, the Constructive Cost Model (COCOMO) offers 

a systematic and structured approach to cost estimation. It stands as a widely utilized model, 

aiding project managers in estimating the required effort, time, and cost for software 

development projects. COCOMO takes into consideration diverse factors, including the 

project's size, complexity, and the experience of the development team. The utilization of 

COCOMO empowers software development teams to make informed decisions related to 

resource allocation, project scheduling, and budgeting. Its application extends to managing 

expectations, enhancing project planning, and mitigating the risk of cost overruns. The 

integration of machine learning assumes a critical role in advancing cost estimation within the 

realm of software development, specifically through COCOMO. Through the utilization of 

machine learning algorithms, COCOMO gains the capability to analyze and interpret extensive 

datasets, taking into account numerous complex factors that influence project costs. This work 

aims to propose a model for software cost estimation using an advanced machine learning 

technique, i.e. Adaptive boosting, which has improved accuracy, reduced overfitting, 

effectiveness with imbalanced data, and good generalization capabilities. The proposed work 

may contribute to the success of software projects, providing a reliable and comprehensive 

framework for cost estimation. 

Keywords: COCOMO, Project cost prediction, Adaptive boosting, Machine learning, 

Ensemble learning. 

 

INTRODUCTION 

Determining the costs of software [1] stands as a crucial aspect within project management, focusing on 

predicting the resources, time, and financial investment required for software development. This procedure 

involves activities such as defining project scope, assessing size and complexity, choosing development 

methodologies, evaluating team expertise, considering the technology stack and external dependencies, and 

appraising potential risks. Widely employed estimation methods, including expert judgment, analogous 

estimation, parametric estimation, and three- point estimation, play a significant role. The accuracy of cost 

estimation holds utmost importance for effective project planning, budgeting, and decision-making. Continuous 

refinement and adjustments throughout the project lifecycle are essential to adapt to the dynamic nature of 

software development, ultimately contributing to the realization of successful project outcomes. Software cost 

estimation serves as a pivotal element in project management, assisting organizations in efficiently allocating 

resources and making well-informed decisions. Various methods exist to estimate software development costs, 

each with its strengths and weaknesses. One common approach involves using the knowledge of individuals 

experienced in software development. These experts examine project requirements, team capabilities, and past 

data to provide an informed estimate. Though subjective, this method works well when experts have relevant 

experience and a deep understanding of the project. Another method, called analogous estimation or top-down 

estimation, involves comparing the ongoing project with past similar ones. By looking at historical data, including 

cost and effort, teams can predict the outcomes of the new project. This method is quick and straightforward but 
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assumes the current project is comparable to previous ones. Parametric estimation uses 

mathematical models and statistical relationships to estimate costs based on project parameters like size, 

complexity, and productivity metrics. This data-driven approach is especially handy for large projects with well-

defined parameters. COCOMO, a widely used model, categorizes projects by size and complexity, providing 

equations to estimate effort, duration, and cost. Its flexibility in various development environments allows 

adjustments based on project-specific features. The Program Evaluation and Review Technique (PERT) estimates 

three scenarios: “optimistic”, “pessimistic”, and “most likely”, for each task. Using a weighted average, PERT 

calculates the expected duration or cost, proving useful in handling uncertainties and risks in project estimates. 

The choice of the most suitable software cost estimation approach depends on the project's characteristics, available 

data, and organizational preferences. Often, a combination of these methods is used to achieve more accurate and 

reliable estimates. 

Software cost estimation [2] holds great importance in project management and software development. Accurate 

cost estimation is crucial for effective budget planning, helping organizations allocate resources efficiently and 

avoid financial constraints. It contributes to project planning by establishing realistic timelines, milestones, and 

goals. Identifying potential risks through cost estimation aids in risk management, enabling the development of 

mitigation strategies. Precise cost estimates are essential for informed decision-making, assisting stakeholders in 

strategic choices regarding project scope and timelines. Additionally, cost estimation is indispensable for 

managing client expectations, facilitating competitive bidding, optimizing resource utilization, and serving as a 

reference point for monitoring and controlling project expenses. Ultimately, the accuracy of cost estimates is a key 

factor in assessing project success, reflecting the organization's proficiency in effective planning and resource 

management. Estimating the cost of software development comes with many challenges [3] that impact the 

accuracy and reliability of forecasts in project management. The difficulties arise from the inherent complexity of 

software development, uncertainties about project scope, the evolving nature of requirements, dynamic 

technologies, and the diverse expertise within project teams. The complexity increases with the choice of 

estimation techniques and methodologies, along with the difficulty of measuring intangible factors. External 

dependencies, like third-party integrations, and unforeseen risks also introduce uncertainties. The iterative 

development processes, combined with changing client expectations, add to the challenges of cost estimation. To 

effectively overcome these challenges, a combination of experienced judgment, continuous refinement, and 

adaptable approaches throughout the project lifecycle is essential. Using advanced algorithms, machine learning 

transforms software cost estimation [4], aiming to enhance the accuracy and efficiency of projecting project costs. 

