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Objectives: This paper focuses on the continuous monitoring of water quality in the Nagi and
Nagathi dam reservoirs in Bihar, India, utilizing spatial and temporal Landsat satellite image
pixels.

Methods: To improve prediction accuracy, Landsat images are perspectively projected using
the Transverse Dyadic Wavelet Transform (TDyWT) and enhanced with Particle Swarm
Optimized Vision Transformer (PSOViT) and Adam Optimized Vision Transformer (AdamViT)
algorithms. Statistical features such as mean, entropy, PSNR, and band values extracted from
enhanced water and moss regions are correlated with laboratory-measured values using
Bayesian Optimized Support Vector Regression (BO-SVR). The proposed methods, PSOViT-SVR
and AdamViT-SVR, are employed to predict four water quality parameters namely pH, dissolved
oxygen (DO), total dissolved solids (TDS), and Conductivity at different locations within the Nagi
and Nagathi dams.

Results: Prediction accuracy of proposed method AdamViT-SVR followed by PSOViT-SVR is
higher compared to existing methods.

Conclusions: Proposed methods achieved an average accuracy of 96% to predict pH, DO, TDS
and Conductivity parameters when compared to ground truth verification.

Keywords: Water quality monitoring, deep learning, regression, wavelet transform, vision
transformer.

INTRODUCTION

Water is essential for life, impacting human health, agriculture, and ecosystems. However, urbanization, industrial
expansion, mass tourism, and climate change have significantly degraded water quality [1]. Contaminants like heavy
metals, nutrients, pesticides, and pathogens pose serious risks to health and the environment, highlighting the need
for effective water quality monitoring in lakes, rivers, and dams [2]. This work aims to develop a model for
monitoring water quality in Nagi and Nagathi dams in Bihar, India. Recent technological advancements have
improved monitoring methods through innovative sensor-based systems that enable real-time tracking of parameters
such as turbidity, pH, conductivity, and temperature, ensuring safe drinking water and healthy aquatic ecosystems
[3]. The primary water quality parameters in dams and reservoirs includes physical, biological, biophysical, and
chemical aspects such as turbidity, total suspended solids (TSS), pH, conductivity, temperature, chlorophyll
concentration, dissolved oxygen (DO), nutrients (nitrogen and phosphorus), organic matter, heavy metals, and other
contaminants [4,5]. It is essential to maintain these parameters within permissible limits, as impure water can
adversely affect both human health and environmental integrity. Further, measuring the concentrations of certain
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metal ions, such as lead (Pb), zinc (Zn), and manganese (Mn), in reservoir waters presents significant challenges
[6,7]. Sedimentation drift, the process by which sediment particles including heavy metals are transported and
deposited naturally into a dam reservoir, can lead to elevated levels of these contaminants. The maximum allowable
limits for commonly encountered heavy metals in irrigation water are as follows: Pb: 0.1-0.5 mg/L, Zn: 2-5 mg/L,
and Mn: 0.2-1.0 mg/L. Exceeding these limits can pose serious risks to agriculture and human health, as even low
concentrations can be toxic to plants, animals, and humans [8]. Plants readily absorb these heavy metals, which can
result in reduced growth, yield, and quality. Additionally, the consumption of water or crops contaminated with these
metals can lead to various health issues in humans, including neurological damage, gastrointestinal problems,
immunodeficiency, and reproductive issues [9,10].

Traditional methods of monitoring water quality through in situ measurements and laboratory analyses are often
time-consuming and expensive, with limited geographical and temporal variability. In contrast, remote sensing offers
a cost-effective and efficient alternative, providing unique spatial information and data continuity over large areas
and inland water bodies [11]. This approach can be integrated with conventional methods to overcome the limitations
associated with in situ monitoring. Remote sensing techniques and databases are particularly valuable for collecting
data on ecological indicators in lakes, especially in areas that have not been extensively studied and have minimal in
situ monitoring. With adequate validation from in situ data, remote sensing can deliver near-real-time insights into
changes in lake conditions, such as algal blooms or droughts. Furthermore, interdisciplinary collaboration and
validation efforts can enhance the accuracy and efficiency of remote sensing for evaluating and managing water
bodies, while also reducing the time, effort, and costs involved [12]. The conventional approach to assessing water
quality encompasses three primary categories: physical, chemical, and biological parameters. (i) Physical Parameters
include metrics such as water temperature, transparency (measured by Secchi disk depth), salinity, turbidity, total
suspended matter (TSM), colored dissolved organic matter (CDOM), odor, and electrical conductivity. These provide
insights into the water's physical characteristics. (ii) Chemical Parameters involve indicators like pH, dissolved
oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total nitrogen (TN), total
phosphorus (TP), heavy metals, and non-metallic toxins, which are essential for understanding the chemical health
of water bodies. (iii) Biological Parameters consist of metrics such as chlorophyll-a, total bacteria count, and total
coliforms that assess biological activity and ecosystem health [13]. Remote sensing methods categorize parameters
into those with active optical characteristics (e.g., chlorophyll-a) and those without defined optical properties (e.g.,
TN and TP), typically analyzed through correlations with optically active parameters [14].

In summary, assessing the concentration and maintaining the quality of water in dam reservoirs presents
considerable challenges due to environmental factors, technological limitations, and operational constraints [15].
The dynamics of water quality are complex, influenced by factors such as stratification, sedimentation, and nutrient
cycling. Stratification leads to temperature-induced layering in the water column, which can prevent mixing and
create low-oxygen conditions in deeper layers, affecting downstream water quality. Sedimentation further
complicates assessments by trapping nutrients and pollutants, altering chemical compositions over time [16].
Traditional monitoring methods often rely on manual sampling, which is labour-intensive and may not provide real-
time data; this approach can overlook spatial variability within the reservoir, resulting in incomplete assessments.
Although advancements in sensor technology have improved monitoring efficiency, integrating these systems into
existing infrastructure poses challenges due to high costs and complexity. Environmental changes, such as declining
water levels from drought or increased evaporation, can magnify water quality issues by concentrating pollutants and
promoting eutrophication [17, 18]. Additionally, the management and analysis of data collected from multiple
sensors require robust frameworks to interpret trends accurately and facilitate timely decision-making. In overall,
addressing these complicated challenges is essential for effective water quality management in dam reservoirs to
safeguard human health and protect aquatic ecosystems [19,20,21].

