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Deep learning has achieved remarkable performance in object detection, with YOLO (You Only 

Look Once) standing out for its speed and accuracy. In this paper, we present an improved 

detection model based on the YOLOv8 architecture, evaluated on two large-scale datasets. Our 

method introduces a new detection scale (P2), enhancing small object detection by capturing 

finer features. Additional modifications include advanced upsampling, feature concatenation, 

and the integration of the C2f module into the model’s head, improving multi-scale fusion and 

overall accuracy. On a single-class dataset (9,215 images), our model achieves a mAP at 50 of 

98.9% from scratch and 98.5% with pre-training, with precision and recall up to 97% and 96.2%, 

respectively. On a multi-class dataset with seven categories, it reaches a mAP at 50:95 of 78.1% 

with pre-training, and up to 94.5% precision and 89.6% recall. The model regularly surpasses 

YOLOv8n, YOLOv10n, and YOLOv11n across both datasets, exhibiting notable accuracy, 

robustness, and scalability, with a computational cost of 12.6 GFLOPs. 

Keywords: Object Detection; Deep Learning; YOLOv8n; Ultralytics YOLO. 

 

INTRODUCTION 

Object detection, one of the essential computer vision tasks, helps to find and describe the exact places of the objects 

in the images with the help of automated feature extraction. Its rapid development is led by AI, in turn, it is 

responsible for various crucial activities like self-driving cars, environment monitoring, or real-time decision making 

in robotics, and the field of geospatial analysis, among others. Deep learning has brought about a renaissance in the 

field of object detection whereby convolutional neural networks (CNNs) have taken over from the traditional feature 

engineering method [14]. Leading structures like Fast R-CNN [1], Single Shot MultiBox Detector (SSD) [13], and the 

YOLO series [15] amalgamate feature extraction, localization, and classification to end-to-end learning frameworks. 

YOLO is particularly prominent with its one-stage structure, which allows for instant inferencing through a single 

pass. YOLOv8 [25] is an evolution of the previous versions of YOLO and has been improved through a more 

sophisticated reorganization of the architecture, which makes it more precise in detecting various objects. However, 

some issues are difficult to solve, such as the elimination process of instances because of occlusions, difficulties in 

identifying very small targets, and resource-constrained environments used for inference. The performance of 

YOLOv8 is still unsurpassed with respect to benchmarks like Pascal VOC for object classification and MS COCO for 

detection in complex scenes. Besides CSPDarknet in YOLOv4 and YOLOv5, the underlying structure has gone 

through a change to accommodate of zero-step attention generation. The optimizations have cut the weight of 

parameters and floating-point operations (FLOPs) without sacrificing fast inference time and enabled the model to 

be more accurate. These advancements are what propel YOLOv8 to an efficient, promising real-time object detection 

system. 

Our research introduces an advanced object identification model utilizing the YOLOv8 framework, emphasizing the 

enhancement of performance in critical metrics including accuracy, recall, and mean average precision (mAP) at an 

IoU threshold of 0.5. The alterations to the YOLOv8 design aim to enhance the identification of small objects, a 

continual problem in real-world applications. Significant improvements comprise the introduction of a new high-
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resolution detection scale (P2) and enhanced feature integration in the neck and head components of the network. 

The P2 scale facilitates the acquisition of intricate features essential for small object detection, while the reconfigured 

neck utilizes bidirectional connections and variable weighting to improve multi-scale feature integration. Collectively, 

these enhancements result in heightened accuracy, resilience, and versatility across many visual scenarios. 

RELATED WORK 

The object detection task has been boosted considerably with the help of the progress made in deep neural networks, 

which resulted in better precision in recognizing and localizing objects in numerous images. The approaches to the 

detection of the object are mainly of two kinds. The former one contains two-stage detectors that have Region 

Proposal Networks (RPNs) to output candidate regions that, in turn, are use for classification and bounding box 

regression. The most famous models following this pattern are R-CNN [2], Faster R-CNN [16], Mask R-CNN [3], and 

SPP-Net [4]. These models are usually very good when it comes to accuracy, especially in situations that are quite 

hard. At the same time, their multi-stage processing and largely increased computing demand limit the potential use 

of these models in real-time applications and in resource-scarce devices, especially in those cases in which the 

detection targets are small or occluded. The second group includes one-stage detectors like those in the YOLO sfamily 

[21], which do not need proposals of regions as they predict both bounding boxes and class scores in one go. The 

advantage of this method is the quick performance of the algorithm while maintaining the accuracy and the efficiency. 

