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Introduction:  Monitoring water quality at various locations in a dam reservoir is a complex 

task that requires significant time and manpower when using traditional manual and laboratory 

methods. Regular monitoring is essential for enhancing agricultural productivity and preventing 

biodiversity loss. 

Objectives:  This paper focuses on the continuous monitoring of water quality in the Nagi and 

Nagathi dam reservoirs in Bihar, India, utilizing spatial and temporal Landsat satellite image 

pixels.  

Methods:  To improve prediction accuracy, Landsat images are perspectively projected using 

the Transverse Dyadic Wavelet Transform (TDyWT) and enhanced with Particle Swarm 

Optimized Vision Transformer (PSOViT) and Adam Optimized Vision Transformer (AdamViT) 

algorithms. Statistical features such as mean, entropy, PSNR, and band values extracted from 

enhanced water and moss regions are correlated with laboratory-measured values using 

Bayesian Optimized Support Vector Regression (BO-SVR). The proposed methods, PSOViT-SVR 

and AdamViT-SVR, are employed to predict four water quality parameters namely pH, dissolved 

oxygen (DO), total dissolved solids (TDS), and Conductivity at different locations within the Nagi 

and Nagathi dams.   

Results: Prediction accuracy of proposed method AdamViT-SVR followed by PSOViT-SVR is 

higher compared to existing methods. 

Conclusions: Proposed methods achieved an average accuracy of 96% to predict pH, DO, TDS 

and Conductivity parameters when compared to ground truth verification. 

Keywords: Water quality monitoring, deep learning, regression, wavelet transform, vision 

transformer. 

 

INTRODUCTION 

Water is essential for life, impacting human health, agriculture, and ecosystems. However, urbanization, industrial 

expansion, mass tourism, and climate change have significantly degraded water quality [1]. Contaminants like heavy 

metals, nutrients, pesticides, and pathogens pose serious risks to health and the environment, highlighting the need 

for effective water quality monitoring in lakes, rivers, and dams [2]. This work aims to develop a model for 

monitoring water quality in Nagi and Nagathi dams in Bihar, India. Recent technological advancements have 

improved monitoring methods through innovative sensor-based systems that enable real-time tracking of parameters 

such as turbidity, pH, conductivity, and temperature, ensuring safe drinking water and healthy aquatic ecosystems 

[3]. The primary water quality parameters in dams and reservoirs includes physical, biological, biophysical, and 

chemical aspects such as turbidity, total suspended solids (TSS), pH, conductivity, temperature, chlorophyll 

concentration, dissolved oxygen (DO), nutrients (nitrogen and phosphorus), organic matter, heavy metals, and other 

contaminants [4,5]. It is essential to maintain these parameters within permissible limits, as impure water can 

adversely affect both human health and environmental integrity. Further, measuring the concentrations of certain 
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metal ions, such as lead (Pb), zinc (Zn), and manganese (Mn), in reservoir waters presents significant challenges 

[6,7]. Sedimentation drift, the process by which sediment particles including heavy metals are transported and 

deposited naturally into a dam reservoir, can lead to elevated levels of these contaminants. The maximum allowable 

limits for commonly encountered heavy metals in irrigation water are as follows: Pb: 0.1-0.5 mg/L, Zn: 2-5 mg/L, 

and Mn: 0.2-1.0 mg/L. Exceeding these limits can pose serious risks to agriculture and human health, as even low 

concentrations can be toxic to plants, animals, and humans [8]. Plants readily absorb these heavy metals, which can 

result in reduced growth, yield, and quality. Additionally, the consumption of water or crops contaminated with these 

metals can lead to various health issues in humans, including neurological damage, gastrointestinal problems, 

immunodeficiency, and reproductive issues [9,10].  

Traditional methods of monitoring water quality through in situ measurements and laboratory analyses are often 

time-consuming and expensive, with limited geographical and temporal variability. In contrast, remote sensing offers 

a cost-effective and efficient alternative, providing unique spatial information and data continuity over large areas 

and inland water bodies [11]. This approach can be integrated with conventional methods to overcome the limitations 

associated with in situ monitoring. Remote sensing techniques and databases are particularly valuable for collecting 

data on ecological indicators in lakes, especially in areas that have not been extensively studied and have minimal in 

situ monitoring. With adequate validation from in situ data, remote sensing can deliver near-real-time insights into 

changes in lake conditions, such as algal blooms or droughts. Furthermore, interdisciplinary collaboration and 

validation efforts can enhance the accuracy and efficiency of remote sensing for evaluating and managing water 

bodies, while also reducing the time, effort, and costs involved [12]. The conventional approach to assessing water 

quality encompasses three primary categories: physical, chemical, and biological parameters. (i) Physical Parameters 

include metrics such as water temperature, transparency (measured by Secchi disk depth), salinity, turbidity, total 

suspended matter (TSM), colored dissolved organic matter (CDOM), odor, and electrical conductivity. These provide 

insights into the water's physical characteristics. (ii) Chemical Parameters involve indicators like pH, dissolved 

oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total nitrogen (TN), total 

phosphorus (TP), heavy metals, and non-metallic toxins, which are essential for understanding the chemical health 

of water bodies. (iii) Biological Parameters consist of metrics such as chlorophyll-a, total bacteria count, and total 

coliforms that assess biological activity and ecosystem health [13]. Remote sensing methods categorize parameters 

into those with active optical characteristics (e.g., chlorophyll-a) and those without defined optical properties (e.g., 

TN and TP), typically analyzed through correlations with optically active parameters [14]. 

