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Thin film technology plays a vital role in numerous applications, including semiconductors, 

photovoltaics, and optical devices. Accurate prediction of thin film thickness is critical for 

process optimization and quality control. In this study, a machine learning (ML) model was 

developed to predict the thickness of chemically deposited thin films, including CdS, CdSe, and 

MnO₂, based on material type, molar concentration, deposition time, and optical interference 

fringes. The model utilizes four key input features: material type, molar concentration, 

deposition time, and number of optical interference fringes. A Lasso Regressor was selected in 

this study. The model was trained using experimental data, validated on an independent 

dataset, and tested to assess generalization performance. The developed model demonstrated 

high predictive accuracy, with mean absolute percentage errors (MAPE) under 1% across all 

phases, showcasing its potential as a reliable tool for in-situ thickness estimation and process 

tuning. The model achieved high accuracy, with Root Mean Squared Error (RMSE) values 

below 0.07 µm across all materials and R² scores above 0.95, indicating strong generalization. 

Validation results show minimal error between predicted and actual thickness values, with an 

average prediction error below 2% for most cases. 

Keywords: DEDHI, Chemical Bath Deposition (CBD), light-emitting diodes (LEDs), CdS, 

CdSe, and MnO₂, prediction model. 

 

INTRODUCTION 

Thin film deposition processes require precise control of material properties and film dimensions. Traditional 

methods to measure film thickness, such as profilometry or ellipsometry, can be time-consuming and post-process. 

Machine learning offers a data-driven alternative that can predict film thickness during or immediately after 

deposition using easily accessible parameters. This work aims to develop and validate an ML model capable of 

accurately predicting thin film thickness for CdS, CdSe, and MnO₂ films. 

Thin films have become fundamental to a broad spectrum of modern technologies, including solar photovoltaics, 

light-emitting diodes (LEDs), sensors, and microelectronic devices. In such applications, the thickness of the thin 

film plays a critical role in determining its optical, electrical, and mechanical properties [1], [2]. For instance, 

variations in thickness can lead to significant deviations in optical transmittance, interference behavior, and 

electrical conductivity, all of which directly influence device efficiency and reliability. Among various thin film 

deposition methods, Chemical Bath Deposition (CBD) has emerged as a popular choice due to its simplicity, cost-

effectiveness, low-temperature processing, and suitability for large-area substrates [3], [4]. CBD is particularly 

effective for depositing semiconducting chalcogenides such as Cadmium Sulfide (CdS) and Cadmium Selenide 

(CdSe), as well as oxides like Manganese Dioxide (MnO₂) [5]–[7]. Despite these advantages, CBD processes are 

highly sensitive to deposition parameters such as molar concentration, bath temperature, deposition time, and pH, 

which makes controlling and predicting the resulting film thickness challenging. Traditional thickness 
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measurement techniques—such as stylus profilometry, scanning electron microscopy (SEM), and spectroscopic 

ellipsometry—also offer high accuracy but require post-process analysis, sophisticated instrumentation, and 

extensive calibration [8]. Optical fringe counting, while simpler, often suffers from inconsistencies due to surface 

roughness, film non-uniformity, or uncertain refractive index assumptions [9]. These limitations hinder real-time 

feedback and process automation in CBD systems. 

Recent advancements in Machine Learning (ML) have opened new avenues in materials science and thin film 

process modeling. ML techniques can capture complex, nonlinear relationships between process parameters and 

material outcomes, without relying on first-principles or empirical approximations [10], [11]. In thin film research, 

ML has been applied to predict functional properties (e.g., band gap, conductivity), optimize fabrication 

parameters, and classify defect types [12]–[14]. However, there is a notable gap in the literature regarding the 

prediction of thin film thickness using ML, especially for multi-material, experimentally validated datasets in CBD 

processes. This study aims to fill this gap by developing a machine learning model to predict the thickness of thin 

films deposited via CBD, using experimentally measurable input parameters like; material type, molar 

concentration, deposition time, and number of optical fringes. The work focuses on three widely studied materials—

CdS, CdSe, and MnO₂—across a variety of experimental conditions.  