YOLO models can be a perfect fit for real-time applications and are often widely observed in the fields of autonomous 

driving [17], robotics [27], and defense systems [19]. 

YOLOv8 is an upgrading of the YOLO architecture that has outperformed the previous state of the art across multiple 

object detection benchmarks. It includes models in five sizes YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and 

YOLOv8x tailored to different performance levels and computational resources. The YOLOv8 model is visualized in 

the manner explained in [30]. New studies have shone a light on the YOLOv8 framework by carrying out affecting 

research.  Li and Jia [9] improved multi-class military target detection by integrating PP-LCNet and the ParNet 

attention module, boosting precision and real-time performance. Wu et al. [23] presented Adaptive Kernel 

Convolution (AKConv), Multi-Scale Dilated Attention (MSDA), and a Wise-IoU loss function, enhancing feature 

representation and precision. Khalili et al. [7] improved feature fusion, introduced a fourth detection scale, and 

substituted CIoU with PIoU loss, therefore enhancing small-object recognition with negligible computational 

overhead. Zhou et al. [29] enhanced YOLOv8 by adding SimAM attention to the neck, employing the C2fDCN module 

for adaptive feature fusion, and adopting Dynamic Head (DyHead) for scale-aware detection. Wu et al. [24] 

restructured the model by replacing large-scale layers with smaller ones and integrating recursive gated convolutions 

alongside multiple CBAM modules to improve aerial image analysis. Zeng et al. [26] introduced a C4 feature 

extraction block and a DyHead-based detection head tailored for small-object detection. Liang et al. [11] incorporated 

Efficient Channel Attention, substituted PANet with BiFPN, and applied EIoU loss to boost accuracy in dense crowd 

scenes. Seth and Sivagami. [18] utilized image pre-processing techniques, including histogram equalization, gamma 

correction, and contrast stretching, to increase data diversity and enhance model generalization. 

YOLOv8 has become more advanced than its predecessors primarily with the up-gradation of the backbone and 

neural network head while decreasing the model's complexity. It uses the CSPDarknet backbone from YOLOv5 [22], 

but it also has increased efficiency with the help of such optimizations as depth-wise separable convolutions and 

optimized CSP Modules [5]. The model replaces legacy IoU losses like GIoU [10] and DIoU [28] by the better and 

more robust EIoU and SIoU losses for improved convergence and bounding box accuracy. Besides, the old spatial 

pyramid-pooling module (spp) was instead changed to the faster SPP-Fast [6] for the purpose of better multi-scale 

context capturing. Therefore, the feature aggregation is also optimized through bidirectional connections [12] and 

weighted fusion [20], which in turn leads to spatial detail and semantic information balance. Thus, YOLOv8 is a 

system that is accurate to a higher degree, much faster when making an inference and that can be deployed on any 

hardware platform, with no limits of the research aimed at furthering the improvement in the loss functions, attention 

mechanisms, and multi-scale fusion.  

PROPOSED APPROACH 

The original YOLOv8 model encountered difficulties in accuracy, particularly regarding small object recognition, and 

required speed enhancements for real-time application. The constraints affected the YOLOv8n version variant in 



Journal of Information Systems Engineering and Management 
2025, 10(55s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 69 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

industrial and professionals applications. In reply, certain architectural changes were implemented in YOLOv8n, 

enhancing both precision and efficiency. 

 Key modifications implemented in YOLOv8n include the introduction of a brand new detection scale (P2) 

along with a carefully designed feature concatenation and processing strategy. These changes significantly impact the 

neck and head of the model and thus deliver the message that the model can now handle a variety of features that 

exist at different scales in a better and more efficient manner while the information is being moved between the 

network layers in a very clear and effective way. Exploiting the P2 scale by the fine-tuned model of the network, the 

model acquires the detection capability of smaller objects with substantially higher accuracy. Consequently, the more 

robust local and contextual understanding is ensured because of the improved feature-processing mechanism. These 

breakthroughs are in concord with the current trend in multi-scale feature processing paradigms, in other words, 

that higher rates of the fusion of more powerful multi-scale features lead to the most accurate signals and better 

overall detection performance. On the other hand, as a whole, these enhancements foster more powerful multi-scale 

feature fusion, yielding superior detection accuracy and overall model robustness. 

