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Plant productivity and health are directly impacted by carbon(C) levels. This study evaluated 

the potential of visible/near-infrared (V/NIR) spectroscopy (350-2,500 nm) for soil characteri-

zation, utilizing a dataset of 200 soil samples from Uttar Pradesh, India. The predictive per-

formance of spectral data was compared across three modeling approaches: an Ensemble of 

Lasso and Ridge Regression models (ELRR), Random Forest (RF), and a more complex Artifi-

cial Neural Network (ANN) were employed to choose the spectral characteristics that were uti-

lized in the C prediction.. To reproduce the spectrum's wavelength The log derivative, log to 

base 10 derivative log10x and inverse derivative were employed in the preprocessing.. The re-

sults showed that the availability of C was found to be between 350 and 450 nm. Using the 

Log10x pre-processed data and the suggested DrSeqANN-Dropout Sequential Artificial Neural 

Network technique, the most accurate results were obtained by accessing parameters with the 

aid of RMSE = 0.08, R2 = 0.82, and RPIQ = 4.32 for our suggested DrSeqANN model. Com-

pared to the other two approaches 

Keywords: Dropout-Sequential Artificial Neural Network (DrSeqANN) , data preparation 

techniques , Artificial Neural Network (ANN) , Spectral Wavelength , Logarithm (base 10) of 

the reciprocal of reflectance (Log10x),Near-Infrared(NIR)Spectroscopy 

 

INTRODUCTION 

Wetlands are vital carbon sinks, holding a significant share of the Earth's carbon reserves [1].make about 6% of the 

planet, The UNEP World Conservation Monitoring Center claims that. Approximately 14% of all carbon stored on 

land is found in wetland areas. Wetlands store a lot of carbon, Therefore, disruptions to the carbon stored in wet-

lands could have a major effect on the increase of global temperatures [2].One of the accepted methods for figuring 

out the amount of carbon (C) is dry combustion. The development of efficient, rapid, and accurate methods is nec-

essary to address the difficult problem of extensive C monitoring, forecasting, and detection in arid conditions 

[3][4]. Despite their reputation for accuracy, traditional procedures can be laborious to use and run the risk of de-

stroying materials during processing hinders the reproducibility of lab results. Still, recent research has demon-

strated the non-destructive nature of visible infrared (V/NIR) spectroscopy. quantitative, affordable, and dependa-

ble method for determining the chemical makeup and quality of soil [5]. 

 Scientists have developed several empirical models to determine the relationships between different soil ele-

ments (such phosphorus, or carbon, and several others) and reflected spectra [6]. Although there are many applica-

tions for spectrum data, machine learning approaches are particularly noteworthy for their quick and reliable da-

taset analysis [7][8]. The method generally performed well in identifying the spectra of soils as carbon concentra-

tion increased when using conventional regression approaches such multivariate linear regression or partial least 

squares regression [13][14]. With these methods, overestimation and underestimating are frequent problems [15]. 

The findings suggest that reliable estimates of C could be generated by random forests and support vector machines. 

In [16], V/NIR spectroscopy and SVM were used to measure the levels of C in samples from China's middle and 

lower Yangtze Rivers.  
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this research has demonstrated encouraging results when VIS/NIR spectroscopy data is combined with machine 

learning algorithms. Numerous studies have examined How to evaluate C in marshes [17] [18]. Several ML tech-

niques, like iPLS-interval partial least squares and ACO-ant colony optimization, have recently emerged as meth-

ods for feature selection. Inspired by prior research and acknowledging these factors, the present study quantifies 

estimates of the C content of wetlands using V/NIR spectroscopy and machine learning approaches. The study 

took place in the Uttar Pradesh District of India. 200 soil samples, collected at multiple depths, were chemically 

analyzed. Spectral measurements were then made, and the data was pre-processed.  

The Indian state of Uttar Pradesh was selected as the research area, and within it, soil samples were collected from 

the cities of Kanpur, Kanpur Dehat, Unnao, Raebareli, Amethi, Sultanpur, and Azamgarh , as shown in Figure 1. 

According to GPS coordinates, The pertinent place is located at latitude in Uttar Pradesh, India. 26.536938 and 

longitude 80.489960, or 26° 32' 12.9768' N and 80° 29' 23.8560' E. The results showed that For C, the key charac-

teristic wavelengths fell between 350 and 450 nm. The best accurate results were obtained using the Log10x pre-

processed data in conjunction with the suggested Dropout Sequential Artificial Neural Network (DrSeqANN) tech-

nique. 