In summary, assessing the concentration and maintaining the quality of water in dam reservoirs presents 

considerable challenges due to environmental factors, technological limitations, and operational constraints [15]. 

The dynamics of water quality are complex, influenced by factors such as stratification, sedimentation, and nutrient 

cycling. Stratification leads to temperature-induced layering in the water column, which can prevent mixing and 

create low-oxygen conditions in deeper layers, affecting downstream water quality. Sedimentation further 

complicates assessments by trapping nutrients and pollutants, altering chemical compositions over time [16]. 

Traditional monitoring methods often rely on manual sampling, which is labour-intensive and may not provide real-

time data; this approach can overlook spatial variability within the reservoir, resulting in incomplete assessments. 

Although advancements in sensor technology have improved monitoring efficiency, integrating these systems into 

existing infrastructure poses challenges due to high costs and complexity. Environmental changes, such as declining 

water levels from drought or increased evaporation, can magnify water quality issues by concentrating pollutants and 

promoting eutrophication [17, 18]. Additionally, the management and analysis of data collected from multiple 

sensors require robust frameworks to interpret trends accurately and facilitate timely decision-making. In overall, 

addressing these complicated challenges is essential for effective water quality management in dam reservoirs to 

safeguard human health and protect aquatic ecosystems [19,20,21]. 

Research Gap 

Despite advancements in water quality monitoring technologies, significant gaps remain in effectively assessing water 

quality in dam reservoirs. Current methods, such as manual sampling, are time-consuming and do not provide real-

time data, leading to delays in addressing issues [22,23]. While sensor-based systems are emerging, there is 

insufficient integration between various sensor technologies and remote sensing methods, limiting comprehensive 
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data collection across different depths and locations. Many predictive models rely on limited datasets and fail to 

consider the complex interactions among physical, chemical, and biological factors affecting water quality dynamics. 

There is a need for methods that utilize machine learning and deep learning techniques to improve prediction 

accuracy and enable real-time monitoring [24,25,26]. Addressing these gaps could lead to more effective water 

quality management strategies in dam reservoirs, ultimately protecting water resources and public health. 

Problem Statement 

Satellite images have low spatial resolution, making it difficult to detect small pollution areas or small water bodies. 

Additionally, the temporal resolution may not capture rapid changes in water quality. Weather conditions like clouds 

and haze can obstruct satellite images, leading to inaccurate results. Vegetation in reservoir areas complicates the 

measurement process. These challenges need to be explored in other reservoirs, such as Nagi and Nagathi dams, 

where water moss is present. To address these issues, the proposed method integrates both spatial and temporal 

pixels by combining Transverse Dyadic Transform with an optimized Vision Transformer to monitor the water quality 

effectively. 

OBJECTIVES 

Landsat images are perspectively projected using the Transverse Dyadic Wavelet Transform (TDyWT) and images 

are then enhanced with optimized Vision Transformers (ViTs), and moss regions are extracted using a dual-threshold 

graph cut method (DTGC). The statistical features derived from this process are correlated with laboratory values 

through Bayesian Optimized Support Vector Regression to predict water quality. The major contributions of the 

proposed work are:  

(i) To collect water quality parameters from the laboratory for different locations in the two water bodies (Nagi and 

Nagathi reservoirs) and also from leaf samples of water moss in the reservoir for estimation of lead content. 

(ii) To improve spatial representation and to highlight important structures, patterns within the image, Landsat 

images are perspectively projected using the Transverse Dyadic Wavelet Transform (TDyWT). 

(iii) To enhance the pixels of water and moss using Particle Swarm Optimized Vision Transformer (PSOViT) and 

Adam Optimized Vision Transformer (AdamViT) for better analysis and monitoring of water quality in dam 

reservoirs. 

(iv) To differentiate between water and moss regions using a dual threshold graph cut method and to correlate the 

extracted pixel features with laboratory values to predict water quality in dams using Bayesian Optimized Support 

Vector Regression (BOSVR). 

(v) To validate the predicted water quality parameters by comparing them with the predictions of existing algorithms. 

 Recent research has focused on various methodologies for monitoring and assessing water quality across different 

regions, utilizing advanced technologies such as remote sensing, machine learning, and Internet of Things (IoT) 

systems as detailed. These studies highlight the effectiveness of these approaches in providing accurate and timely 

data for environmental management. Recent studies demonstrate a variety of methodologies and technologies 

employed for monitoring and assessing water quality across different geographical regions. Research from various 

studies highlights the effectiveness of remote sensing, machine learning, and IoT-based systems in monitoring water 

quality. In particular, satellite imagery for monitoring water quality has several significant limitations. The limited 

spatial resolution can hinder the detection of localized pollution and small water bodies, while the temporal 

resolution may not capture rapid water quality changes. Atmospheric conditions like clouds and haze can obscure 

images, leading to inaccurate assessments. Additionally, interpreting satellite spectral data into specific water quality 

parameters requires complex algorithms that may not account for local variations or contaminants. Vegetation in 

reservoir areas further complicates satellite measurements. For example, Kim (2021) [18] found that vegetation like 

Salix subfragilis in Korea's Namang Dam reservoir obstructed sensor readings and contributed to deteriorating water 

quality. This illustrates the necessity to investigate similar issues in other reservoirs, such as Nagi and Nagathi dams, 

where water moss is present. These challenges reduce the reliability of satellite-based monitoring compared to 

ground-based methods. 
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METHODS 

The proposed work employs a comprehensive methodology that combines satellite imagery, field sampling, 

laboratory analysis, image processing with optimized Vision Transformer (ViT) machine learning algorithms, and 

correlation-regression techniques to enable continuous monitoring of water quality and water moss in two dam 

reservoirs using Landsat satellite images as depicted in Figure.1. The methodology involves (i) Collection and pre-

processing of Landsat images and relevant data on water quality and moss from the reservoirs. (ii) Feature extraction 

from the images aids in monitoring water quality and detecting water moss. (iii) Optimized models are validated 

using distinct test datasets to ensure accuracy in predicting water quality in the dam reservoirs. (iv) Predictions are 

made using a Bayesian-optimized support vector regression algorithm, and the predicted water quality parameters 

are compared with results from existing algorithms to assess performance. The proposed combined approach 

improves monitoring efficiency of water quality and water moss, enabling proactive management and decision-

making for dam operators and water resource managers. 