P2 Detection Scale  

Incorporating the P2 detection scale is a changing improvement for the personalized YOLOv8 architecture. 

While the original YOLOv8 model has P3, P4, and P5 scales which are good enough for medium to large objects. 

Unfortunately, it is an impossible task for these scales to detect the small objects as their feature map quality is 

inferior and they are incapable of capturing the finer details of the object at the same time. This issue is solved by the 

P2 scale, which makes resolution and accuracy better for small objects. The P2 scale, which has higher spatial 

precision (P2/4) for learning finer-grained features, was added to the model to make it better at identifying small 

objects. enabling them to detect small objects that the original YOLOv8 scales often missed. The P2 scale was 

introduced to preserve important features such as textures, edges, and fine structures, which are often lost at higher 

levels like P4 or P5.  

The P2 scale enhances small object detection and overall identification accuracy by preserving greater spatial 

detail. Moreover, the P2 scale not only maintains the features but also accelerates the gradient propagation during 

training. Reducing the distance between supervised layers and early backbone layers in the FPN enhances supervision 

signals, allowing lower layers to acquire more discriminative characteristics, which is particularly advantageous for 

small object identification. To enable optimal detection across multiple scales and object sizes, our custom YOLOv8 

architecture adopts a comprehensive feature fusion strategy. This involves adding multiple Upsample, Concat, and 

C2f layers within the model head, enhancing the capture and utilization of multi-level features. These components 

are defined as follows: 

• Upsample Layers: Increase the spatial resolution of feature maps, enabling the network to preserve and 

exploit fine-grained details at different scales. 

• Concat Layers: Concatenate features from multiple detection scales, facilitating effective multi-scale object 

detection by combining contextual information from varying resolutions. 

• C2f Layers: Advanced feature filtering modules that refine concatenated features through repeated 

convolutional operations, improving feature representation quality. 

The integration of the P2 scale and improved feature fusion enhances object detection, especially for small 

targets, increasing accuracy and adaptability across varied scenarios. 

Multi-Scale Feature Fusion 

The utilization of the augmented YOLOv8's multi-scale feature fusion greatly aids the feature integration 

across the detection scales, specifically the quality improvement of small object detection. The contribution is 

hierarchical feature fusion manner, which firstly enriches features of different scales and channels through the use 

of such operations as upsampling, concatenation, and C2f processing. 

• P4 to P5 Fusion: P4 features are upscaled and fusioned with the P5 layer features producing a more 

informative map, which is further enhanced by the C2f layers through an iterative application of the 

convolution operation for another round of feature extraction. 
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• P3 to P4 Fusion: The P3 features are firstly upsampled and then they are merged with the processed 

P4 features, and then the C2f layers are activated for retrieving some of the information by increasing 

the feature space and filling in the missing features in the mid-scale object detectors. 

• P2 to P3 Fusion: The P2 features are reshaped to a bigger size to create P3 features, and then combined 

with the fused P3 features and processed with C2f layers to get the best results from small to mid scale 

object detection. 

The new P2 detection scale adds to the small object detection ability by blending upsampled P2 features with P3 

features, enhanced through C2f layers. This mix benefits length and cross-resolution multi-scale feature 

improvement, as in the new texture details are captured vastly. The utilization of this feature combination by the 

model broadens spatial as well as contextual awareness, providing the possibility for more precise detection of either 

small and complex objects or those located amidst clusters of small targets in various scenarios. Joining the P2 

configuration and advanced fusion layers to YOLOv8 not only enhances the model's capability to find small objects 

but also permits it to get back fine details that were lost at lower resolutions. 

Architectural Refinements and Parameter Optimization 

For YOLOv8, its depth, width, and channel capacity were optimized to come up with a network that has a good trade-

off between the accuracy and the computational cost. The new YOLOv8n network can in one side perform the task 

intended for its complexity, on the other hand, allow for application in various fields with the varied computing 

capability, and object scales. The proposed method enhances YOLOv8 by adding a P2 detection scale, improving 

multi-scale fusion, and optimizing parameters, resulting in better small object detection and robustness without 

losing real-time performance. 

EXPERIMENTS AND OBTAINED RESULT 

This section presents the experimental setup, including dataset preprocessing, training configurations, and 

environment. It uses quantitative metrics like mAP, recall, and precision, along with qualitative assessments, to 

evaluate model performance and reproducibility. 