 

Figure 1: Study Area and sample points of Carbon(C). 

A total of 35 sites were sampled (Figure-1). Samples were collected at four vertical depths of 5 cm, 20 cm, 40 cm, 

and 60 cm as well as five uniformly spaced locations with a grid of 30 to 30 m at each sampling site because Hype-

rion images have a spatial resolution of 30 m. In order to represent the soil for that sampling site (at that particular 

depth), the samples for each of the five locations (at that depth) were then uniformly mixed. 435 samples in all 

were gathered and delivered to the laboratory for chemical examination. 

 To get rid of any leftover plant matter, residues, roots, etc., all soil samples (n = 140) were completely air-dried, 

ground up, and sieved through a two mm mesh screen.The research region is shown in Figure-1. To get rid of any 

residual traces of plant remnants, roots, or stones, Each of the 200 soil samples was carefully allowed to air dry 

before being ground into a powder and sifted through a two-millimeter filter.200 soil samples with 2,151 properties 

ranging in wavelength from 350 to 2500 nanometers were gathered. High-frequency random disturbances, scatter-

ing anomalies, and baseline settling can all have an impact on spectral observations. The use of Origin Pro version 

9.0 [13] improves the spectral features of the dataset [19]. The original spectrum of 200 soil samples was utilized in 

this investigation, and the First-Order Derivative (A'), its inverse (1/A'), its logarithm (lg(A')), and its log to base 10 

(lg10(A')) were all employed. 
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Table-1: Matrix of Soil Properties by First and Third Quartile, Mean, Standard Deviation, and Maximum 

Soil 
Wavelength Count Mean 

Std 
Minimum 

Ist   IIIrd 
Maximum 

Property Deviation Quartile Quartile 

Ph 
350 199 0.059554 0.017678 0.026468 0.046662 0.067182 0.13893 

Extract 

Ec 
351 199 0.060029 0.01739 0.02449 0.04878 0.068644 0.134328 

Extract 

CaCO3 
2499 199 0.356908 0.06267 0.225497 0.309888 0.393054 0.520923 

Equivalent % 

C 2500 199 0.356783 0.062924 0.225079 0.308125 0.393934 0.524133 

 

 
Figure 2 (a) Original Spectra 

 

 
First-derivative analysis results are shown - Figure 2 (b) 

 

 
The inverse derivative is displayed - Figure2(c) 
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Figure 2 (d) Logarithmic-derivative 

 

 
Figure 2 (e) Log10x derivatives of spectra 

 

According to Figure 2, Log10x seemed to perform better than the other pre-processing techniques. The Origin 

Spectra's absorption peaks were located at ⁓1450 nm, ⁓1990 nm, and 2250 nm.  

1.1. First-Derivative (A’) 

Derivatives are mainly used to improve resolution by separating overlapping peaks and removing linear and 

constant baseline variations across different samples. The spectra exhibited absorption peaks at 450, 480, 950, 

1300, 1800 nm, and across the range from 2300 to 2500 nm. The mathematical expressions employed for pre-

processing the first derivative (A) are presented in Equation-1. 

𝑑𝑦

𝑑𝑥

=
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
                               (1) 

where  

 y-dependent variable 

x-independent variable 

 dx-change in value x 

 dy-change in value y 

 h- limiting value 

1.2. Inverse- First-Derivative (1/A’) 

Assume that f(x) is an invertible and differentiable function. For every x that satisfies f `(f-1(x)≠0, (1/A}), let y=f-

1(x) inverse of f(x) 

𝑑𝑦

𝑑𝑥
=

𝑑

𝑑𝑥

(𝑓−1(𝑥)) = (𝑓−1)`(𝑥) 
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                     =
1

𝑓`(𝑓−1(𝑥))
                     (2)   

The absorption peaks in the spectra were situated in the 350–430 nm range. The formulas employed for inverse 

first-derivative preprocessing (1/A`) are detailed in Equation 2 

1.3. Log A' (Log Derivative) 

The mathematical formalism for the log derivative preprocessing step (Log A') is presented in Equation 3. Spec-

tral absorption peaks were found to lie within the 350-400 nm range 

 
𝑑

𝑑𝑥
𝑙𝑛 𝑓(𝑥)  

1

𝑓(𝑥)

𝑑𝑓(𝑥)

𝑑𝑥
                                        (3)                       

where as 

     f represents the function f(x).  

     One real variable is x.   

