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Brain tumors pose a crucial medical challenge, requiring prompt and accurate diagnosis for 

effective treatment. Traditional methods, like manual MRI analysis, can be time-consuming and 

susceptible to error. Recent progress in deep learning has led to automated MRI-based tumor 

classification systems. This study explores the use of NASNet-Large, coupled with AutoGluon's 

ImagePredictor and a stacked ensemble learning strategy to classify brain tumors into four 

categories: Glioma, Meningioma, Pituitary tumor, and No Tumor. The model, trained on a 

labeled MRI dataset, achieves an overall accuracy of 98.40% and F1-scores exceeding 96% for all 

tumor types, demonstrating its effectiveness in distinguishing between classes. These findings 

highlight the possibilities of deep learning tools in enhancing medical imaging, reducing 

diagnostic delays, and improving accuracy. However, challenges remain, such as the need for 

larger datasets and ensuring model generalizability across imaging modalities. Future research 

should focus on enhancing the model and integrating it into clinical workflows. 
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INTRODUCTION 

I. Brain Tumors 

A brain tumor is an anomalous growth of cells that originates within the brain's intricate structure or from 

surrounding areas. These tumors may originate directly from neural tissue or neighboring tissues, including cranial 

nerves, the pituitary or pineal glands, or the meningeal membranes encasing the central nervous system [1]. Brain 

tumors are categorized into two types: benign and malignant. Benign tumors, though infrequent, generally display 

features of normal tissue, demonstrate slow growth, and remain localized. Malignant tumors are physiologically 

disruptive and pose therapeutic risks; they comprise cancerous cells capable of uncontrolled proliferation, local 

invasion, and occasional metastasis to distant sites[2]. Brain tumors evolve; therefore, early diagnosis can prevent 

irreparable damage and allow clinicians to treat before the disease progresses [3]. Meningiomas, gliomas, and 

pituitary tumors are the three primary brain tumor forms, each with its unique histology, symptoms, and 

treatment.[4]. Nearly one-third of primary brain cancers begin in the arachnoid mater, one of the three meningeal 

layers protecting the brain and spinal cord [5]. While benign and gradually developing, their consequences can be 

profound. Visual impairment, cognitive issues, and seizures can result from brain compression. The WHO divides 

meningiomas into three histological grades: Grade I, the most common and least aggressive; Grade II, an unusual 

variety with a higher recurrence risk; and Grade III, the malignant type with rapid growth and a poor prognosis. 

[6,7,8]. Neuroimaging, especially MRI, remains the main diagnostic tool. Radiation therapy is used when surgery is 

impractical or the illness returns [9,10, 11]. Neuron metabolism and structure are supported by glial cells, which 

create gliomas. This group accounts for 80% of malignant brain tumors and has a poor prognosis, especially high-

grade ones [12]. Gliomas are classified by glial cell origin: High-grade astrocyte-derived astrocytomas grow quickly, 

while low-grade ones grow slowly. Oligodendrogliomas: Rare oligodendrocyte malignancies have a better prognosis. 

(iii) Glioblastoma Multiforme (GBM): The most aggressive and lethal glioma, it is fast-growing, necroses, and resists 

treatment [13]. Despite surgery, radiotherapy, and chemotherapy (including temozolomide), glioblastomas have a 

median survival rate of under 15 months [14]. Researchers use advanced imaging, molecular profiling (IDH mutant 

status and MGMT promoter methylation), and deep learning algorithms to improve early identification and 

treatment [15]. The pituitary gland, situated close to the base of the brain, regulates hormones and causes pituitary 
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tumors. Unlike gliomas and meningiomas, most pituitary tumors are benign adenomas, but hormonal imbalance can 

have systemic repercussions [17]. Pituitary tumors are characterized by hormone secretion. (i) Functioning 

(Hormone-Secreting) Tumors: These tumors release too many hormones, causing Cushing's disease, acromegaly, 

and prolactinomas. Despite not producing hormones, non-functioning (non-secreting) tumors can compress the 

optic chiasm and induce headaches and visual abnormalities [18, 19]. MRI imaging, hormonal assays, and ocular 

evaluations are usually needed for diagnosis. Pharmacotherapy (e.g., dopamine agonists for prolactinomas), 

transsphenoidal surgery, and radiotherapy may be used depending on the tumor's form and severity [20, 21]. 