Datasets description 

The model was trained and tested on two datasets, with the first being a set of 4,000 person-class images precisely 

annotated from Freepik and Pexels. Stratified sampling was used to ensure the dataset was well balanced for training, 

validation, and testing. A standardized preprocessing pipeline was used for orientation and resizing to 640×640 

pixels as well as stochastic augmentations, which added to the diversity and to the robustness of the model. Using 

the high quality, augmented images that YOLOv8’s detection accuracy could be improved, overfitting reduced, and 

the performance in real-world applications improved.  

 In the second dataset from DreamsTime, there were 1,882 images grouped into the seven classes that were 

divided into the training, validation, and testing sets. We employed Roboflow to multiply the training set images 

through augmentations such as pivoting, color modifications, and mirroring that indeed tripled their number to 

4,512, which benefited dataset diversity as well as generalization and detection robustness of the model. 

Evaluation Metrics 

The model’s performance was evaluated using established metrics that quantify predictive accuracy and effectiveness 

across different scenarios. 

𝑃𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                            (1) 

𝑅𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                                               (2) 

𝐴𝑃 = ∫ 𝑃(𝑅)𝑑𝑅
1

0
                                                                                                                            (3) 
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𝑚𝐴𝑃 =
1

𝐶 
 ∑ 𝐴𝑃(𝑐)𝑐∈𝐶                                                                                                           (4) 

Where: 

- TP (True Positives): Correctly identified objects belonging to the target class. 

- FP (False Positives): Incorrectly predicted objects that do not belong to the target class. 

- FN (False Negatives): Objects from the target class that were not detected. 

- Precision: The fraction of relevant instances among the retrieved instances. 

- Recall: The fraction of relevant instances that were successfully retrieved. 

- AP (Average Precision): The area under the precision-recall curve for one class. 

- mAP (mean Average Precision): The mean of AP across all classes. 

Precision, recall, AP, and mAP are key metrics for evaluating detection accuracy, with mAP providing an overall 

performance measure. Computational efficiency is assessed using FPS, model parameters, and inference cost, all 

critical for real-time and resource-constrained deployment. Recall represents the proportion of correctly identified 

positive samples [8].  

Results and Analysis  

Experiments were conducted using Kaggle Notebooks, leveraging GPU acceleration for training and evaluation. The 

model backbone is YOLOv8, implemented in PyTorch for flexibility and performance. Two variants were compared: 

YOLOv8n (baseline) and an improved version with architectural enhancements. Both were trained under identical 

settings, detailed in Table 1, to ensure fair evaluation.  

Table 1. Training Configuration Parameters 

Parameter Value 

Depth-multiple 0.33 

Width-multiple 0.25 

Input Size 640x640 

Epochs 100 

Batch Size 16-32-64 

Results on Dataset 1 

Pretrained YOLO Models 

Table 2 presents the performance of the YOLOv8n, Improved YOLOv8n, YOLOv10n, and YOLOv11n models in terms 

of computational complexity, accuracy, and execution time, evaluated with a differents batch size on Dataset 1. 

Table 2. Performance Comparison of Pretrained YOLO Models on Dataset 1 

 

Batch 

Yolov8n Improved Yolov8n Yolov10n Yolov11n 

16 32 64 16 32 64 16 32 64 16 32 64 

GFLOPs 8.2 12.6 8.4 6.4 

Precision (%) 97.2 96.8 96.4 96.8 97.0 96.8 94.6 94.8 93.6 96.8 96.0 96.9 

Recall (%) 94.2 95.2 95.5 96.2 95.3 95.7 91.0 91.0 93.6 94.9 94.8 95.3 

mAP 50 (%) 98.2 98.3 98.5 98.9 98.8 98.8 97.1 97.1 97.4 98.2 98.1 98.1 

Map 50-95 (%) 86.2 86.4 86.3 87.5 86.3 86.5 83.9 83.9 83.9 86.0 86.1 86.3 

Execution 

Time (H) 

5.307 5.655 5.390 5.688 4.350 4.480 5.790 5.811 5.833 5.535 5.805 5.722 
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Across all batch sizes (16, 32, and 64), the Improved YOLOv8n model consistently delivers the best overall 

performance, achieving the highest mAP at 50 (98.9%–98.8%) and mAP at 50–95 (87.5%–86.5%), as well as strong 

recall values (up to 95.7%). Notably, at batch size 32, it combines top-tier accuracy with the fastest training time 