1.4. Derivative Log to Base 10 (Log10x) 

The absorption peaks in the spectrum were found between ⁓350 and ⁓450 nm. Equation 4 shows the mathematical 

techniques applied to Log Derivative (Log A) pre-processing 

log10 𝑥𝑖
1 = 𝑥𝑖

1 − 𝑥𝑖−1
1           (4) 

MACHINE LEARNING METHODS 

To predict carbon (C) content using visible/near-infrared (V/NIR) spectroscopy, this study employed two machine 

learning techniques – Random Forest (RF) and Ensemble Lasso-Ridge Regression (ELRR) – in addition to the 

novel DrSeqANN model incorporating dropout layers. This analysis utilized a dataset of 200 soil samples collected 

from Uttar Pradesh, India. Model performance in predicting carbon content was evaluated based on RMSE, RPIQ, 

and R2 metrics, following spectral pre-processing. The results were then used to compare and contrast the three 

regression models using the NIR spectroscopy soil data 

1.2. Ensemble Learning Using Lasso-Ridge Regression (ELRR) 

Ensemble larning using lasso and ridge regression (ELRR) is a combination of Lasso and Ridge regression. The 

ELRR simultaneously executes automated variable selection and continuous shrinkage, or L1 and L2 penalty. The 

ELRR penalty consists of two distinct penalty functions. 

2

1

1
n

i

i

L  
=

= 
  

2

1

2
n

i

i

L  
=

= 
                    (5) 

In contrast,  

Laso-Rgresion=L2, Ridge-Regression=L1  

λ = Regularization parameter. 

Θ = Total sum for the vector of theta  

n = Number of features. 

The ridge penalty (L1) and the lasso penalty (L2) are the first and second halves of the penalty, respectively. The 

penalty parameter, which accepts values between 0 and 1, is an attempt to find a compromise between the two 

penalties. The ELRR penalty has the advantage of combining the ridge regularization's successful regularization 

with the lasso penalty's feature selection capabilities. 
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1.3. Implementation of Random Forest (rf) 

Random Forest (RF), a widely adopted supervised learning algorithm [1], is applicable to both regression and 

classification problems [1]. Grounded in the principles of ensemble learning, RF leverages the combined predictive 

power of multiple decision trees to improve overall model performance and address complex modeling challenges. 

The RF algorithm, acting as a regressor, enhances prediction accuracy by training multiple decision trees on diverse 

subsets of the data and averaging their respective outputs. This ensemble approach effectively reduces the risk of 

over-fitting and enhances the generalization capability of the model. 

1.4. ANN- Artificial Neural Network 

ANN [15], An ANN is a powerful computing system that is modeled after biological brain networks. Terms like "ar-

tificial neural systems," "parallel distributed processing systems," and "connectionist systems" were used to de-

scribe ANNs.  

Every neuron is connected to other neurons by a connection. Each connector has some weights and is cited. It is 

believed that each neuron exists in an innate state that is distinguished by activation signals. When input signals 

are combined with the activation method, output signals may be sent to other components. 

PROPOSED DRSEQANN MODEL 

 

Figure 3: Structure of Neural Network 

Between the input and output layers, seven hidden layers are used as shown in Figure 3. The input layer uses a to-

tal of 2151 spectral characteristics. There are 225 neurons used in the first hidden layer. The input batch can enter 

the network through an input layer. For every node in the input layer, a sample feature is as Cited. Up to the final 

(output) layer, several hidden layers are added after the input layer. These levels perform the "complex" nonlinear 

procedures with connections. Although considered "complex," the basic procedures are essentially quite simple 

mathematical computations. A stack of computational nodes is referred to as a hidden layer. From the input, each 

node extracts a feature. 

A feature map, or representation, Up to the final (output) layer, several hidden layers are added after the input lay-

er. This feature map intuitively shows the outcomes of different "sub-problems" that have been resolved at each 

node. In order to predict the reaction, they supply predictive data to the subsequent layer and all the way up to the 

output layer. Ten neurons are used in the seventh layer, which is the final layer. The hyperbolic tangent (Tanh) 

function was used as the activation function [20]. The data was divided into training and testing sets with a 70:30 

split ratio The Root Mean Squared Error (RMSE) was used as the loss function and the "ADAM" optimizer was 

used to construct the model. L1 and L2 weight penalties were introduced as regularization techniques for neural 

networks [15]. These regularizations did not, however, completely eliminate the overfitting issue.  