 

Figure.1 Water quality monitoring in Nagi and Nagathi dam reservoirs using optimized Vision Transformer and 

Bayesian optimized Support Vector Regression Algorithm. 

STUDY AREA 

Nagi Dam and Nagathi Dam are situated in the south-eastern region of Bihar, near the town of Jhajha, India. These 

deep dams are surrounded by rocky hillocks and were constructed to provide water for local agriculture. Adjacent to 

both reservoirs are cultivable lands. Figure.2 shows the locations of Nagi and Nagathi Dams, which are the subjects 

of this study. 

  

(a) Nagi Dam (b) Nagathi Dam 

Figure.2 Photograph of the water regions of Nagi and Nagathi Dams. 
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Nagi Dam, an earthen structure completed in 1958, spans the Nagi River within the Ganga Basin's Nagi sub-basin. It 

covers an area of 425 hectares, stretches 1,884 meters in length, and reaches a maximum height of 113.5 meters above 

its foundation. The dam is designed to hold a gross storage capacity of 108 million cubic meters of water and features 

a bird sanctuary that supports a diverse array of wildlife, including fish, amphibians, birds, and reptiles. 

Nagathi Dam constructed in 1980 on the Nagathi River, has a full reservoir area of 364 hectares. The average water 

area of the reservoir decreases to 75 hectares during April and May, then increases to 170 hectares or more in the 

following monsoon season. This reservoir also hosts a bird sanctuary that plays a vital role in conserving bird species 

and their habitats in the area. The sanctuary faces challenges like habitat degradation, pollution, and human 

disturbance, which threaten bird populations and the overall health of the ecosystem. Recently, both Nagi and 

Nagathi Bird Sanctuaries were recognized as wetlands of international importance under the Ramsar Convention, 

emphasizing their ecological significance. 

LANDSAT BAND COMBINATIONS FOR DAM QUALITY MONITORING 

Landsat images have several advantages such as high temporal resolution, multi-spectral imaging capabilities, and 

extensive long-term data availability. Their spatial resolution of 30 meters (or 15 meters for panchromatic images) 

makes them especially effective for water quality analysis. The use of band combinations from Landsat images is 

essential for monitoring water quality in dam reservoirs and analyzing various earth features, including land use, 

water bodies, and coastal regions. These combinations enable the effective detection of key water quality parameters, 

such as turbidity and chlorophyll-a levels. For example, the integration of near-infrared (NIR) and shortwave infrared 

(SWIR) bands aids to distinguish clear and turbid waters, which is crucial for accurate assessments. Specific 

combinations like NIR (Band 4), SWIR1 (Band 5), and Red (Band 3) enhance the definition of land-water boundaries, 

allowing for better identification of flooded areas and precise tracking of water level fluctuations that can significantly 

impact local ecosystems and agriculture.  

Moreover, these band combinations are vital for monitoring temporal changes in water quality, particularly in 

response to environmental factors such as runoff or pollution, which is critical for proactive water resource 

management. The use of multiple bands also enables a thorough analysis of the surrounding environment, where 

changes in vegetation health indicate nutrient runoff and potential water quality issues. Ultimately, insights derived 

from optimized band combinations in Landsat imagery provide valuable data that support decision-making, 

particularly during ecological crisis or conservation initiatives. Using Landsat band combinations is important for 

accurately monitoring water quality in dam reservoirs, which helps improve environmental management and 

resource use. In this paper, dam water quality is monitored using a combination of Band 2, Band 3, and Band 4. This 

selection minimizes multi-collinearity, improving the identification of moss variations while reducing interference 

from water and thereby improves the accuracy of water quality assessments. The time series data from Landsat 

effectively tracks changes over time, allowing us to compare images taken at different intervals with consistent band 

combinations to detect significant shifts in water quality. Figure.3 shows the band combination results to monitor 

quality of water. 

LANDSAT-Band 2 

Nagi Dam – 2014 

LANDSAT-Band 3 

Nagi Dam – 2014 

LANDSAT-Band 4 

Nagi Dam – 2014 

Band Combination 

Nagi Dam - 2014 

    