(4.350 hours), indicating excellent architectural optimization for efficiency and learning. The baseline YOLOv8n also 

performs robustly, especially at batch size 16 with the highest precision (97.2%) and strong mAP scores, making it 

well suited for real-time systems prioritizing precision and speed. In contrast, YOLOv10n, despite moderate GFLOPs, 

consistently underperforms with the lowest recall and mAP scores across all batches, suggesting it is less suitable for 

precision-critical tasks. Meanwhile, YOLOv11n, the model with the lowest computational complexity (6.4 GFLOPs), 

achieves good precision (up to 96.9%) but lags behind in mAP and training efficiency, indicating limited gains from 

its increased depth. Overall, Improved YOLOv8n emerges as the most effective model, balancing accuracy, 

computational demand, and training speed across batch sizes. 

 

Training from Scratch 

To evaluate the models’ ability to learn from the ground up, we retrained each one from scratch (random initialization 

of weights), analyzing convergence, accuracy, and efficiency without the benefit of pretraining. 

In table 3. Across all batch sizes, Improved YOLOv8n consistently outperforms other models, delivering the best 

balance of precision, recall, and mAP scores, while maintaining competitive or even shorter training times. YOLOv8n 

performs well as a baseline with strong accuracy and low computational cost. In contrast, YOLOv10n shows the 

weakest results in recall and mAP across all settings, indicating poor generalization. YOLOv11n achieves high 

precision but underperforms in recall and mAP 50–95, limiting its overall effectiveness. 

Table 3. Performance Comparison of YOLO Models from Scratch on Dataset 1 

 

Batch   

Yolov8n Improved Yolov8n Yolov10n Yolov11n 

16  32  64  16  32 64 16  32 64 16  32  64 

GFLOPs 8.2 12.6 8.4 6.4 

Precision (%) 95.6 95.8 96.9 96.9 96.8 95.8 93.6 95.0 93.4 96.7 97.2 96.1 

Recall (%) 93.5 92.8 92.2 93.7 94.5 94.2 90.6 90.2 90.8 91.6 92.8 91.1 

mAP 50 (%) 97.4 97.3 97.1 98.5 98.1 98.2 96.0 96.1 97.8 97.3 97.2 97.0 

mAP50-95 (%) 83.1 83.0 82.6 83.1 83.5 83.4 78.7 78.5 79.6 81.0 81.9 80.3 

Execution 

Time (H) 

5.180 5.370 5.685 5.520 6.102 5.000 5.684 5.898 5.757 5.590 6.080 5.820 

Therefore, the Improved YOLOv8n consistently demonstrates the most favorable balance between detection 

accuracy, convergence speed, and generalization ability, making it the most robust and practical choice among the 

models evaluated. 

Results on Dataset 2 

Pretrained YOLO Models 

As shown in Table 4, the Improved YOLOv8n consistently demonstrates the best overall detection performance, 

achieving the highest recall and mAP at 50, though with increased computational complexity and training time. 

YOLOv8n stands out for its efficient balance between precision, accuracy, and speed, making it a strong baseline 

model. YOLOv10n is the most lightweight and efficient in terms of GFLOPs and runtime, but it suffers from lower 

accuracy across metrics. YOLOv11n, despite having the highest precision in some configurations, fails to deliver 

corresponding gains in recall and mAP, suggesting that its added complexity does not translate into better 

generalization. 
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Table 4. Performance Comparison of YOLO Models from Scratch on Dataset 2 

 

Batch 

Yolov8n Improved Yolov8n Yolov10n Yolov11n 

16 32 64 16 32 64 16 32 64 16 32 64 

GFLOPs 8.2 12.6 8.4 6.4 

Precision (%) 92.9 91.8 92.4 91.7 93.4 94.5 89.5 93.3 92.8 95.9 88.4 89.4 

Recall (%) 87.8 85.8 87.6 88.9 88.3 89.6 80.4 87.7 86.1 82.3 84.5 88.9 

mAP 50 (%) 92.5 92.9 90.8 93.2 93.5 91.9 87.5 91.3 91.6 90.9 90.8 91.4 

mAP50-95 (%) 74.6 75.6 74.3 72.2 76.2 78.1 63.0 74.1 75.3 74.9 75.6 73.3 

Execution 

Time (H) 