One major issue in learning large networks is co-adaptation. It is common for some links in such a network to fore-

cast results more precisely than others. if all of the weights are learned simultaneously. In this case, the stronger 

connections learn more and the weaker connections are ignored because the network is taught frequently. Increas-

ing the neural network's size  
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Figure 4: The Framework for Layer Dropping in a Regularized Network. 

would not be beneficial. Consequently, the size and precision of neural networks were constrained. Dropout came 

next. A novel approach to regularization. The co-adaptation was restored. Now we could build deeper and larger 

networks. And exploit the predictive power of everything. 

A batch of samples serves as the network's input, as seen in Figure 4. Every sample is a vector of features. A net-

work's hidden layers are dense. Weight matrix W and bias b are characteristics of a dense layer. They carry out 

basic affine transformations (XW + b, dot product plus bias). Features are extracted from the input via the affine 

transforms. An activation function is applied to the transformations. 

Nonlinear activations are present. The network can implicitly break down a difficult problem into arbitrary sub-

problems because of its nonlinearity. The network combines the outputs of several sub-problems to deduce the ul-

timate output, y ̂. Dropout altered how weights were learned. It is common for some links in such a network to 

forecast results more precisely than others. 

1 2

2 2 2
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( ) (1 )
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= −
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    (6) 

Equation 6 above illustrates the existence of two regulizers, L1 and L2. There seems to be a distinction between 

dropout's random weight suppression and L1's data-driven weight suppression, even though L1 regularization 

promotes sparsity by shrinking small weights to zero. 

 Dropout, however, is a regularization technique. This regularization resembles an L2 more. This is shown mathe-

matically by Pierre and Peter (Baldi and Sadowski, 2013). They showed that, Under linearity assumptions regard-

ing the activation function, the loss function's shape when using dropout mirrors that of L2 regularization. The 

dropout rate (p) represents the fraction of nodes randomly excluded during each batch iteration. 

There is a penalty factor p(1-p) in the regularization term of equation 6. The component p(1 - p) reaches its maxi-

mum at p = 0.5. Consequently, for p = 0.5, the dropout regularization is greatest. Under linearity assumptions, 

dropout is a regularization method that is comparable to L2 regularization. For maximal regularization, a dropout 

rate of p = 0.5 is the best option. Thus, for hidden layers, Generally speaking, A dropout rate of 0.5 is recommend-

ed. Our model's dropout rate of 0.2 indicates its good performance. The activation function is tanh, the kernel ini-

tializer is normal, the bias value is zero, and the weights are automatically modified based on the input features. 

This process begins with the first input layer, which has 225 applied nodes, and continues to the seventh layer, 

which has 10 nodes. 
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3.1. Evaluation and comparison of model calibration 

The DrSeqANN model trains for 1000 epochs, processing the data in five batches. A single epoch represents one 

complete iteration over the entire training dataset. Weight adjustments are made during training using a gradient-

based optimization method. 

The dataset was split into training and testing sets (140 and 60 samples, respectively) to evaluate the performance 

of the three algorithms (DrseqANN, RF, and ELRR). The coefficient of determination (R2), root mean squared er-

ror (RMSE), and ratio of performance to interquartile distance (RPIQ) were used to evaluate the algorithm's accu-

racy. which quantifies how well one measure performs in relation to another. To provide a more consistent and 

impartial assessment of model validity, RPIQ takes prediction error and volatility of detected measurements into 

account. A higher RPIQ value indicates a better capacity to forecast [22]. greater R2, lower RMSE, and greater 

RPIQ are all indicators of a more stable model. 

Coefficient of determination (R2):  

𝑅2 = 1 −
∑ (𝑦𝑖𝑖 − 𝑦̂)2

∑ (𝑦𝑖 − 𝑦̅)2
𝑖

                      (7) 

where 𝑦𝑖  =  𝑅𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 

            𝑦̂ = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 

          𝑦̅ = 𝑇ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 

          𝑦𝑖 − 𝑦̅ = 𝑌′𝑠 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑖𝑡𝑠 𝑚𝑒𝑎𝑛 

 

RMSE-Root Mean Squared Error 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦∝ − 𝑦𝑒𝑠𝑡)2𝑛

𝑖=1  

𝑦∝ = 𝑅𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 

𝑦𝑒𝑠𝑡 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 

𝑛 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 

Ratio of Performance to Interquartile-RPIQ 

Quartiles: The values that produce quarters in an integer list are called quartiles. 

Upper Quartile: the middle value of a dataset's upper half. 

 

Range: The range of a dataset is the difference between its highest and lowest values. 