Figure.3 Landsat-band combinations for water quality monitoring 

PERSPECTIVE PROJECTION OF MOSS IN DAM WATER 
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Moss indicates the nutrient levels and potential algal blooms that are crucial for understanding the dynamics of water 

quality. The clarity and precision of these assessments are improved by employing perspective projection techniques, 

which facilitate more accurate differentiation between moss and water surfaces. In the proposed work, Transverse 

dyadic wavelet transform is utilized for perspective projection, effectively capturing both fine details and broader 

growth patterns of moss with Butterworth in decomposition phase and Haar in reconstruction phase. Its multi-

resolution analysis reduces noise and improves clarity, facilitating the distinction between moss and water even in 

the presence of environmental challenges. Wavelet transforms help track changes in moss coverage over time and 

results in information of the reaction of moss to nutrient runoff and pollution. Further, decomposition of signals aids 

in feature extraction and helps to identify critical indicators of aquatic ecosystem health, such as changes in moss 

growth and water quality. In comparison to traditional discrete wavelet transform (DWT), TDyWT has specific 

advantages such as (i) TDyWT correct geometric distortions caused by factors like satellite altitude and the curvature 

of the earth's surface. These distortions can significantly affect the accuracy of satellite imagery, leading to 

misinterpretation in land cover classification. TDyWT minimizes these distortions, resulting in clearer and more 

accurate representations of the earth's surface. (ii) TDyWT is also effective in handling mixed pixels areas where 

multiple land cover types coexist by improving the classification of different terrains. (iii) TDyWT improves image 

features like edges and curvatures, making it easier to identify land cover types such as vegetation and water bodies, 

and performs better than the traditional Discrete Wavelet Transform (DWT). In the proposed work, the use of 

adaptive thresholding in TDyWT method during the reconstruction phase adjust based on the specific characteristics 

of different areas in an image. For instance, in water body areas with moss, adaptive thresholding effectively 

highlights the moss by accurately distinguishing it from its surroundings, thereby enhancing its visibility. 

Additionally, this approach minimizes unwanted artifacts caused by variations in lighting or noise, resulting in a 

clearer and more detailed image. This dynamic methodology significantly improves the overall quality and accuracy 

of the image, particularly in complex areas of satellite imagery. 

MOSS REGION ENHANCEMENT IN DAM WATERS using optimized Vision Transformer  

Vision Transformer deep learning technique used to enhance water and moss pixels in the proposed methodology as 

it effectively captures complex patterns in images while maintaining high levels of accuracy and efficiency compared 

to traditional methods. Table.1 summarizes the optimized Vision Transformer (ViT) architecture. The architecture 

typically includes layer normalization before each block to stabilize training and improve performance. Additionally, 

residual connections are employed after each block to facilitate information flow through the network without losing 

important features. 

Table 1. Optimized ViT Architecture 

Component Description 

Input Landsat noisy Image 

Image Patching 
Image is divided into 16X16 non-overlapping 

patches for easy processing 

Flatten and Embed Patches 
Flatten each patch into format suitable for input 

to ViT model 

Positional Encoding 
Provide positional information of each patch 

within the image 

Transformer Encoder 

Consists of Multi-head Self attention layer 

(Enhances Feature Extraction) and Feed Forward 

network (transforms and processes the attention 

outputs to extract more complex features) 

Last Multi-head self-attention layer 
Specifically tuned using particle swarm and adam 

optimizer to enhance water and moss features. 
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Classification Head 
A final layer that predicts class labels based on 

features extracted by the transformer encoder. 

Output Layer Enhanced output 

 

This architecture allows ViTs to learn complex patterns and hierarchical features effectively, making it well-suited 

for image enhancement. To improve the effectiveness and efficiency of image enhancement on ViT model, 

optimization technique during training phase, hyper-parameter tuning, fine tuning and optimizing self -attention 

mechanisms in ViT model can be done. The proposed work employs particle swarm optimization and adam 

optimization to enhance ViT model for enhancing water and moss regions in Landsat images. 

Particle Swarm Optimized Vision Transformer (PSOViT) 

The integration of ViT and Particle Swarm Optimization (PSO) allows for the identification of optimal configurations 

for critical hyper-parameters, including the number of layers, patch size, learning rate, and number of attention 

heads. Initial parameters such as size of input image, the number of particles, the maximum number of iterations 

and the bounds for hyper-parameters such as the number of layers, patch size, learning rate, and the number of 

attention heads are defined. Then each particle assigned a random position representing hyper-parameters within 

specified bounds. Each particle's velocity is also initialized, and both personal best and global best positions are set 

based on initial evaluations. In each iteration, ViT model is trained using the current hyper-parameters on the 

Landsat dataset, and its performance is evaluated using accuracy. If a particle's fitness exceeds its personal best, then 

that position is updated; similarly, if it surpasses the global best, the global best is updated. The velocity of each 

particle is then adjusted based on its previous velocity, its personal best position, and the global best position. The 

position is updated accordingly while ensuring it remains within defined bounds. After completing all iterations, the 

algorithm returns global best as the optimal hyper-parameters. Finally, the ViT model is trained using these optimal 

parameters on the entire Landsat dataset to enhance water and moss pixels, resulting in enhanced images for further 

analysis or application.  

Adam optimized Vision Transformer (AdamViT) 

Adam optimizer adjusts the learning rates for each parameter and makes the training phase more efficient compared 

to other optimization techniques. The optimizer’s flexibility speeds up convergence and improves the performance 

of ViT model. As a result, the model can better detect and enhance specific pixel classes, such as water and moss in 

Landsat images. Initial hyper-parameters such as the number of layers, patch size, number of attention heads are 

defined. Then a specific layer is tuned based on the computation cross entropy loss to measure model's performance 

during training. The Adam optimizer is then initialized to facilitate dynamic learning rate adjustments throughout 

the training process. During each iteration, the model processes batches of images: it performs a forward pass to 

generate outputs, computes the loss against the true labels, and then updates the model parameters through back-

propagation and updates weights using the adam optimizer. After training is complete, the model's performance is 

evaluated on a validation set to ensure it effectively enhances the targeted pixel classes. Finally, the trained model is 

applied to enhance specific pixel classes in the Landsat images, resulting in the desired output. In the proposed work, 

fine tuning of the last multi-head self-attention layer is done as it captures high-level features from the input data. 