By analyzing historical project data, machine learning algorithms detect patterns and relationships, enabling 

tailored predictions for the unique characteristics of the current project. This adaptive approach allows the system 

to improve its estimations over time. To address the complexities of software development, machine learning 

considers a wide range of variables, including project scope, team expertise, and external dependencies. The 

integration of machine learning into software cost estimation not only improves prediction precision but also 

contributes to more informed decision-making, ultimately enhancing project planning and resource allocation in 

the dynamic landscape of software development. 

Several studies have investigated the use of machine learning (ML) in software cost estimation. In article [12], the 

focus is on applying ML techniques to improve the accuracy and reliability of software project estimation. The 

authors aim to enhance estimation by using advanced computational models, addressing challenges associated 

with traditional methods. The study suggests integrating ML algorithms to predict project outcomes more 

effectively. Similarly, other studies [13-15] also discuss the application of ML in software cost estimation. 

Ensemble learning offers a significant advantage in software cost estimation by enhancing prediction accuracy 

and robustness. In the intricate landscape of software development, where projects have diverse and dynamic 

characteristics, ensemble methods excel by combining the strengths of multiple models. This combination not 

only reduces the risk of overfitting but also ensures a more stable estimation process, especially when dealing with 

outliers or unpredictable factors. The ability to include diverse models within an ensemble contributes to 

improved generalization, allowing for a more nuanced understanding of complex relationships inherent in 

software projects. Furthermore, ensemble learning is valuable in mitigating risks associated with uncertainties, 
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providing project managers with resilient cost estimations. The flexibility in model selection offered by ensemble 

methods empowers practitioners to tailor their approach to the specific nuances of each software development 

endeavor, fostering adaptability in an ever-evolving industry. In essence, the advantage of using ensemble learning 

in software cost estimation lies in its ability to harness collective intelligence, resulting in more accurate and 

informed decision-making for successful project management. 

The remaining sections are organized as follows: Methodology, Result Analysis, and Conclusion in Sections 2, 3, 

and 4, respectively. 

OBJECTIVES 

This study utilizes the Adaptive Boosting ensemble learning approach to predict software cost estimation based 

on historical data related to COCOMO cost attributes. The primary objectives are as follows: 

(i) Predicting software cost using various COCOMO software cost attributes such as programmers' capability 

(pcap), use of software tools (tool), process complexity (cplx), etc. 

(ii) Employing a robust machine learning model, Adaptive Boosting, for the prediction of software cost. 

2. ADAPTIVE BOOSTING 

AdaBoost [5], or Adaptive Boosting (Fig. 1), stands out as a potent ensemble learning technique widely recognized 

in machine learning. AdaBoost's core strength lies in its ability to boost the accuracy of weak learners, which are 

simple models performing slightly better than random chances. In tasks like classification and regression, 

AdaBoost trains a sequence of weak learners on the same dataset, giving more weight to misclassified instances in 

each round. This step-by-step process allows AdaBoost to focus on previously misclassified data points, effectively 

improving the model's overall performance. An essential feature of AdaBoost is its adaptability, dynamically 

adjusting weights for misclassified instances to prioritize the most challenging samples. The final prediction 

combines the weak learners through a weighted approach, where those with higher accuracy play a more 

significant role. This adaptability and ensemble strategy make AdaBoost robust against overfitting, enabling it to 

handle complex relationships within the data effectively. AdaBoost's versatility makes it a valuable asset in 

machine learning, contributing to enhanced predictive modelling and decision-making across various domains. 

 

            Figure 1. Overview of the working of AdaBoost 

3. PROPOSED APPROACH METHODS 

The proposed method makes use of an AdaBoost ensemble learning model [5] for the prediction of software cost. 

Here, the COCOMO81 dataset [7, 8] has been used for model construction, which includes various COCOMO 

software cost attributes are considered as input attributes and actual cost as output attribute. The used dataset is 
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divided into train and test data. Initially, the data samples of the train data are set with same weights. The 

predefined number of decision trees is constructed out of the data samples from train data. Each decision tree is 

trained and used for prediction of software cost. Then, the weights of the data samples in training data are adjusted 

based on the prediction error. Thereafter, another decision tree is constructed from the train data with updated 

weights. By this way, required number of decision trees are constructed from the train data, and then the entire 

trained decision trees [6] are used to make prediction on test data. The entire process can be understood from 

Algorithm 1 and Algorithm 2. 

Algorithm 1: AdaBoost for the prediction of software cost by using COCOMO cost parameters 

Let C be the COCOMO dataset, which are the collection of data sample with set of values of input 

attributes (COCOMO cost parameters) and target (actual cost). Split into train set Ctrain and test 

set Ctest. 

1. Assign equal weights to all training samples in Ctrain. If there are N examples, each weight is set to 

1/N initially. 