Interquartile Range: Interquartile Range: The difference between the dataset's upper and lower quartiles is repre-

sented by the interquartile range 

 RPIQ = Q3-Q1/RMSE 

 Or 

 RPIQ=IQ/RMSE  

FINDINGS AND DISCUSSION 

1.5. Evaluation via Comparison 

DrSeqANN achieved a higher RPIQ (8.42) compared to RF (8.25) and ELRR (8.11), indicating better performance. 

The RPIQ value is highest when the ELRR model is applied to raw data (prior to preprocessing). Each model's 

mean squared error, The values of the root means square error and coefficient of determination exhibited very simi-

lar characteristics. Scatter plots illustrating the performance of the three models on the original data can be found 

in Figures 5 through 9. Pre-processing the data with derivative functions is the initial stage. The first derivative, 
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inverse derivative, log derivative, and log10x are used to complete the pre-processing. This facilitates determining 

whether these samples are included in the training sets from which the prediction models were developed.

 

(a) 

 

(b) 

 

(c) 

Figure 5: Scatter plots showing the original raw data (pre-preprocessing) for (a) DrSeqANN, (b) RF, and (c) ELRR. 

The scatter plot for each of the three models prior to preprocessing is displayed in Figure 5. 

It can be shown from Figure 6 that the DrSe-qANN model performs better on Log10x pre-processing data. In con-

trast to the RF and ELRR models, the DrSeqANN model has less dispersed data points. The test data set yielded an 

R2 value of 0.82, an RMSE value of 0.08, and an RPIQ of 4.32. 
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(a) 

 

(b) 

 

 

(c) 

Figure 6: Log10x pre-processing data with the scatter plot (a) DrSeqANN, (b) RF, and (c) ELRR 

Figure 7 shows the scatter plots of the three models for regression analysis after inverse derivative pre-

processing. The RF model exhibits improved performance with an R2 of approximately 0.55 and RMSE of 0.07 on 

the test data. As the scatter plots illustrate, the RF model displays less data dispersion compared to the DrSeqANN 

and ELRR models. . 
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(a) 

 

(b) 

 

(c) 

Figure 7: Model performance on inverse derivative pre-processed data, visualized using scatter plots: (a) DrSe-

qANN, (b) RF, (c) ELRR. 

The scatter plots comparing the three models on a dataset that has been pre-processed using inverse derivative is 

shown in Figure 8. The values of the evaluation parameters (RMSE, RPIQ, and R2) are extremely similar to one 

another, with just a slight variation between them. With an RMSE of 0.08 and an R2 measure of roughly 0.69, the 

DrSeqANN model seems to be doing marginally better, according to figures 8a,b and c. 
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(a) 

 

(b) 

 

(c) 

Figure 8: Scatter plots of data after inverse derivative pre-processing: (a) DrSeqANN, (b) RF, (c) ELRR 

As shown in Figure 9, which presents the scatter plots for all three models that the DrSeqANN model performed 

better than the RF and ELRR models. R2 is 0.98 for the training set and 0.67 for the testing set. The RPIQ is like-

wise the greatest value, 3.87, in the case of the logarithmic derivative. 
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(a) 

 

(b) 

 

(c) 

Figure 9: Scatter plots illustrating model performance on data following logarithmic derivative pre-processing: (a) 

DrSeqANN, (b) RF, and (c) ELRR. 

The use of Log10x pre-processing improved the RMSE performance of the DrSeq-ANN model. For Random, the 

R2 value is good. Forest Model on the original data in comparison to the other two methods. It is found that 

Log10x pre-processing produces the best results when the pre-processing approaches covered in previous sections 

are applied. Our suggested DrSeqANN model has an RMSE of 0.08, an R2 of 0.82, and an RPIQ of 4.32. For most 

of the pre-processed data, the proposed DrSeqANN prototype outperforms the other two approaches. In compari-

son to RF and ELRR, the RPIQ value that we discovered is consistently higher. 

CONCLUSION 

The suggested DrSeq-ANN and regression machine learning models were shown to be able to predict C contents 

using Log10x, Inverse Derivative, First Derivative, and Logarithmic Derivative. On the given dataset, the recom-

mended DrSeq-ANN model performed better for soil characteristics (C) than the Random Forest and ELRR mod-



734  J INFORM SYSTEMS ENG, 10(8s) 

els. Specifically, using a Log10x during pre-processing significantly improved the model's accuracy for R2 by 

17.55%. This was achieved by assessing parameters using our suggested DrSeqANN model's RMSE = 0.08, R2 = 

0.82, and RPIQ = 4.32. compared to the other two approaches. The DrSeqANN Model can be used in future stud-

ies for several kinds of soil samples, including sand, silt, and salt. 
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