Tuning this layer can significantly improve the model's ability to focus on relevant features, such as water and moss 

pixels.  

SEGMEENTATION OF WATER AND MOSS REGION USING DUAL GRAPH CUT THRESHOLD 

Dual-Threshold Graph Cut (DTGC) method is a segmentation technique used in the proposed methodology to 

identify Regions of Interest (ROI) in images which is particularly effective in applications such as water extraction 

from Landsat imagery. Initially, the input image is converted into a graph, where each pixel is represented as a node 

and edges indicate relationships based on intensity differences between neighbouring pixels. Segmentation accuracy 

is improved by using a dual-threshold approach derived from a Gaussian Mixture Model (GMM) to differentiate 

foreground and background elements, such as moss and water effectively in Landsat images. Dual-thresholding 

technique captures subtle variations in pixel intensity more effectively than traditional single-threshold methods. 
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The method further optimizes the segmentation process through an energy minimization function, which refines 

edge weights within the graph. This optimization leads to more precise delineation of objects by minimizing the 

energy associated with misclassifications and promoting smooth transitions between segments. Additionally, DTGC 

incorporates multi-scale feature extraction techniques that capture important details at various scales, significantly 

improving performance compared to conventional methods. The method also emphasizes the identification of 

homogeneous regions within images, which further improves the accuracy in distinguishing different pixel types. In 

the proposed method, integrating optimised vision transformer with DTGC improves background subtraction and 

enhances moss detection accuracy even in the presence of reflections on water surfaces. Further, proposed integrated 

approach significantly improves the precision of moss detection in complex water environments. 

PREDICTION OF WATER QUALITY IN DAM RESORVOIRS 

Table.2 presents the water quality measurement methods for water samples collected from various locations in the 

two dam regions (Nagi and Nagathi).  

Table 2. Water Quality Measurement Methods 

Water quality parameter Measurement methods 

1) Temperature 

2) Turbidity 

3) pH 

4) Conductivity and TDS 

5) Dissolved oxygen 

1) Centigrade mercury thermometer 

2) Digital Nephelo-Turbidity Meter 

3) Digital pH Meter 

4) Conductivity-TDS Meter 

5) Winkler’s modified method 

 

Water quality parameters analyzed include ambient and water temperature, pH, conductivity, turbidity, total 

dissolved solids, dissolved oxygen, free carbon dioxide, carbonate and bicarbonate alkalinity, chloride, total hardness, 

phosphate-phosphorus, nitrate-nitrogen, biochemical oxygen demand, and chemical oxygen demand.  

EXTRACTION OF STATISTICAL FEATURES FROM WATER AND MOSS REGIONS FOR PREDICTION 

Statistical parameters such as mean, entropy, Peak Signal-to-Noise Ratio (PSNR), and Signal-to-Noise Ratio (SNR) 

calculated to assess the quality and characteristics of water and moss regions. Mean value represents the average 

pixel intensity within a specified region, providing a basic measure of brightness Higher mean values may indicate 

brighter surfaces, such as clear water or healthy vegetation, while lower values might suggest darker, turbid waters 

or stressed moss. The second parameter Entropy is a measure of the amount of information or randomness in an 

image. It quantifies the distribution of pixel intensities, with higher entropy indicating more complexity and 

variability in the image. Also, entropy aids to assess the texture and patterns within water and moss regions. For 

example, areas with high entropy denote diverse aquatic environments or complex moss structures and low entropy 

indicate uniformity in pixel values. PSNR is a metric used to assess the quality of reconstructed images compared to 

original images. It is defined as the ratio between the maximum possible power of an image and the power of 

corrupting noise that affects its representation. A higher PSNR value indicates better quality and less distortion in 

the segmented regions. In Landsat imagery, PSNR can be used to evaluate how well the segmentation process 

preserves important features in water and moss regions. 

PREDICTION OF WATER QUALITY IN DAM RESORVOIRS USING BAYESIAN OPTIMIZED 

SUPPORT VECTOR REGRESSION  

Prediction of water quality in dam reservoirs using Bayesian Optimized Support Vector Regression (BO-SVR) 

proposed to improve the accuracy and reliability of predictions. Features such as red, green, and blue (RGB) pixel 

values, mean intensity, entropy, Peak Signal-to-Noise Ratio (PSNR), and Signal-to-Noise Ratio (SNR) derived from 

water and moss regions are used for water quality prediction. The laboratory-based water quality measurements 
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conducted from May 25 to May 29, 2023, with the corresponding latitude and longitude locations provided in 

Table.3. 

Similarly, SNR measures the level of desired signal relative to background noise. SNR helps to determine the 

effectiveness of detecting features such as moss or water by assessing how much useful information is present 

compared to noise that could obscure these features. Table.4 and Table.5 displays the statistical values obtained 

from water and moss regions in Nagi and Nagathi dam resorvoirs. 