Research Gap

Despite advancements in water quality monitoring technologies, significant gaps remain in effectively assessing water
quality in dam reservoirs. Current methods, such as manual sampling, are time-consuming and do not provide real-
time data, leading to delays in addressing issues [22,23]. While sensor-based systems are emerging, there is
insufficient integration between various sensor technologies and remote sensing methods, limiting comprehensive
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data collection across different depths and locations. Many predictive models rely on limited datasets and fail to
consider the complex interactions among physical, chemical, and biological factors affecting water quality dynamics.
There is a need for methods that utilize machine learning and deep learning techniques to improve prediction
accuracy and enable real-time monitoring [24,25,26]. Addressing these gaps could lead to more effective water
quality management strategies in dam reservoirs, ultimately protecting water resources and public health.

Problem Statement

Satellite images have low spatial resolution, making it difficult to detect small pollution areas or small water bodies.
Additionally, the temporal resolution may not capture rapid changes in water quality. Weather conditions like clouds
and haze can obstruct satellite images, leading to inaccurate results. Vegetation in reservoir areas complicates the
measurement process. These challenges need to be explored in other reservoirs, such as Nagi and Nagathi dams,
where water moss is present. To address these issues, the proposed method integrates both spatial and temporal
pixels by combining Transverse Dyadic Transform with an optimized Vision Transformer to monitor the water quality
effectively.

OBJECTIVES

Landsat images are perspectively projected using the Transverse Dyadic Wavelet Transform (TDyWT) and images
are then enhanced with optimized Vision Transformers (ViTs), and moss regions are extracted using a dual-threshold
graph cut method (DTGC). The statistical features derived from this process are correlated with laboratory values
through Bayesian Optimized Support Vector Regression to predict water quality. The major contributions of the
proposed work are:

(i) To collect water quality parameters from the laboratory for different locations in the two water bodies (Nagi and
Nagathi reservoirs) and also from leaf samples of water moss in the reservoir for estimation of lead content.

(ii) To improve spatial representation and to highlight important structures, patterns within the image, Landsat
images are perspectively projected using the Transverse Dyadic Wavelet Transform (TDyWT).

(iii) To enhance the pixels of water and moss using Particle Swarm Optimized Vision Transformer (PSOViT) and
Adam Optimized Vision Transformer (AdamViT) for better analysis and monitoring of water quality in dam
reservoirs.

(iv) To differentiate between water and moss regions using a dual threshold graph cut method and to correlate the
extracted pixel features with laboratory values to predict water quality in dams using Bayesian Optimized Support
Vector Regression (BOSVR).

(v) To validate the predicted water quality parameters by comparing them with the predictions of existing algorithms.

Recent research has focused on various methodologies for monitoring and assessing water quality across different
regions, utilizing advanced technologies such as remote sensing, machine learning, and Internet of Things (IoT)
systems as detailed. These studies highlight the effectiveness of these approaches in providing accurate and timely
data for environmental management. Recent studies demonstrate a variety of methodologies and technologies
employed for monitoring and assessing water quality across different geographical regions. Research from various
studies highlights the effectiveness of remote sensing, machine learning, and IoT-based systems in monitoring water
quality. In particular, satellite imagery for monitoring water quality has several significant limitations. The limited
spatial resolution can hinder the detection of localized pollution and small water bodies, while the temporal
resolution may not capture rapid water quality changes. Atmospheric conditions like clouds and haze can obscure
images, leading to inaccurate assessments. Additionally, interpreting satellite spectral data into specific water quality
parameters requires complex algorithms that may not account for local variations or contaminants. Vegetation in
reservoir areas further complicates satellite measurements. For example, Kim (2021) [18] found that vegetation like
Salix subfragilis in Korea's Namang Dam reservoir obstructed sensor readings and contributed to deteriorating water
quality. This illustrates the necessity to investigate similar issues in other reservoirs, such as Nagi and Nagathi dams,
where water moss is present. These challenges reduce the reliability of satellite-based monitoring compared to
ground-based methods.
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METHODS

The proposed work employs a comprehensive methodology that combines satellite imagery, field sampling,
laboratory analysis, image processing with optimized Vision Transformer (ViT) machine learning algorithms, and
correlation-regression techniques to enable continuous monitoring of water quality and water moss in two dam
reservoirs using Landsat satellite images as depicted in Figure.1. The methodology involves (i) Collection and pre-
processing of Landsat images and relevant data on water quality and moss from the reservoirs. (ii) Feature extraction
from the images aids in monitoring water quality and detecting water moss. (iii) Optimized models are validated
using distinct test datasets to ensure accuracy in predicting water quality in the dam reservoirs. (iv) Predictions are
made using a Bayesian-optimized support vector regression algorithm, and the predicted water quality parameters
are compared with results from existing algorithms to assess performance. The proposed combined approach
improves monitoring efficiency of water quality and water moss, enabling proactive management and decision-
making for dam operators and water resource managers.

DAM
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2.NAGATHI DAM

BAND WATER BODY S METHOD
COMBINATION REGION AND

MOSS 1. PSOViT
B B oo ‘

LANDSAT /vErspEcTvE N\ ([ provosep ) [ o
IMAGE PROJECTION OF ENHANCEMENT g 1

(1aBoraTORY \  “prepicrionor ) [ STATISTICAL )

LEAVES OF DERIVED BOSVR FEATURES OF

WATER MOSS WATER RECRESSION WATER AND
QUALITY -

SAMPLES i

. - 1 G

Figure.1 Water quality monitoring in Nagi and Nagathi dam reservoirs using optimized Vision Transformer and
Bayesian optimized Support Vector Regression Algorithm.

STUDY AREA

Nagi Dam and Nagathi Dam are situated in the south-eastern region of Bihar, near the town of Jhajha, India. These
deep dams are surrounded by rocky hillocks and were constructed to provide water for local agriculture. Adjacent to

both reservoirs are cultivable lands. Figure.2 shows the locations of Nagi and Nagathi Dams, which are the subjects
of this study.

(a) Nagi Dam (b) Nagathi Dam

Figure.2 Photograph of the water regions of Nagi and Nagathi Dams.
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Nagi Dam, an earthen structure completed in 1958, spans the Nagi River within the Ganga Basin's Nagi sub-basin. It
covers an area of 425 hectares, stretches 1,884 meters in length, and reaches a maximum height of 113.5 meters above
its foundation. The dam is designed to hold a gross storage capacity of 108 million cubic meters of water and features
a bird sanctuary that supports a diverse array of wildlife, including fish, amphibians, birds, and reptiles.