In recent years, there has been growing interest in leveraging machine learning (ML) for predictive 

modeling in thin film research, with the aim of enhancing fabrication accuracy, accelerating 

experimentation, and enabling real-time process control. For instance, Sun et al. (2022) developed a 

neural network-based model to predict the crystallinity and thickness of ZnO thin films from plasma-

enhanced chemical vapor deposition (PECVD), achieving high correlation with experimental data and 

demonstrating the effectiveness of ML for multi-objective optimization [16]. Similarly, Zhang et al. 

(2021) employed support vector regression (SVR) to estimate the band gap and thickness of 

Cu(In,Ga)Se₂ thin films using process parameters such as temperature and growth rate, illustrating the 

adaptability of ML models in photovoltaic materials [17]. Das et al. (2023) focused specifically on CBD 

processes, using decision tree algorithms to predict film thickness and roughness of PbS films under 

varying pH and deposition times, highlighting the role of environmental variables in predictive modeling 

[18]. Their study emphasized the challenge of generalizing across materials due to the unique kinetics of 

each compound—a challenge addressed in the present work through multi-material modeling. In a more 

comprehensive framework, Gupta et al. (2024) implemented a hybrid ML system combining Lasso 

regression and gradient boosting to predict both structural and optical parameters of chalcogenide films, 

validating their model on over 200 samples collected from different laboratories [19]. Their findings 

underscore the importance of dataset diversity and algorithm selection in reducing overfitting. 

A Lasso Regressor is implemented due to its robustness to overfitting, high interpretability, and ability to capture 

nonlinear dependencies. The model is trained and validated on a structured dataset compiled from controlled 

laboratory experiments. Performance is evaluated using standard regression metrics including Mean Absolute 

Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and R² Score. By 

enabling reliable and fast thickness estimation, the proposed model has the potential to enhance real-time process 

control, reduce material waste, and improve the quality and reproducibility of thin film devices in industrial 

settings. 

METHODOLOGY 

Machine learning technique is used to develop a prediction model to predict thickness of CdS, CdSe and Mn02 thin 

films at any time of deposition with different molar concentration. The data used to develop this model is taken 

from surface deformation study of thin film using double exposure digital holographic interferogram (DEDHI) 

technique. 
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2.1 Data Collection and Preprocessing 

The effectiveness of any machine learning (ML) model heavily depends on the quality and structure of the data used 

in training. In this study, experimental data were systematically collected from CBD processes involving three types 

of semiconductor and oxide materials: Cadmium Sulfide (CdS), Cadmium Selenide (CdSe), and Manganese Dioxide 

(MnO₂). These materials were selected for their technological relevance in optoelectronic and energy storage 

applications.  

Following deposition, actual thickness measurements were taken using a DEDHI. These values served as the 

ground truth for training the predictive model. In parallel, a predictive model generated preliminary thickness 

estimates based on the same input features, which were later compared against the ground truth for model 

evaluation. 

2.2  Data Acquisition 

Each thin film was deposited under controlled laboratory conditions by varying three primary process parameters: 

a)Molar concentration of the precursor solution (in M) ranges from 0.04M to 0.1M. 

b)Deposition time (in seconds) varies from 10 sec to 120 sec. 

c)Number of optical fringes observed during the deposition process, an indicator of optical interference linked to 

film thickness. 

Three datasets were compiled for the purposes of training, validation, and testing. In training dataset a 

total of 34 samples used to train the machine learning model, including a wide distribution of material 

types, concentrations, and deposition times to ensure model generalizability. In testing dataset a total 14 

completely unseen samples were used to evaluate the model’s predictive capabilities under real-world 

conditions. In validation dataset total 7 samples were used to fine-tune model hyper parameters and 

avoid overfitting. The full datasets are provided in Tables 1, 2, and 3 for training, testing, and validation 

respectively), detailing input parameters, predicted values, actual thicknesses, and corresponding error 

metrics. 

By constructing a high-integrity dataset with careful preprocessing, the foundation was established for training an 

accurate and robust machine learning model capable of predicting thin film thickness with high precision. 