Table 3. Laboratory Methods Based Water Quality Measurement On 25 May To 29 May 2023 

 

Table. 4 Statistical values of pixels of regions at different location of the Nagi Dam Reservoir (Sample Data) 
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Table. 5 Statistical values of pixels of regions of pixel at different location at the Nagathi Dam Reservoir (Sample 

Data) 
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Extracted features are utilized as input variables and the water quality parameters are used as output variables. These 

features are collected as a dataset for training an SVR model. Hyper-parameter optimization conducted using 

Bayesian Optimization to find optimal values and to minimize prediction error. The SVR model is trained on the 

prepared feature set using these optimized hyper-parameters. The trained model is then used to predict water quality 

parameters, with its performance evaluated using metrics like Mean Absolute Error (MAE), Root Mean Square Error 

(RMSE), and Coefficient of Determination (R²). Each feature plays a significant role in predicting water quality. For 

example, RGB pixel values provide color characteristics for distinguishing land cover types, mean intensity indicates 
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average brightness in water and moss regions, entropy reflects complexity in pixel distributions, PSNR assesses image 

quality preservation during segmentation, and SNR measures image clarity relative to noise. Proposed BO-SVR 

approach improves prediction accuracy and supports better water quality monitoring, aiding informed decision-

making for environmental management. 

RESULTS 

The proposed method combines deep learning and regression techniques to monitor four quality parameters such as 

pH, dissolved oxygen (DO), total dissolved solid (TDS) and conductivity in the Nagi and Nagathi dams in India. 

Initially, Landsat band images are acquired and processed using TDyWT for perspective projection, followed by 

enhancement through a Particle Swarm and Adam optimized Vision Transformer models (PSO ViT and Adam ViT). 

Subsequently, the method differentiates between water and moss regions using a dual threshold graph cut approach. 

Statistical features extracted from these regions and correlated with laboratory measurements to predict water 

quality using Bayesian optimized support vector regression (BOSVR). Two proposed methods named as PSOViT-

SVR, AdamViT-SVR are implemented in MATLAB R 2023b to analyze and evaluate the results effectively.  

As a first step, Landsat band combination images are acquired and perspectively projected using the Transverse 

Dyadic Wavelet Transform (TDyWT) to enhance visual quality by improving the contours, boundaries, and 

curvatures of land cover features. Figure.4 and Figure. 5 displays the TDyWT results for Nagi and Nakati dam 

respectively. 

 

(a) Nagi 2014 (b)  Nagi 2015 (c) Nagi 2016 (d) Nagi 2017 

Figure.4 Perspectively projected water and moss pixels using TDyWT-Nagi dam 

 

(a) Nagathi 2014 (b)  Nagathi 2015 (c) Nagathi 2016 (d) Nagathi 2017 

Figure.5 Perspectively projected water and moss pixels using TDyWT-Nagathi dam 

The perspectively projected images are enhanced using particle swam optimized Vision Transformer (PSO ViT) and 

Adam optimized vision transformer (Adam ViT)  
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(a) Nagi 2014 (b)  Nagi 2015 (c) Nagi 2016 (d) Nagi 2017 
 

 

(a) Nagathi 2014 (b) Nagathi 2015 (c) Nagathi 2016 (d) Nagathi 2017 
 

Figure.6 Proposed PSO ViT algorithm to enhance water and moss regions-Nagi and Nagathi dam reservoirs 

 

(a) Nagi 2014 (b)  Nagi 2015 (c) Nagi 2016 (d) Nagi 2017 
 

 

(a) Nagathi 2014 (b)Nagathi 2015 (c) Nagathi 2016 (d) Nagathi 2017 
 

Figure.7 Proposed AdamViT algorithm to enhance water and moss regions-Nagi and Nakati dam reservoirs 

Figure.6 and Figure. 7 shows the spatial and temporal Landsat images of Nagi and Nagathi dam using optimized 

Vision Transformer. Adam optimization in Vision Transformer results is superior in enhancing water and moss 

regions compared to PSO ViT and is validated with the next step through Bayesian optimized Support vector 

Regression. The enhanced image used to differentiate water and moss regions using dual threshold graph cut method 

as shown in Figure.8. 

Statistical features such as mean, entropy, PSNR, SNR, red pixel, green pixel and blue pixel are extracted from water 

and moss regions of DTGC output. Extracted features of pH, dissolved oxygen (DO), total dissolved solid (TDS) and 

Conductivity are correlated with their corresponding laboratory values measured with the use of Bayesian optimized 

Support Vector Regression. 
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(a) Nagi Dam (b) Nagathi Dam 
 

Figure.8 Results of Dual Threshold Graph Cut Method -Nagi and Nakati dam 

Bayesian optimization improves the robustness of Support Vector Regression (SVR) in predicting water quality by 

optimizing hyper-parameters, incorporating uncertainty, efficiently exploring parameter space, reducing over-fitting 

risks, adapting to nonlinear relationships, and enabling statistical validation of predictions. The results of proposed 

methods PSOViT-SVR and AdamViT-SVR are analysed in terms of performance metrics such as mean square error, 

MAPE and R2 metrics with existing methods. Figure.9 and Figure.10 shows regression and residual plots for pH, 

DO, TDS and Conductivity obtained for Adam optimized Vision Transformer with Bayesian optimized support vector 

regression (AdamViT-SVR) results. 

 

(a) pH (b) Dissolved Oxygen 

 

(c) Total Dissolved Solid (d) Conductivity 

Figure.9 Regression plot results of proposed AdamVit-SVR for predicted water quality parameters pH, DO, TDS 

and Conductivity-Nagi dam 
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(a) pH (b) Dissolved Oxygen 

 

(c) Total Dissolved Solid (d) Conductivity 

Figure.10 Residual plot results of proposed AdamVit-SVR for predicted water quality parameters pH, DO, TDS 

and Conductivity-Nagi dam 

Similarly, the regression and residual results of Nagathi dam using AdamViT-SVR are shown in Figure.11 and 

Figure.12. 