Nagathi Dam constructed in 1980 on the Nagathi River, has a full reservoir area of 364 hectares. The average water
area of the reservoir decreases to 75 hectares during April and May, then increases to 170 hectares or more in the
following monsoon season. This reservoir also hosts a bird sanctuary that plays a vital role in conserving bird species
and their habitats in the area. The sanctuary faces challenges like habitat degradation, pollution, and human
disturbance, which threaten bird populations and the overall health of the ecosystem. Recently, both Nagi and
Nagathi Bird Sanctuaries were recognized as wetlands of international importance under the Ramsar Convention,
emphasizing their ecological significance.

LANDSAT BAND COMBINATIONS FOR DAM QUALITY MONITORING

Landsat images have several advantages such as high temporal resolution, multi-spectral imaging capabilities, and
extensive long-term data availability. Their spatial resolution of 30 meters (or 15 meters for panchromatic images)
makes them especially effective for water quality analysis. The use of band combinations from Landsat images is
essential for monitoring water quality in dam reservoirs and analyzing various earth features, including land use,
water bodies, and coastal regions. These combinations enable the effective detection of key water quality parameters,
such as turbidity and chlorophyll-a levels. For example, the integration of near-infrared (NIR) and shortwave infrared
(SWIR) bands aids to distinguish clear and turbid waters, which is crucial for accurate assessments. Specific
combinations like NIR (Band 4), SWIR1 (Band 5), and Red (Band 3) enhance the definition of land-water boundaries,
allowing for better identification of flooded areas and precise tracking of water level fluctuations that can significantly
impact local ecosystems and agriculture.

Moreover, these band combinations are vital for monitoring temporal changes in water quality, particularly in
response to environmental factors such as runoff or pollution, which is critical for proactive water resource
management. The use of multiple bands also enables a thorough analysis of the surrounding environment, where
changes in vegetation health indicate nutrient runoff and potential water quality issues. Ultimately, insights derived
from optimized band combinations in Landsat imagery provide valuable data that support decision-making,
particularly during ecological crisis or conservation initiatives. Using Landsat band combinations is important for
accurately monitoring water quality in dam reservoirs, which helps improve environmental management and
resource use. In this paper, dam water quality is monitored using a combination of Band 2, Band 3, and Band 4. This
selection minimizes multi-collinearity, improving the identification of moss variations while reducing interference
from water and thereby improves the accuracy of water quality assessments. The time series data from Landsat
effectively tracks changes over time, allowing us to compare images taken at different intervals with consistent band
combinations to detect significant shifts in water quality. Figure.3 shows the band combination results to monitor
quality of water.

LANDSAT-Band 2 LANDSAT-Band 3 LANDSAT-Band 4 Band Combination

Nagi Dam — 2014 Nagi Dam — 2014 Nagi Dam — 2014 Nagi Dam - 2014

Figure.3 Landsat-band combinations for water quality monitoring

PERSPECTIVE PROJECTION OF MOSS IN DAM WATER
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Moss indicates the nutrient levels and potential algal blooms that are crucial for understanding the dynamics of water
quality. The clarity and precision of these assessments are improved by employing perspective projection techniques,
which facilitate more accurate differentiation between moss and water surfaces. In the proposed work, Transverse
dyadic wavelet transform is utilized for perspective projection, effectively capturing both fine details and broader
growth patterns of moss with Butterworth in decomposition phase and Haar in reconstruction phase. Its multi-
resolution analysis reduces noise and improves clarity, facilitating the distinction between moss and water even in
the presence of environmental challenges. Wavelet transforms help track changes in moss coverage over time and
results in information of the reaction of moss to nutrient runoff and pollution. Further, decomposition of signals aids
in feature extraction and helps to identify critical indicators of aquatic ecosystem health, such as changes in moss
growth and water quality. In comparison to traditional discrete wavelet transform (DWT), TDyWT has specific
advantages such as (i) TDyWT correct geometric distortions caused by factors like satellite altitude and the curvature
of the earth's surface. These distortions can significantly affect the accuracy of satellite imagery, leading to
misinterpretation in land cover classification. TDyWT minimizes these distortions, resulting in clearer and more
accurate representations of the earth's surface. (ii) TDyWT is also effective in handling mixed pixels areas where
multiple land cover types coexist by improving the classification of different terrains. (iii) TDyWT improves image
features like edges and curvatures, making it easier to identify land cover types such as vegetation and water bodies,
and performs better than the traditional Discrete Wavelet Transform (DWT). In the proposed work, the use of
adaptive thresholding in TDyWT method during the reconstruction phase adjust based on the specific characteristics
of different areas in an image. For instance, in water body areas with moss, adaptive thresholding effectively
highlights the moss by accurately distinguishing it from its surroundings, thereby enhancing its visibility.
Additionally, this approach minimizes unwanted artifacts caused by variations in lighting or noise, resulting in a
clearer and more detailed image. This dynamic methodology significantly improves the overall quality and accuracy
of the image, particularly in complex areas of satellite imagery.

MOSS REGION ENHANCEMENT IN DAM WATERS using optimized Vision Transformer

Vision Transformer deep learning technique used to enhance water and moss pixels in the proposed methodology as
it effectively captures complex patterns in images while maintaining high levels of accuracy and efficiency compared
to traditional methods. Table.1 summarizes the optimized Vision Transformer (ViT) architecture. The architecture
typically includes layer normalization before each block to stabilize training and improve performance. Additionally,
residual connections are employed after each block to facilitate information flow through the network without losing
important features.

Table 1. Optimized ViT Architecture

Component Description

Input Landsat noisy Image

Image is divided into 16X16 non-overlapping

I Patchi .
mage Patching patches for easy processing

Flatten each patch into format suitable for input

Flatten and Embed Patches to ViT model

Provide positional information of each patch

Positional Encoding within the image

Consists of Multi-head Self attention layer
(Enhances Feature Extraction) and Feed Forward
network (transforms and processes the attention

outputs to extract more complex features)

Transformer Encoder

Specifically tuned using particle swarm and adam

Last Multi-head self-attention layer ..
Y optimizer to enhance water and moss features.
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A final layer that predicts class labels based on

Classification Head
features extracted by the transformer encoder.

Output Layer Enhanced output

This architecture allows ViTs to learn complex patterns and hierarchical features effectively, making it well-suited
for image enhancement. To improve the effectiveness and efficiency of image enhancement on ViT model,
optimization technique during training phase, hyper-parameter tuning, fine tuning and optimizing self -attention
mechanisms in ViT model can be done. The proposed work employs particle swarm optimization and adam
optimization to enhance ViT model for enhancing water and moss regions in Landsat images.