1.491 1.459 1.423 2.334 2.426 2.335 1.511 1.493 1.523 1.954 1.949 1.858 

 

YOLO Models Trained from Scratch 

Table 5. Confirm the dominance of the Improved YOLOv8n model, which consistently achieves the highest 

performance across all key metrics, maintaining strong accuracy even as batch sizes increase. YOLOv8n continues to 

strike an effective balance between detection performance and computational efficiency, often offering the shortest 

training times. YOLOv10n shows competitive precision but struggles with recall and mAP, limiting its overall 

effectiveness. YOLOv11n, while lightweight and sometimes fastest in execution, consistently underperforms in both 

accuracy and generalization, making it the least suitable choice across scenarios. 

Table 5. Performance of YOLO Models Trained from Scratch on Dataset 2   

 

Batch 

Yolov8n Improved Yolov8n Yolov10n Yolov11n 

16 32 64  16 32  64 16 32 64 16 32 64 

GFLOPs 8.2 12.6 8.4 6.4 

Precision (%) 80.2 89.1 81.5 88.1 93.4 92.5 79.7 94.2 80.0 89.5 86.5 81.3 

Recall (%) 82.3 82.0 81.6 85.7 87.1 83.5 78.8 78.0 80.5 80.4 74.8 76.1 

mAP 50 (%) 86.0 88.7 85.7 90.1 91.6 91.3 83.2 85.0 85.2 87.5 84.2 83.8 

mAP50-95 (%) 64.7 66.2 65.9 67.6 68.6 68.6 62.3 64.1 63.9 63.1 63.3 62.9 

Execution 

Time (H) 

1.579 1.408 1.250 2.240 2.512 2.536 1.889 1.540 1.509 1.544 2.130 1.899 

Training Dynamics and Generalization 

The visual comparisons in the figure 1. illustrate the superior detection capabilities of the Improved YOLOv8n model 

across a range of challenging scenarios. Case (a), highlights a difficult detection case involving small and obscured 

objects under low-contrast conditions. YOLOv8n and YOLOv10n fail to detect any object. YOLOv11n misidentifies a 

tree as a person (confidence 0.70), likely due to similar shape and low contrast. Only the Improved YOLOv8n 

successfully detects a distant pedestrian with a confidence of 0.44, showing superior sensitivity and robustness in 

challenging conditions likely due to advanced fine-tuning. In (b), the results highlight differences in detection 

accuracy and confidence, with the custom model demonstrating more consistent and reliable performance. 
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Figure 1. Comparative Object Detection Performance of YOLO Variants in Challenging Visual Conditions. 

In (c), our model shows better robustness in low-visibility conditions, while in (d), it delivers more accurate and 

complete detections in a complex urban scene compared to other models. 

CONCLUSION AND PERSPECTIVES 

This paper proposed an improved version of the YOLOv8n model, which was customized to enhance small object 

detection on a custom datasets. The recommended modifications, including the addition of a new detection scale (P2) 

and an improved feature fusion method, have significantly improved the model’s ability to detect small-scale objects 

that were difficult to detect previously. By refining the multi-scale feature aggregation process and integrating 

additional Upsample, Concat, and C2f layers, the enhanced YOLOv8n model demonstrated superior performance in 

terms of precision, recall, and mAP. This research compared the performance of various object detection models such 

as YOLOv8n, YOLOv10n, YOLOv11n, and the optimized custom model on two distinct datasets. The experiments 

conducted under different training conditions (e.g., training from scratch versus pretrained models, and varying 

batch sizes) reveal that the customized YOLOv8n model consistently outperforms baseline models in precision, recall, 

and mAP.  

Surprisingly, the custom model performed optimally in most environments, particularly with pretrained weights, for 

both mAP at threshold = 0.5 and mAP at threshold between 0.5 and 0.95. These findings underscore the importance 

of architectural optimization and transfer learning in enhancing object detection accuracy, even for lightweight 

models suitable for real-time applications. Subsequent research will focus on incorporating adaptive attention 

mechanisms, optimized network architectures, and semi-supervised learning techniques to further improve the 

operational efficiency and generalizability of the model. Additionally, extending the model’s application to multi-

object tracking and real-time video processing will broaden its utility in practical scenarios. By further optimizing its 

structure and training process, the high-performance YOLOv8n model can serve as a more robust and efficient tool 

for identifying small objects across diverse real-time environments. 
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