 

(a) pH (b) Dissolved Oxygen 

 

(c) Total Dissolved Solid (d) Conductivity 

Figure.11 Regression plot results of proposed AdamViT-SVR for predicted water quality parameters pH, DO, TDS 

and Conductivity-Nagathi dam 
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(a) pH (b) Dissolved Oxygen 

 

(c) Total Dissolved Solid (d) Conductivity 

Figure.12 Residual plot results of proposed AdamViT-SVR for predicted water quality parameters pH, DO, TDS 

and Conductivity-Nagathi dam. 

Performance metrics used to validate the proposed methods are R2, Mean Square Error (MSE) and Mean Absolute 

Percentage error (MAPE). R2 indicates the proportion of variance in the dependent variable explained by the 

independent variables in the model. MSE measures the average squared difference between predicted and actual 

values. MAPE represents prediction accuracy as a percentage, calculated by averaging the absolute percentage error 

between predicted and actual values. 

Table.6 displays the performance metrics of Nagi dam. In terms of R2, lower performance metrics of proposed 

PSOViT-SVR relative to AdamViT-SVR suggest that optimization techniques enhanced the predictive accuracy and 

resulted in a better water quality in compared to traditional existing methods. Further, in terms of MSE, and MAPE, 

AdamViT-SVR performance is superior compared to PSOViT-SVR and with other existing methods with lowest 

prediction error. 

Table.6. Performance Metrics-Nagi Dam 

R2 

Methods pH 
Dissolved 

Oxygen 

Total Dissolved 

Solid 
Conductivity 

Ref [27] 1.2014 1.3012 1.2034 1.0235 

Ref [28] 1.0256 1.1106 1.1025 0.9826 

Ref [29] 0.9566 0.9987 0.9974 0.9765 

PSOViT-SVR 0.9011 0.9216 0.9602 0.9538 

AdamViT-SVR 0.9177 0.9479 0.9772 0.9753 
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MSE 

Methods pH 
Dissolved 

Oxygen 

Total Dissolved 

Solid 
Conductivity 

Ref [27] 0.0965 0.0987 0.7298 1.1278 

Ref [28] 0.0897 0.0814 0.6128 1.0025 

Ref [29] 0.0568 0.0763 0.5214 0.9967 

PSOViT-SVR 0.0341 0.0524 0.2453 0.8674 

AdamViT-SVR 0.0140 0.0216 0.1954 0.7759 

MAPE (%) 

Methods pH 
Dissolved 

Oxygen 

Total Dissolved 

Solid 
Conductivity 

Ref [27] 0.9014 1.7124 0.9642 0.9356 

Ref [28] 0.8127 1.5214 0.8678 0.8421 

Ref [29] 0.7246 1.3547 0.7265 0.7968 

PSOViT-SVR 0.5374 1.1127 0.5146 0.5127 

AdamViT-SVR 0.4284 0.9941 0.3579 0.3416 

 

Table.7 presents the performance metrics for the Nakati Dam. The lower R² values observed for the proposed 

PSOViT-SVR and AdamViT-SVR methods, indicating that optimization techniques have significantly enhanced 

predictive accuracy, resulting in better water quality assessments relative to traditional existing methods. 

Additionally, in terms of Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE), the AdamViT-

SVR method outperforms both PSOViT-SVR and other existing methods, demonstrating the lowest prediction errors 

overall. Further, the overall performance of proposed predictive methods validated with accuracy, precision, 

sensitivity and specificity for all the water quality parameters as shown in Figure.13 and Figure.14. The results 

show that both PSOViT-SVR and AdamViT-SVR significantly outperform the reference methods in all metrics for 

both dams. For example, analysing the results for TDS:  Accuracy represents how correct the model is, and AdamViT-

SVR performs well with 96.00%, proving its effectiveness in water quality classification.  

Table.7 Performance Metrics-Nagathi Dam 

R2 

Methods pH Dissolved 

Oxygen 

Total Dissolved 

Solid 

Conductivity 

Ref [27] 0.8914 0.9018 0.9214 0.9291 

Ref [28] 0.9051 0.9168 0.9368 0.9314 

Ref [29] 0.9198 0.9387 0.9431 0.9421 

PSOViT-SVR 0.9214 0.9611 0.9621 0.9598 

AdamViT-SVR 0.9450 0.9754 0.9770 0.9712 

MSE 
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Methods pH Dissolved 

Oxygen 

Total Dissolved 

Solid 

Conductivity 

Ref [27] 0.0784 0.0911 0.0532 0.0578 

Ref [28] 0.0642 0.0832 0.0455 0.0412 

Ref [29] 0.0571 0.0777 0.0388 0.0367 

PSOViT-SVR 0.0421 0.0524 0.0125 0.0168 

AdamViT-SVR 0.0148 0.0267 0.0021 0.0025 

MAPE (%) 

Methods pH Dissolved 

Oxygen 

Total Dissolved 

Solid 

Conductivity 

Ref [27] 3.8416 0.9567 0.0833 0.0698 

Ref [28] 3.124 0.8112 0.0745 0.0522 

Ref [29] 2.997 0.6173 0.0539 0.0491 

PSOViT-SVR 2.1014 0.4897 0.0459 0.0245 

AdamViT-SVR 1.1876 0.3499 0.0332 0.0175 

 

 

 

Figure.13 Performance comparison of water quality parameters-Nagi Dam 
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Figure.14 Performance comparison of water quality parameters-Nagathi Dam 

In terms of Precision, which measures the true positive results among positive predictions, AdamViT-SVR is better 

with a score of 92.31%. Sensitivity, which checks how well the model identifies true positive cases, is important in 

environmental monitoring, and AdamViT-SVR leads with 97.14%, showing its strong ability to detect water quality 

issues. Specificity, which evaluates how well the model identifies true negatives, also shows AdamViT-SVR 

outperforming others with a score of 92.31%. These results show that optimization techniques improve the model’s 

reliability in predicting water quality. Overall, AdamViT-SVR outperforms PSOViT-SVR and existing methods for all 

the four quality parameters pH, DO, TDS and Conductivity. 