Particle Swarm Optimized Vision Transformer (PSOViT)

The integration of ViT and Particle Swarm Optimization (PSO) allows for the identification of optimal configurations
for critical hyper-parameters, including the number of layers, patch size, learning rate, and number of attention
heads. Initial parameters such as size of input image, the number of particles, the maximum number of iterations
and the bounds for hyper-parameters such as the number of layers, patch size, learning rate, and the number of
attention heads are defined. Then each particle assigned a random position representing hyper-parameters within
specified bounds. Each particle's velocity is also initialized, and both personal best and global best positions are set
based on initial evaluations. In each iteration, ViT model is trained using the current hyper-parameters on the
Landsat dataset, and its performance is evaluated using accuracy. If a particle's fitness exceeds its personal best, then
that position is updated; similarly, if it surpasses the global best, the global best is updated. The velocity of each
particle is then adjusted based on its previous velocity, its personal best position, and the global best position. The
position is updated accordingly while ensuring it remains within defined bounds. After completing all iterations, the
algorithm returns global best as the optimal hyper-parameters. Finally, the ViT model is trained using these optimal
parameters on the entire Landsat dataset to enhance water and moss pixels, resulting in enhanced images for further
analysis or application.

Adam optimized Vision Transformer (AdamViT)

Adam optimizer adjusts the learning rates for each parameter and makes the training phase more efficient compared
to other optimization techniques. The optimizer’s flexibility speeds up convergence and improves the performance
of ViT model. As a result, the model can better detect and enhance specific pixel classes, such as water and moss in
Landsat images. Initial hyper-parameters such as the number of layers, patch size, number of attention heads are
defined. Then a specific layer is tuned based on the computation cross entropy loss to measure model's performance
during training. The Adam optimizer is then initialized to facilitate dynamic learning rate adjustments throughout
the training process. During each iteration, the model processes batches of images: it performs a forward pass to
generate outputs, computes the loss against the true labels, and then updates the model parameters through back-
propagation and updates weights using the adam optimizer. After training is complete, the model's performance is
evaluated on a validation set to ensure it effectively enhances the targeted pixel classes. Finally, the trained model is
applied to enhance specific pixel classes in the Landsat images, resulting in the desired output. In the proposed work,
fine tuning of the last multi-head self-attention layer is done as it captures high-level features from the input data.
Tuning this layer can significantly improve the model's ability to focus on relevant features, such as water and moss
pixels.

SEGMEENTATION OF WATER AND MOSS REGION USING DUAL GRAPH CUT THRESHOLD

Dual-Threshold Graph Cut (DTGC) method is a segmentation technique used in the proposed methodology to
identify Regions of Interest (ROI) in images which is particularly effective in applications such as water extraction
from Landsat imagery. Initially, the input image is converted into a graph, where each pixel is represented as a node
and edges indicate relationships based on intensity differences between neighbouring pixels. Segmentation accuracy
is improved by using a dual-threshold approach derived from a Gaussian Mixture Model (GMM) to differentiate
foreground and background elements, such as moss and water effectively in Landsat images. Dual-thresholding
technique captures subtle variations in pixel intensity more effectively than traditional single-threshold methods.
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The method further optimizes the segmentation process through an energy minimization function, which refines
edge weights within the graph. This optimization leads to more precise delineation of objects by minimizing the
energy associated with misclassifications and promoting smooth transitions between segments. Additionally, DTGC
incorporates multi-scale feature extraction techniques that capture important details at various scales, significantly
improving performance compared to conventional methods. The method also emphasizes the identification of
homogeneous regions within images, which further improves the accuracy in distinguishing different pixel types. In
the proposed method, integrating optimised vision transformer with DTGC improves background subtraction and
enhances moss detection accuracy even in the presence of reflections on water surfaces. Further, proposed integrated
approach significantly improves the precision of moss detection in complex water environments.

PREDICTION OF WATER QUALITY IN DAM RESORVOIRS

Table.2 presents the water quality measurement methods for water samples collected from various locations in the
two dam regions (Nagi and Nagathi).

Table 2. Water Quality Measurement Methods

Water quality parameter Measurement methods
1) Temperature 1) Centigrade mercury thermometer
2) Turbidity 2) Digital Nephelo-Turbidity Meter
3) pH 3) Digital pH Meter
4) Conductivity and TDS 4) Conductivity-TDS Meter
5) Dissolved oxygen 5) Winkler’s modified method

Water quality parameters analyzed include ambient and water temperature, pH, conductivity, turbidity, total
dissolved solids, dissolved oxygen, free carbon dioxide, carbonate and bicarbonate alkalinity, chloride, total hardness,
phosphate-phosphorus, nitrate-nitrogen, biochemical oxygen demand, and chemical oxygen demand.

EXTRACTION OF STATISTICAL FEATURES FROM WATER AND MOSS REGIONS FOR PREDICTION

Statistical parameters such as mean, entropy, Peak Signal-to-Noise Ratio (PSNR), and Signal-to-Noise Ratio (SNR)
calculated to assess the quality and characteristics of water and moss regions. Mean value represents the average
pixel intensity within a specified region, providing a basic measure of brightness Higher mean values may indicate
brighter surfaces, such as clear water or healthy vegetation, while lower values might suggest darker, turbid waters
or stressed moss. The second parameter Entropy is a measure of the amount of information or randomness in an
image. It quantifies the distribution of pixel intensities, with higher entropy indicating more complexity and
variability in the image. Also, entropy aids to assess the texture and patterns within water and moss regions. For
example, areas with high entropy denote diverse aquatic environments or complex moss structures and low entropy
indicate uniformity in pixel values. PSNR is a metric used to assess the quality of reconstructed images compared to
original images. It is defined as the ratio between the maximum possible power of an image and the power of
corrupting noise that affects its representation. A higher PSNR value indicates better quality and less distortion in
the segmented regions. In Landsat imagery, PSNR can be used to evaluate how well the segmentation process
preserves important features in water and moss regions.

PREDICTION OF WATER QUALITY IN DAM RESORVOIRS USING BAYESIAN OPTIMIZED
SUPPORT VECTOR REGRESSION

Prediction of water quality in dam reservoirs using Bayesian Optimized Support Vector Regression (BO-SVR)
proposed to improve the accuracy and reliability of predictions. Features such as red, green, and blue (RGB) pixel
values, mean intensity, entropy, Peak Signal-to-Noise Ratio (PSNR), and Signal-to-Noise Ratio (SNR) derived from
water and moss regions are used for water quality prediction. The laboratory-based water quality measurements
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conducted from May 25 to May 29, 2023, with the corresponding latitude and longitude locations provided in
Table.3.