2.3 Development of ML Model Used in This Study 

The primary objective of this study is to develop a machine learning (ML) model to predict thin film thickness as a 

function of measurable experimental parameters such as material type, molar concentration, deposition time, and 

number of interference fringes. Due to the nonlinear nature of the physical and chemical interactions governing 

film growth during CBD, the model was required to capture complex patterns and dependencies. Hence, a 

supervised regression method was developed to learn the mapping from input features to film thickness. Several 

algorithms were tested, and the Lasso Regressor was selected for its accuracy and ability to capture nonlinear 

relationships. The model was implemented using Python's scikit-learn library. The development of prediction 

model was carried out using the various steps and it is depicted in Figure 1. Lasso Regressor is a type of linear 

regression that utilizes a regularization technique called L1 regularization, also known as shrinkage. It helps to 

prevent overfitting, improve model accuracy, and perform automatic feature selection. It is frequently used in 

machine learning to handle high dimensional data as it facilitates automatic feature selection with its application. It 

does this by adding a penalty term to the residual sum of squares (RSS), which is then multiplied by the 

regularization parameter (λ). The expression is as: 

                                                                     Minimize: ∑(𝑦𝑖 − 𝐲̂𝑖)
2 +  λ∑ ∣ βj ∣ (1) 

where,  

The first part: usual linear regression (squared error); 
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The second part: L1 penalty, where λ controls how strong the penalty; 

Βj are the model’s coefficients. 

To assess the accuracy, reliability, and generalization ability of the developed ML model, a comprehensive 

evaluation was conducted using multiple statistical performance metrics across the training, testing, and 

validation datasets. For this four key metrics were utilized to evaluate model performance: 

• Mean Absolute Error (MAE): Represents the average absolute difference between predicted and actual 

thickness values. The empirical formula for MAE is presented in Equation 2.  

                                                                                 MAE =
1

𝑛
∑ ∣ 𝑦𝑖 − 𝑦̂𝑖 ∣𝑛

𝑖=1  (2) 

• Mean Absolute Percentage Error (MAPE): Measures the prediction error as a percentage, making it easier 

to interpret and compare across different thickness magnitudes. The expression is as: 

                                                                                 MAPE =  
100% 

𝑛
 ∑ ∣

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
∣𝑛

𝑖=1  (3) 

• Root Mean Squared Error (RMSE): Provides a penalized measure of average error, more sensitive to larger 

deviations. The empirical expression for RMSE is: 

                                                                                  RMSE = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1  (4) 

• Coefficient of Determination (R² Score): Indicates the proportion of variance in the actual data that is 

predictable from the input features and it is mathematically expressed as: 

                                                                                         𝑅2 =  1 − 
∑(𝑦𝑖−𝐲̂𝑖)2

∑(𝑦𝑖−𝑦̅𝑖)2 (5) 

 

Fig 1: Steps involved in ML model 

Import libraries 

Load and prepare data set 

Spilt the data into train and test set 

Standardize the features 

Train Lasso regression model 

Make prediction 

Evaluate the model 
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RESULT AND DISCUSSION 

This section presents a comprehensive analysis of the machine learning model’s predictive performance, 

the influence of various deposition parameters, and insights derived from both model behavior and 

experimental validation. Test-train-split function is used in this prediction model in which 75% of the 

data is used to build our ML model called training data and it is shown in Table 1 for different material 

and remaining 25% data will be used to assess how well the model works, this is called test data shown in 

Table 2. 

 

                                     Table 1: Comparison of deposition thickness of different material (training data). 

Material 

Molar 

Concentration 

(M) 

Deposition 

Time  

(Sec) 

Fringes 

Predicted 

Thickness 

(µm) 

Actual 

Thickness 

(µm) 

Error 

(µm) 