DISCUSSION 

Monitoring water quality in dams is essential for managing ecological health, ensuring clean water for human use, 

and maintaining the sustainability of aquatic ecosystems. However, continuous monitoring throughout different 

seasons is challenging due to the presence of mosses and the need for extensive human resources. Collecting samples 

from various locations within the dam is also complex, with frequent boating required for sampling at different sites. 

Additionally, water quality can vary across different regions of the dam. To overcome this, an integrated approach is 

proposed using optimised Vision Transformer and Bayesian optimized support vector regression for continuous 

monitoring of water quality in dam reservoirs. Each component contributes significantly to improve data quality, 

enhancing predictive accuracy, and providing reliable assessments of water conditions. Perspective projection using 

the Transverse Dyadic Wavelet Transform (TDyWT) improves satellite images for water quality analysis. It corrects 

geometric distortions caused by variations in satellite altitude and the earth's curvature, ensuring accurate spatial 

relationships in the image. TDyWT also enhances the contours, boundaries, and curvatures of land cover features, 

making it easier to distinguish between elements like water bodies and vegetation. Additionally, TDyWT reduces 

noise in the images, ensuring high-quality data for accurate classification and prediction of water quality parameters. 

Image enhancement using Particle Swarm Optimized Vision Transformer (PSOViT) and Adam Optimized Vision 

Transformer (Adam-ViT) is a deep learning technique that extracts complex features. These models identify intricate 

patterns and relationships in the data, which is important for detecting subtle differences in water quality indicators. 

The optimization techniques fine-tune hyper-parameters, improving predictive accuracy and enabling more precise 

predictions of water quality parameters. Finally, predicting water quality parameters using Bayesian Optimized 

Support Vector Regression (SVR) enhances model performance. The Bayesian optimization fine-tunes hyper-
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parameters to improve prediction accuracy for parameters such as pH, dissolved oxygen, total dissolved solids, and 

conductivity. This increased accuracy is essential for effective water resource management. Additionally, the Bayesian 

approach incorporates uncertainty estimation, providing confidence intervals that help decision-makers assess the 

reliability of predictions. This is particularly important in environmental applications where risk assessment is 

crucial. SVR’s ability to capture complex nonlinear relationships between input features from images and water 

quality parameters further strengthens its effectiveness under different environmental conditions. 

ABLATION STUDY 

Transverse Dyadic Wavelet Transform (TDyWT) plays a vital role in enhancing subsequent steps of the proposed 

method for predicting water quality in dam reservoirs. TDyWT improves the quality and utility of satellite imagery 

by providing precise delineation and accurate spatial measurements while effectively addressing common challenges 

associated with satellite data. This significance is demonstrated through the following ablation results: without the 

perspective projection of the original input data, the accuracy of predictions decreases because geometric corrections, 

multi-scale spatial representation for differentiating between water and moss, and noise reduction are not achieved. 

Consequently, when images are directly processed through the Vision Transformer and regression analysis without 

these enhancements, the overall predictive performance is low compared to perspectively projected TDyWT based 

proposed predictive method. Another important aspect is the optimization technique used in the Vision Transformer. 

The consistently higher scores across all metrics for the proposed AdamViT-SVR and PSOViT-SVR models 

demonstrate that the optimization methods applied to Support Vector Regression led to more reliable assessments.  

Table. 8 shows the ablation study results for water quality monitoring in Nagi Dam. In overall, TDyWT improves 

data quality by correcting distortions and enhancing features. The use of optimization methods in PSOViT and 

AdamViT further boosts model performance, making them crucial for effective water quality assessment and 

management. 

Table.8. Ablation Results-Nagi Dam Reservoir 

Accuracy 

Methods pH DO TDS Conductivity 

Without TDyWT 89.45 88.72 89.65 88.41 

With TDyWT and Without 

Optimization in Vision Transformer 

89.97 87.49 89.12 89.54 

PSOViT-SVR 94.65 95.5 94.13 95.12 

AdamViT-SVR 96.21 96 96.43 96.61 

 

 CONCLUSION 

Continuous water quality prediction in Nagi and Nagathi dams, located in Bihar, India, is carried out using spatial 

and temporal pixels from Landsat satellite images. Water quality parameters pH, dissolved oxygen (DO), total 

dissolved solid (TDS) and Conductivity values are predicted from water and moss pixels to monitor the quality of 

water. Landsat images are perspectively projected using TDyWT and enhanced using optimised Vision transformer 

technique. Water and moss regions are separated with the use of dual threshold graph cut method and statistical 

features are extracted. Extracted features correlated with laboratory values for prediction with the use of Bayesian 

optimised Support Vector Regression. The proposed integrated approach yields higher average accuracy of 96% in 

predicting pH, DO, TDS and Conductivity in Nagi and Nagathi dam reservoirs when compared to ground truth 

verification. The proposed approach addresses the challenges of continuous monitoring by removing the need for 

frequent sample collection. It also minimizes human errors in analysis and data recording, thereby improving the 

accuracy of water quality measurements.  
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