Similarly, SNR measures the level of desired signal relative to background noise. SNR helps to determine the
effectiveness of detecting features such as moss or water by assessing how much useful information is present
compared to noise that could obscure these features. Table.4 and Table.5 displays the statistical values obtained
from water and moss regions in Nagi and Nagathi dam resorvoirs.

Table 3. Laboratory Methods Based Water Quality Measurement On 25 May To 29 May 2023

Nagi Dam Nakti Dam

Parameters Site | Site I Site 111 Site | Site 1l Site 11l
GPS position N 24°49.260| N 24°48.789°| N 24°48.812'| N 24°51.208'| N 24°49.283°| N 24°50.894"

E86°24.024)| E86°24.315’| E 86°24.230°| E 86°26.340" | E 86°26.489"| E 86°26.694"
Ambient Temp.("C) 26 28 32 32 33 34.5
Water Temp. ("C) 26.3 27.3 28.5 30.8 31.9 335
Turbidity(NTU) 8.1 7.8 15.8 9.8 7.3 4.1
Conductivity(us) 248 249 248 236 224 243
TDS 125 126 125 120 115 125
pH 75 7.5 75 7.5 89 9.5
Do 8.4 10.8 10.8 8.8 13.2 13.2
FCO, Abs. 24 Abs. Abs. Abs. Abs.
CO;s~ 10 Abs. 10 10 10 15
HCO5 28 28 26 30 26 30
TH 90 106 90 86 102 78
cr 1299 10.99 10.99 13.99 0.899 10.99
PO,—=P 0.054 0.055] 0.059 0.053 0.047 0.040
NOz;=N 0.04] 0.050 0.053 0.052 0.057 0.041
CoD 86.2 - - 86.2 - -
BOD 1.3 0.05 2.8 1.2 1.3 1.1
As Nil 0.02 0.02 0.02 0.01 0.025

Table. 4 Statistical values of pixels of regions at different location of the Nagi Dam Reservoir (Sample Data)

dissol | Ph | Conduc | total | turbi | Mea | entro | psn | snr | Me entro | psn | snr | W w WB | MR | MG | MB

ved tivity disol | dity n- py- r— - an- | py- r- - R G

oxyge ved wat | wate wat | wat | mo moss | mo | mo

n solid er r er er ss sS sS

8.93 7. 239.33 123.5 | 7.09 132. 5.95 21.8 | 17. 139. | 4.49 22, 18. 42. 14 24 52. 42. 163
5 9 52 7 67 3 35 4 14 8 0.8 | 69 51 .7

8.84 7. 228.12 115.4 | 5.27 134. | 6.23 22, 18. 139. | 4.44 23. 19. 41. 14 239 | 52. 42. 163
76 8 67 04 41 7 64 5 12 85 | 5 47 97 -5

9.61 7. 228.81 118.4 7.33 136. | 6.07 20. 17. 139. | 4.42 23. 18. 42. 154 | 237 | 58. 39. 166
6 4 68 74 59 3 5 7 75 .6 -3 18 91 .7

8.51 7. 232.57 121.3 7.07 131. 6.24 22, 18. 140 5.19 24. 18. 39. 152 | 243 | 52. 39. 16
66 2 21 41 38 4 o1 9 78 a .3 82 85 8.4

9.43 7. 226.03 116.4 | 6.3 131. 5.51 22.1 | 17. 137. | 6.32 22, 19. 43. 145 | 244 | 53. 40. 169
5 6 86 2 06 7 13 1 19 .7 .2 31 38 1

9.09 7. 239.75 117.1 5.03 135. | 6.26 22.1 | 18. 140 3.65 22, 19. 42. 144 | 245 | 62. 42. 165
63 3 02 4 62 3 5 41 -3 -5 92 43 -7
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10.19 7. 237.95 119.0 | 5.14 134. | 6.19 22, 16. 141. | 5.33 22, 19. 40. 152 | 246 | 59. 41. 166
5 2 11 39 75 4 98 6 17 -3 -4 42 53 -9
9.55 7. 230.74 124.6 | 5.29 133. | 5.88 22, 17. 138 5.05 23. 19. 41. 155 | 252 | 56. 40. 167
67 5 78 57 81 -4 18 9 5 -9 -9 04 77 -5
9.96 7. 235.68 116.4 7.4 132. 6.08 22,1 | 16. 139 5.4 22, 19. 44. 144 | 24 52. 41. 166
61 6 76 9 78 62 1 99 7 0.1 42 49 .3
10.09 7. 234.84 119.9 8.26 135. 5.62 22, 17. 141. 6.24 23. 18. 42. 151 245 | 51. 40 16
69 1 86 2 31 3 46 5 02 a1 .6 69 8.7
8.44 7. 240.38 123.8 | 9.42 139. | 5.6 21.7 | 17. 137. | 6.51 22, 18. 39. 149 | 249 | 59. 40. 163
57 1 48 1 29 8 89 9 54 -4 -7 49 12 -8
10.35 7. 226.16 117.4 7.39 136. | 6.29 21.4 | 18. 140 6.63 22, 18. 41. 149 | 237 | 49. 40. 165
95 6 54 9 44 -3 61 8 72 -8 -8 32 9 -7
8.88 7. 225.2 123.4 | 8.3 138. | 5.91 21.4 | 18. 140 5.56 23. 19. 43. 152 | 245 | 62. 40. 170
57 5 69 1 69 24 1 49 .6 .8 04 78
9.73 8 234.19 118.7 | 6.72 133. | 6.23 22, 17. 141. | 6.9 24. 18. 43. 154 | 244 | 48. 39. 16
5 59 45 42 5 07 3 24 1 -4 54 7 8
10.03 7. 228.41 119.4 9 137. 5.66 21.3 | 16. 137. | 6.52 22, 18. 36. 152 | 249 | 55. 42. 167
7 4 47 5 45 8 78 6 65 -9 1 55 61 1

Table. 5 Statistical values of pixels of regions of pixel at different location at the Nagathi Dam Reservoir (Sample