% 

Error 

CdS 0.06 60 11 3.478 3.40 0.002 0.057 

CdS 0.04 45 8 2.536 2.531 0.005 0.19 

CdS 0.08 60 13 4.105 4.113 0.008 0.19 

CdS 0.08 30 8 2.536 2.531 0.005 0.19 

CdS 0.06 90 14 4.419 4.429 0.010 0.22 

CdS 0.04 30 5 1.595 1.582 0.013 0.82 

CdS 0.06 30 6 1.909 1.898 0.011 0.57 

CdS 0.08 90 17 5.360 5.378 0.018 0.33 

CdS 0.04 60 10 3.164 3.164 0.000 0.00 

CdS 0.06 75 12 3.791 3.796 0.005 0.131 

CdS 0.06 10 4 1.281 1.265 0.016 1.26 

CdS 0.06 45 9 2.850 2.847 0.003 0.105 

CdS 0.08 10 6 1.909 1.898 0.011 0.579 

CdS 0.08 75 15 4.733 4.746 0.013 0.27 

CdS 0.04 90 13 4.105 4.113 0.008 0.19 

CdSe 0.06 70 4 1.292 1.265 0.027 2.13 

CdSe 0.04 60 2 0.645 0.632 0.013 2.05 

CdSe 0.08 70 5 1.630 1.582 0.048 3.03 

CdSe 0.08 45 4 1.316 1.265 0.051 4.03 

CdSe 0.06 90 7 2.297 2.214 0.083 3.74 

CdSe 0.04 45 1 0.316 0.316 0.000 0.00 

CdSe 0.06 45 2 0.652 0.632 0.020 3.16 

CdSe 0.08 90 8 2.732 2.847 0.115 4.03 

CdSe 0.04 70 3 0.975 0.949 0.026 2.73 

CdSe 0.06 80 5 1.639 1.582 0.057 3.6 

CdSe 0.06 15 0 0.000 0.000 0.000 0.00 

CdSe 0.06 60 3 0.981 0.949 0.032 3.37 

CdSe 0.08 15 1 0.328 0.316 0.012 3.79 

CdSe 0.08 80 6 1.974 1.898 0.076 4.00 

CdSe 0.04 90 6 1.962 1.898 0.064 3.37 

Mno2 0.1 120 12 3.782 3.796 0.014 0.36 
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Mno2 0.1 60 7 2.228 2.214 0.014 0.63 

Mno2 0.1 90 10 3.160 3.164 0.004 0.126 

Mno2 0.1 75 9 2.849 2.847 0.002 0.07 

  

                                     Table 2: Comparison of deposition thickness of different material (Testing data) 

Material 

Molar 

Concentration 

(M) 

Deposition 

Time  

(Sec) 

Fringes 

Predicted 

Thickness 

(µm) 

Actual 

Thickness 

(µm) 

Error 

(µm) 

% 

Error 

CdS 0.04 10 3 0.967 0.949 0.018 1.8 

CdS 0.08 45 11 3.478 3.480 0.002 0.05 

CdS 0.08 20 7 2.223 2.214 0.009 0.4 

CdS 0.04 20 4 1.282 1.265 0.017 1.34 

CdS 0.06 20 5 1.595 1.582 0.013 0.82 

CdS 0.04 75 11 3.477 3.480 0.003 0.086 

CdSe 0.04 15 0 0.00 0.00 0.00 0.00 

CdSe 0.08 60 5 1.645 1.582 0.063 3.9 

CdSe 0.08 30 3 0.987 0.949 0.038 4.0 

CdSe 0.04 30 0 0.00 0.00 0.00 0.00 

CdSe 0.06 30 1 0.322 0.316 0.006 1.89 

CdSe 0.04 80 4 1.304 1.265 0.039 3.08 

Mno2 0.1 15 1 0.343 0.316 0.027 8.54 

Mno2 0.1 30 3 0.985 0.949 0.036 3.79 

3.1. Discussion 

Cadmium Sulphide (CdS): Predictions were exceptionally accurate across all datasets. The maximum 

absolute error was 0.018 µm with a minimum percentage error of 0 % and a maximum percentage error 

of 1.26 % with training data. The average training error for CdS thin film is 0.34 % (Table 1).The 

performance of prediction model is very accurate for testing data with a minimum error of 0.05 % and 

maximum error of 1.8 % (Table 2) . The average testing error for CdS thin film is 0.749 %. The uniform 

crystalline nature and well-behaved deposition kinetics of CdS likely contributed to the model’s ease in 

learning these patterns. 

Cadmium Selenide (CdSe): The output of the prediction model closely resembles with experimental 

deposition thickness for CdSe material having minimum percentage error 0 %, maximum percentage 

error 4.03 % and average error for training data is 2.86% (Table 1). The testing data for CdSe thin film 

gives minimum percentage error of 0 %, maximum percentage error of 4 % and average testing error of 

2.145 % (Table 2). 

Magnise die oxide (Mno2): MnO₂ films, although represented by fewer data points, showed reliable 

prediction results, likely due to the simpler and more linear growth behavior of this metal oxide during 

deposition with a minimum error of 0.07 % maximum percentage error of 0.63 % and average error for 

training data is 0.296 % (Table 1). The minimum testing error for Mno2 thin film is 3.79 %, maximum 

testing error is 8.54 % and average testing error is 6.165 % (Table 2).  