2. Set the number of estimator T 

3. For t = 1 to T: 

i. Train Weak Decision Tree Regressor (DTRt) (e.g., a decision stump for regression) (Algorithm 2) 

on the training data Ctrain with the current weights. 

ii. Calculate the weighted absolute error of the DTRt. This is the sum of weights multiplied by the 

absolute difference between predicted and true values. 

iii. Compute the weight of the DTRt in the final model. It depends on the error, with lower errors 

receiving higher weight. 

iv. Update Weights of data samples in Ctrain by Increasing the weights of examples with 

higher absolute errors and decrease the weights of examples with lower errors. 

4. Make Final Prediction by Combining all the regressors (DTRt, for t  1 to T) into a strong 

regressor by assigning weights based on their individual performance. The final model is a weighted 

sum of all regressor (DTRt, for t  1 to T). 

Algorithm 2: Construction of Decision tree regressor (DTR) 

1. Select the Best Split by Identify the best feature in Ctrain and corresponding threshold that 

minimizes the mean squared error (MSE) or another chosen criterion. Here, splitting is done by using 

information gain. 

2. If a stopping criterion is met (e.g., maximum depth reached or minimum samples in a node), create 

a leaf node with the predicted value for the target variable. 

3. Partition the data into two subsets based on the selected feature and threshold. 

4. Recursively Repeat: Apply steps 1-3 recursively to each subset until the stopping criteria are met 

for each branch. 

5. Make Predictions by assigning the predicted value to each sample based on the leaf node reached 

in the tree traversal. 

6. Return MSE. 

 

RESULTS 

4. EXPERIMENTAL RESULT AND ANALYSIS 

The evaluation of the software cost estimation prediction approach utilizes the COCOMO81 dataset [7, 8]. The 

training data for the model encompasses diverse COCOMO software cost attributes, such as "Acap" (analysts 

capability), "Cplx" (process complexity), "Rely" (required software reliability), etc., with the target attribute being 

"Actual" (Actual cost). Subsequently, the trained model is employed to predict software costs. A comparative 

analysis of the prediction performance involves various machine learning models (refer to Table 1), including 
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Linear Regression (LR) [9], Stochastic Gradient Descent (SGD) [10], and Support Vector Regressor (SVR) [11]. 

Table 1 presents the comparison of the studied model in terms of Mean Absolute Error (MAE) (Eq.1) and Mean 

Squared Error (MSE) (Eq.2). 

Table 1. Software cost prediction performance indicators 

Prediction Model Performance Metrics 

MAE MSE 

LR 923.8304 4477571.21 

SGD 920.8115 2746412.67 

SVR 809.5724 6967283.14 

Regression tree [12] 943.3075 5193249 

Random forest [12] 928.3318 5769025 

Bagging 259.98 691718.66 

Proposed model (Adaptive boosting) 176.35 42950.90 

 

DISCUSSION 

In Eq.1, ac is actual cost, ac is predicted cost, and n is the number of prediction. 

 

Figure 2. Performance of the proposed approach for the prediction of software cost 

In Eq.2, ac is the actual cost, ac is the predicted cost, and n is the number of predictions. 

The software cost prediction, as per the proposed approach, is illustrated in Figure 2. The predictive efficacy of the 

proposed method is assessed against other approaches (Fig. 3) based on MSE, demonstrating its superiority over 

alternative methods. 
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Figure 3. Comparison of all models based on MSE (Bar graph) 

5. CONCLUSION 

In this work, an efficient ensemble learning model, AdaBoost, has been used for prediction of software cost using 

COCOMO parameters. The proposed work is compared with other machine learning models and found to be of 

acceptable performance. However, software cost prediction poses several challenges that organizations must 

navigate to achieve accurate estimates and effective project management. One significant challenge lies in the 

inherent complexity of software development projects, which often involve numerous variables and dependencies 

that are difficult to quantify accurately. Uncertainties in requirements, evolving technology, and changing project 

scope further complicate the prediction process. Although, the COCOMO is widely used for software cost 

estimation, it is not without its challenges. One notable difficulty is the sensitivity of COCOMO to accurate input 

values, such as the size and complexity of the software project. Small errors in these inputs can lead to significant 

variations in cost predictions. Additionally, COCOMO's reliance on historical data assumes a certain level of 

similarity between past and current projects, which may not always be the case in rapidly evolving technological 

landscapes. While COCOMO provides a valuable framework for cost estimation, addressing these challenges 

requires careful consideration of project specifics, continuous refinement of input parameters, and recognition of 

the evolving nature of contemporary software development practices. Although machine learning models have 

shown promise in enhancing accuracy, they are highly dependent on the quality and representativeness of the 

training data. The availability of comprehensive and diverse datasets for training ML models that align with the 

specific characteristics of software development projects can be a major hurdle. COCOMO's reliance on historical 

data assumes certain patterns and trends, but machine learning models may struggle to capture complex 

relationships in evolving software environments. Addressing these challenges requires careful consideration of 

data quality, the dynamic nature of software development, and adaptation in the integration of machine learning 

with COCOMO for software cost prediction. 
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