Data)
dissolv | Ph cond | total Tur | Me ent | psn | snr- | Mea | ent | psn | snr- | WR | WG | WB | MR | MG | MB
ed uctiv | disol bidi | an- rop | r-- wat | n- rop | r- mo
oxygen ity ved ty wat | y- wat | er mos | y- mo SS
solid er wat | er s mo SS
er ss
11.13 8.21 | 248. 125.9 8.4 171. 5.8 22, 18. 100. 6.0 21.1 15.5 | 22. 171. 217. | 50. 139. | 199.
7 6 4 6 27 35 22 9 7 3 27 3 7 7 92 1
11.06 9.13 | 248. 125.4 10.1 | 169. | 6.2 22, 19.1 | 100. 6.13 | 21.3 | 15.1 22, 167 211 46. 113. 180
6 4 92 4 4 51 4 35 6 73 71 3
9.9 7.6 248. 125.0 10. 171. 5.5 21.6 | 19. 99.7 6.0 21.4 | 14.3 | 23. 166. | 215 43. 85. 177.
8 2 8 68 1 4 6 4 7 4 4 5 76 7 87 76 7
9.79 7.9 248. 125.9 11.1 169 5.7 22, 18.5 | 98.7 6.3 21.1 14. 25. 172. 221. | 53. 110. 218
8 5 8 8 25 7 5 4 84 36 1 7 05 3 -3
10.37 8.77 | 248. 125.8 | 13.4 | 170. | 6.3 22.1 | 18.1 | 99.5 6.0 22, 15.6 | 23. 174. | 211. | 56. 100 181.
4 6 4 4 6 1 1 3 75 04 3 1 5 -9 7
11.32 7.9 248. 125.1 15.1 169. | 5.9 21.3 | 18. 98.8 6.0 22.1 | 15.7 | 14. 174. | 211. 44-. 68. 176.
5 2 5 92 3 7 5 2 3 8 1 4 64 8 4 57 54 92
11.94 9.2 248. 125.9 11.5 169 5.61 | 21.4 | 18. 99.5 6.0 22, 16.3 | 22. 172. 215. | 57.7 | 58. 185.
5 9 8 4 8 62 9 6 47 2 41 5 6 7 87 7
11.44 8.4 248. 125.4 11.0 | 168 6.15 | 20. 19. 98.8 | 6.2 21.3 | 15.3 | 26. 171. 219. | 59. 134. | 182
6 9 1 8 -9 96 44 9 7 21 3 8 43 7 4
9.38 8.2 248. 125.7 12.5 | 169. | 5.7 22, 18. 97.7 6.0 22, 16.2 | 23.1 | 174. | 221. | 44. 55. 230
2 8 6 3 6 4 84 66 2 1 o1 8 2 2 3 95 81
11.98 8.6 248. 125.7 12 171. 5.75 | 22. 18. 100. 6.4 21. 15.9 | 12.3 | 177. 210 44-. 99. 234
3 6 7 3 23 63 12 6 o8 5 8 6 a1 82 3 .3
9.18 8.9 248. 125.5 8.3 168 5.4 22, 19. 98.5 5.9 21.9 | 14.7 | 20. 174 220 54. 94. 186
9 8 1 8 71 o1 8 7 5 3 7 o7 78 5
9.22 7.67 | 248. 125.3 14.4 | 167. | 5.5 21.6 | 18. 99.9 6.2 21, 16.2 | 17.6 | 175. 212. | 55. 44. 195
8 1 6 9 5 4 97 5 6 o8 5 8 1 49 24
12.46 9.2 248. 125.1 13.4 | 169. | 5.5 21.9 | 19. 97.7 6.13 | 21.5 | 14. 19.3 | 177. 220 45. 68. 184
6 9 3 4 6 8 2 46 1 3 6 4 8 04 93 -5
10.1 8.5 248. 125 11.6 | 171. 6.0 22, 18. 98.4 | 6.5 21.9 | 16.3 | 19. 167 218 57.1 | 99. 239
9 5 2 3 o7 o7 1 4 9 2 49 8 24 -2
12.15 8.11 | 248. 125.7 10.7 | 168 6.2 21.9 | 18. 100. 6.2 22, 15.8 | 27. 175. 221, | 52. 129. | 205
5 9 4 -6 4 3 38 14 3 o1 1 33 5 5 34 2 -2

Extracted features are utilized as input variables and the water quality parameters are used as output variables. These
features are collected as a dataset for training an SVR model. Hyper-parameter optimization conducted using
Bayesian Optimization to find optimal values and to minimize prediction error. The SVR model is trained on the
prepared feature set using these optimized hyper-parameters. The trained model is then used to predict water quality
parameters, with its performance evaluated using metrics like Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), and Coefficient of Determination (R2). Each feature plays a significant role in predicting water quality. For
example, RGB pixel values provide color characteristics for distinguishing land cover types, mean intensity indicates
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average brightness in water and moss regions, entropy reflects complexity in pixel distributions, PSNR assesses image
quality preservation during segmentation, and SNR measures image clarity relative to noise. Proposed BO-SVR
approach improves prediction accuracy and supports better water quality monitoring, aiding informed decision-
making for environmental management.

RESULTS

The proposed method combines deep learning and regression techniques to monitor four quality parameters such as
pH, dissolved oxygen (DO), total dissolved solid (TDS) and conductivity in the Nagi and Nagathi dams in India.
Initially, Landsat band images are acquired and processed using TDyWT for perspective projection, followed by
enhancement through a Particle Swarm and Adam optimized Vision Transformer models (PSO ViT and Adam ViT).
Subsequently, the method differentiates between water and moss regions using a dual threshold graph cut approach.
Statistical features extracted from these regions and correlated with laboratory measurements to predict water
quality using Bayesian optimized support vector regression (BOSVR). Two proposed methods named as PSOViT-
SVR, AdamViT-SVR are implemented in MATLAB R 2023b to analyze and evaluate the results effectively.

As a first step, Landsat band combination images are acquired and perspectively projected using the Transverse
Dyadic Wavelet Transform (TDyWT) to enhance visual quality by improving the contours, boundaries, and
curvatures of land cover features. Figure.4 and Figure. 5 displays the TDyWT results for Nagi and Nakati dam
respectively.