3.2. Validation of the Prediction Model 

The predicted deposition thickness by ML model for different material is validated with unseen data 

obtained by double exposure digital holography technique (DEDHI). 
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Cadmium Sulphide (CdS)- For CdS thin film material the predicted deposition thickness is validated 

for deposition at 15 sec for different molar concentrations as shown in Table 3. The prediction model 

predict the thickness of deposition with a minimum error of 0.5% ,maximum error of 1.8% and average 

error of 1.166% . 

Cadmium Selenide (CdSe)- CdSe thin film material is validated at 75 sec of deposition for different 

molar concentrations with experimental deposition thickness as shown in Table 3. The predicted 

thickness having minimum error of 3% and maximum error of 3.9% and average error of 3.46 %  

Magnise die oxide (MnO2)- For MnO2 thin film material the result is validated at 45 sec of 

deposition at 0.1M molar concentration. The predicted thickness by the prediction model produces an 

error of 1.5% as compared to experimental deposition thickness as shown in Table 3. 

                                   Table 3: Validation with experimental deposition thickness. 

Material 

Molar 

concentration 

(M) 

Deposition 

Time  

(sec) 

Fringes 

Predicted 

Thickness 

(µm) 

Actual 

thickness 

(µm) 

Error 

(µm) 

% 

Error 

CdS 0.04 15 3 0.967 0.949 0.018 1.8 

CdS 0.06 15 4 1.281 1.265 0.016 1.2 

CdS 0.08 15 6 1.908 1.898 0.010 0.5 

CdSe 0.04 75 4 1.303 1.265 0.038 3.0 

CdSe 0.06 75 5 1.638 1.582 0.056 3.5 

CdSe 0.08 75 6 1.973 1.898 0.075 3.9 

MnO2 0.1 45 5 1.606 1.582 0.024 1.5 

The comparative overview of training, testing and validation error for each of the three studied materials: Cadmium 

Sulfide (CdS), Cadmium Selenide (CdSe), and Manganese Dioxide (MnO₂) is presented in Table 4. 

Table 4: Comparative overview of training, testing and validation error. 

Material Dataset 
MAE  

(µm) 

MAPE  

(%) 
R2 Score RMSE 

CdS Training 0.007 0.36 0.998 0.00993 

CdS Testing 0.012 0.87 0.999 0.01208 

CdS Validation 0.015 1.16 0.999 0.01505 

CdSe Training 0.016 2.91 0.987 0.05243 

CdSe Testing 0.045 3.24 0.997 0.03407 

CdSe Validation 0.056 3.13 0.949 0.05830 

MnO2 Training 0.011 0.29 0.994 0.01015 

MnO2 Testing 0.021 1.83 0.990 0.03180 

MnO2 Validation 0.024 1.5 0.992 0.02400 

CONCLUSION 

In this study a curated and validated dataset of CBD-deposited thin films which is obtained from DEDHI technique 

was used to predict the thin film thickness of different materials. An error analysis of material-specific deposition 

behaviors were observed. During the experiments material type, molar concentration, deposition time, and optical 

interference fringes of all selected materials are varied and it was already mentioned.  

Based on this study followings are the key conclusions: 
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a) CdS emerged as the most predictable material, offering high confidence for deployment in real-time control 

systems. 

b) CdSe, although slightly more error-prone, remained within usable accuracy margins, especially valuable for 

exploratory or prototyping stages. 

c) MnO₂ results confirmed the model’s ability to generalize, even when trained on a smaller dataset, showing 

promise for adaptation to other metal oxides. 

High accuracy was maintained across short and long deposition durations (15 to 120 seconds). 

CdSe predictions remained within ± 0.08 µm of actual thickness for all samples, which is acceptable for 

optical and sensor applications. 

d) The model managed to adapt well across different deposition durations and concentrations, but minor 

underestimation occurred in high-fringe, high-concentration regions. 

e) Deviations were minimal even in low-concentration and short-time conditions, indicating high model reliability 

for CdS process control. 

f) Fringes and deposition time were dominant factors affecting predictions. 

Future research will focus on expanding the dataset to include additional materials and process parameters, 

incorporating real-time feedback loops, and deploying the model in automated deposition systems for closed-loop 

control. 
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