[

(a) Nagi 2014 (b) Nagi 2015 (c) Nagi 2016 (d) Nagi 2017

Figure.4 Perspectively projected water and moss pixels using TDyWT-Nagi dam
— '

(a) Nagathi 2014 (b) Nagathi 2015 (c) Nagathi 2016 (d) Nagathi 2017

Figure.5 Perspectively projected water and moss pixels using TDyWT-Nagathi dam

The perspectively projected images are enhanced using particle swam optimized Vision Transformer (PSO ViT) and
Adam optimized vision transformer (Adam ViT)
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(a) Nagathi 2014 (b) Nagathi 2015 (c) Nagathi 2016 (d) Nagathi 2017

Figure.6 Proposed PSO ViT algorithm to enhance water and moss regions-Nagi and Nagathi dam reservoirs

(a) Nagathi 2014 (b)Nagathi 2015 (c) Nagathi 2016 (d) Nagathi 2017

Figure.7 Proposed AdamViT algorithm to enhance water and moss regions-Nagi and Nakati dam reservoirs

Figure.6 and Figure. 7 shows the spatial and temporal Landsat images of Nagi and Nagathi dam using optimized
Vision Transformer. Adam optimization in Vision Transformer results is superior in enhancing water and moss
regions compared to PSO ViT and is validated with the next step through Bayesian optimized Support vector
Regression. The enhanced image used to differentiate water and moss regions using dual threshold graph cut method
as shown in Figure.8.

Statistical features such as mean, entropy, PSNR, SNR, red pixel, green pixel and blue pixel are extracted from water
and moss regions of DTGC output. Extracted features of pH, dissolved oxygen (DO), total dissolved solid (TDS) and
Conductivity are correlated with their corresponding laboratory values measured with the use of Bayesian optimized
Support Vector Regression.
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(a) Nagi Dam

(b) Nagathi Dam

Figure.8 Results of Dual Threshold Graph Cut Method -Nagi and Nakati dam

Bayesian optimization improves the robustness of Support Vector Regression (SVR) in predicting water quality by
optimizing hyper-parameters, incorporating uncertainty, efficiently exploring parameter space, reducing over-fitting
risks, adapting to nonlinear relationships, and enabling statistical validation of predictions. The results of proposed
methods PSOViT-SVR and AdamViT-SVR are analysed in terms of performance metrics such as mean square error,
MAPE and R2 metrics with existing methods. Figure.9 and Figure.10 shows regression and residual plots for pH,
DO, TDS and Conductivity obtained for Adam optimized Vision Transformer with Bayesian optimized support vector

regression (AdamViT-SVR) results.

Regression Plot
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Figure.9 Regression plot results of proposed AdamVit-SVR for predicted water quality parameters pH, DO, TDS
and Conductivity-Nagi dam
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Figure.10 Residual plot results of proposed AdamVit-SVR for predicted water quality parameters pH, DO, TDS

and Conductivity-Nagi dam

Similarly, the regression and residual results of Nagathi dam using AdamViT-SVR are shown in Figure.11 and

Figure.12.
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Figure.11 Regression plot results of proposed AdamViT-SVR for predicted water quality parameters pH, DO, TDS
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Figure.12 Residual plot results of proposed AdamViT-SVR for predicted water quality parameters pH, DO, TDS

and Conductivity-Nagathi dam.

Performance metrics used to validate the proposed methods are R2, Mean Square Error (MSE) and Mean Absolute
Percentage error (MAPE). R2 indicates the proportion of variance in the dependent variable explained by the
independent variables in the model. MSE measures the average squared difference between predicted and actual
values. MAPE represents prediction accuracy as a percentage, calculated by averaging the absolute percentage error

between predicted and actual values.

Table.6 displays the performance metrics of Nagi dam. In terms of R2, lower performance metrics of proposed
PSOViT-SVR relative to AdamViT-SVR suggest that optimization techniques enhanced the predictive accuracy and
resulted in a better water quality in compared to traditional existing methods. Further, in terms of MSE, and MAPE,
AdamViT-SVR performance is superior compared to PSOViT-SVR and with other existing methods with lowest

prediction error.

Table.6. Performance Metrics-Nagi Dam

Methods pH
Ref [27] 1.2014
Ref [28] 1.0256
Ref [29] 0.9566
PSOViT-SVR 0.9011
AdamViT-SVR 0.9177
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Ref [27]
Ref [28]
Ref [29]
PSOViT-SVR
AdamViT-SVR

Methods

Ref [27]
Ref [28]
Ref [29]
PSOViT-SVR
AdamViT-SVR

Research Article
MSE
o i
0.0965 0.0987
0.0897 0.0814
0.0568 0.0763
0.0341 0.0524
0.0140 0.0216
MAPE (%)
R s
0.9014 1.7124
0.8127 1.5214
0.7246 1.3547
0.5374 1.1127
0.4284 0.9941

Total Dissolved
Solid

0.7208
0.6128
0.5214
0.2453
0.1954

Total Dissolved
Solid

0.9642
0.8678
0.7265
0.5146
0.3579

Conductivity

1.1278
1.0025
0.9967
0.8674
0.7759

Conductivity

0.9356
0.8421

0.7968
0.5127

0.3416

Table.7 presents the performance metrics for the Nakati Dam. The lower R2 values observed for the proposed
PSOViT-SVR and AdamViT-SVR methods, indicating that optimization techniques have significantly enhanced
predictive accuracy, resulting in better water quality assessments relative to traditional existing methods.
Additionally, in terms of Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE), the AdamViT-
SVR method outperforms both PSOViT-SVR and other existing methods, demonstrating the lowest prediction errors
overall. Further, the overall performance of proposed predictive methods validated with accuracy, precision,
sensitivity and specificity for all the water quality parameters as shown in Figure.13 and Figure.14. The results
show that both PSOViT-SVR and AdamViT-SVR significantly outperform the reference methods in all metrics for
both dams. For example, analysing the results for TDS: Accuracy represents how correct the model is, and AdamViT-
SVR performs well with 96.00%, proving its effectiveness in water quality classification.

Table.7 Performance Metrics-Nagathi Dam

pH

0.8914
0.9051
0.9198
0.9214

0.9450

Dissolved
Oxygen

0.9018
0.9168
0.9387
0.9611
0.9754

Total Dissolved
Solid

0.9214
0.9368
0.9431
0.9621

0.9770

Conductivity

0.9291
0.9314
0.9421

0.9598

0.9712

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

172



Journal of Information Systems Engineering and Management

2025, 10(555)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article
Methods pH Dissolved Total Dissolved Conductivity
Oxygen Solid
Ref [27] 0.0784 0.0911 0.0532 0.0578
Ref [28] 0.0642 0.0832 0.0455 0.0412
Ref [29] 0.0571 0.0777 0.0388 0.0367
PSOViT-SVR 0.0421 0.0524 0.0125 0.0168
AdamViT-SVR 0.0148 0.0267 0.0021 0.0025
MAPE (%)
Methods pH Dissolved Total Dissolved Conductivity
Oxygen Solid
Ref [27] 3.8416 0.9567 0.0833 0.0698
Ref [28] 3.124 0.8112 0.0745 0.0522
Ref [29] 2.997 0.6173 0.0539 0.0491
PSOViT-SVR 2.1014 0.4897 0.0459 0.0245
1.1876 0.3499 0.0332 0.0175
Nagi-pH Nagi-DO
100 100
95
<
" '
85
80
Accuracy Presision Sensitivity Specificity Accuracy Presision Sensitivity Specificity
wRe[27] wRe[28] wuRd[29] wPSOVIT-SVR wAdamViT-SVR @Re[27] @Re[28] WRe[29] @PSOVIT-SVR w@AdamVil-SVR
Nagi-TDS Nagi-Conductivity
100 100

b

Percentage(%)
8

% Percenstage(%)a

R

Accuracy Presisi Sensitivity Specificity Accuracy Presisi ity Specificity
@Re[27] wRe[28] wRe[29] wPSOVIiI-SVR  wAdamViT-SVR @R[27] WR[28] wRe[29] WPSOViT-SVR &AdamViI-SVR

Figure.13 Performance comparison of water quality parameters-Nagi Dam
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Figure.14 Performance comparison of water quality parameters-Nagathi Dam

In terms of Precision, which measures the true positive results among positive predictions, AdamViT-SVR is better
with a score of 92.31%. Sensitivity, which checks how well the model identifies true positive cases, is important in
environmental monitoring, and AdamViT-SVR leads with 97.14%, showing its strong ability to detect water quality
issues. Specificity, which evaluates how well the model identifies true negatives, also shows AdamViT-SVR
outperforming others with a score of 92.31%. These results show that optimization techniques improve the model’s
reliability in predicting water quality. Overall, AdamViT-SVR outperforms PSOViT-SVR and existing methods for all
the four quality parameters pH, DO, TDS and Conductivity.

DISCUSSION

Monitoring water quality in dams is essential for managing ecological health, ensuring clean water for human use,
and maintaining the sustainability of aquatic ecosystems. However, continuous monitoring throughout different
seasons is challenging due to the presence of mosses and the need for extensive human resources. Collecting samples
from various locations within the dam is also complex, with frequent boating required for sampling at different sites.
Additionally, water quality can vary across different regions of the dam. To overcome this, an integrated approach is
proposed using optimised Vision Transformer and Bayesian optimized support vector regression for continuous
monitoring of water quality in dam reservoirs. Each component contributes significantly to improve data quality,
enhancing predictive accuracy, and providing reliable assessments of water conditions. Perspective projection using
the Transverse Dyadic Wavelet Transform (TDyWT) improves satellite images for water quality analysis. It corrects
geometric distortions caused by variations in satellite altitude and the earth's curvature, ensuring accurate spatial
relationships in the image. TDyWT also enhances the contours, boundaries, and curvatures of land cover features,
making it easier to distinguish between elements like water bodies and vegetation. Additionally, TDyWT reduces
noise in the images, ensuring high-quality data for accurate classification and prediction of water quality parameters.
Image enhancement using Particle Swarm Optimized Vision Transformer (PSOViT) and Adam Optimized Vision
Transformer (Adam-ViT) is a deep learning technique that extracts complex features. These models identify intricate
patterns and relationships in the data, which is important for detecting subtle differences in water quality indicators.
The optimization techniques fine-tune hyper-parameters, improving predictive accuracy and enabling more precise
predictions of water quality parameters. Finally, predicting water quality parameters using Bayesian Optimized
Support Vector Regression (SVR) enhances model performance. The Bayesian optimization fine-tunes hyper-
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parameters to improve prediction accuracy for parameters such as pH, dissolved oxygen, total dissolved solids, and
conductivity. This increased accuracy is essential for effective water resource management. Additionally, the Bayesian
approach incorporates uncertainty estimation, providing confidence intervals that help decision-makers assess the
reliability of predictions. This is particularly important in environmental applications where risk assessment is
crucial. SVR’s ability to capture complex nonlinear relationships between input features from images and water
quality parameters further strengthens its effectiveness under different environmental conditions.

ABLATION STUDY

Transverse Dyadic Wavelet Transform (TDyWT) plays a vital role in enhancing subsequent steps of the proposed
method for predicting water quality in dam reservoirs. TDyWT improves the quality and utility of satellite imagery
by providing precise delineation and accurate spatial measurements while effectively addressing common challenges
associated with satellite data. This significance is demonstrated through the following ablation results: without the
perspective projection of the original input data, the accuracy of predictions decreases because geometric corrections,
multi-scale spatial representation for differentiating between water and moss, and noise reduction are not achieved.
Consequently, when images are directly processed through the Vision Transformer and regression analysis without
these enhancements, the overall predictive performance is low compared to perspectively projected TDyWT based
proposed predictive method. Another important aspect is the optimization technique used in the Vision Transformer.
The consistently higher scores across all metrics for the proposed AdamViT-SVR and PSOViT-SVR models
demonstrate that the optimization methods applied to Support Vector Regression led to more reliable assessments.
Table. 8 shows the ablation study results for water quality monitoring in Nagi Dam. In overall, TDyWT improves
data quality by correcting distortions and enhancing features. The use of optimization methods in PSOViT and
AdamViT further boosts model performance, making them crucial for effective water quality assessment and
management.

Table.8. Ablation Results-Nagi Dam Reservoir

Accuracy

Methods pH DO TDS Conductivity
Without TDyWT 89.45 88.72 89.65 88.41
With TDyWT and Without 89.97 87.49 89.12 89.54

Optimization in Vision Transformer

PSOViT-SVR 94.65 95.5 94.13 95.12
AdamViT-SVR 96.21 96 96.43 96.61

CONCLUSION

Continuous water quality prediction in Nagi and Nagathi dams, located in Bihar, India, is carried out using spatial
and temporal pixels from Landsat satellite images. Water quality parameters pH, dissolved oxygen (DO), total
dissolved solid (TDS) and Conductivity values are predicted from water and moss pixels to monitor the quality of
water. Landsat images are perspectively projected using TDyWT and enhanced using optimised Vision transformer
technique. Water and moss regions are separated with the use of dual threshold graph cut method and statistical
features are extracted. Extracted features correlated with laboratory values for prediction with the use of Bayesian
optimised Support Vector Regression. The proposed integrated approach yields higher average accuracy of 96% in
predicting pH, DO, TDS and Conductivity in Nagi and Nagathi dam reservoirs when compared to ground truth
verification. The proposed approach addresses the challenges of continuous monitoring by removing the need for
frequent sample collection. It also minimizes human errors in analysis and data recording, thereby improving the
accuracy of water quality measurements.
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