II. Brain Tumor Imaging 

Neuro-oncology requires MRI to diagnose brain lesions' structure and function [22]. Based on histology, location, 

cellular constitution, and biological aggressiveness, CNS tumors look different. Radiologists and computer analysts 

need signal intensity, contrast uptake, and structural deformation signatures. Signal variation across MRI sequences 

is key to tumor imaging. Because they invade surrounding tissues and have variable cellular makeup, gliomas have 

uneven boundaries and varying intensities [23,24]. Due to restricted growth and substantial vascularization, 

meningiomas exhibit clear margins and uniform enhancement [25]. Due to their proximity to the cavernous sinus 

and circulatory networks, sella turcica pituitary adenomas worsen post-contrast [26]. Peritumoral edema and bulk 

effect show tumor behavior. Vasogenic edema in infiltrative gliomas raises intracranial pressure and may displace 

midline structures, a radiological finding with clinical significance [27]. Nearby edema often suggests tumor grade 

and malignancy. Cancers differ in texture and fundamental heterogeneity. Glioblastoma multiforme has internal 

complexity, necrosis, micro hemorrhages, and contrast-enhancing rims. The results show blood-brain barrier 

disruption and abnormal vascular growth [28]. The signal profile of lower-grade malignancies and benign lesions is 

more uniform, making them easier to identify from healthy brain tissue. Morphological traits help diagnose. Surgical 

planning benefits from lobulated, symmetric meningiomas that distinguish from surrounding tissues [29]. Gliomas 

impair tumor-parenchyma differentiation, affecting excision and recurrence [30]. Anatomical placement affects 

clinical presentation and imaging. Meningiomas grow on dural surfaces, such the falx cerebri or convexities, while 

pituitary tumors injure the optic chiasm, causing early visual complaints. Gliomas in functionally relevant cortical 

areas can complicate diagnosis and therapy due to little tissue plane limitation [31]. Patterns of contrast enhancement 

improve diagnosis. A necrotic core and active tumor front are seen in high-grade tumors like glioblastomas with 

peripheral ring enhancement [32,33]. Meningiomas improve consistently due to their organized vascular 

architecture. Tumor biology patterns are needed for manual interpretation and computational categorization. 

Radiologists and automated algorithms analyze pictures using signal strength, texture, shape, location, enhanced 

motion, and edema. These features must be characterized to classify cancers and determine treatment and prognosis 

[34]. 

III. Deep Learning and Convolutional Neural Networks 

Initial studies on brain tumor classification predominantly utilized traditional machine learning techniques alongside 

manually crafted feature extraction methods. Researchers extracted discriminative features, including textural 

patterns, morphological contours, and intensity-based statistical metrics, from structural and functional 

neuroimaging modalities, specifically MRI and CT scans [35]. Techniques like Gray-Level Co-occurrence Matrices 

(GLCM) and multi-resolution wavelet decompositions were essential for encoding tumors' spatial and spectral 

characteristics [36, 37]. In initial studies, handcrafted representations were utilized as inputs for classical classifiers, 

such as Support Vector Machines (SVMs) and ensemble-based Random Forests, showing moderate diagnostic 

accuracy [38]. Although initially effective, these methods faced inherent limitations, particularly their reliance on 

domain expertise for feature selection. The manual extraction of descriptors frequently did not capture the intricate 

heterogeneity and nuanced phenotypic variations in neoplastic tissue, resulting in inadequate generalization across 

diverse patient cohorts. The labor-intensive characteristics of feature engineering pose scalability issues, especially 

in extensive multi-institutional studies. Deep learning, particularly Convolutional Neural Networks (CNNs), has 

significantly transformed medical image analysis [39]. Convolutional Neural Networks (CNNs) acquire hierarchical 

and diagnostically significant features from pixel-level data, eliminating the necessity for heuristic feature design and 

improving classification accuracy and robustness [40]. This method utilizes data analysis to reveal hidden 

pathological signatures that may be overlooked in manual extraction, thus improving the accuracy of distinguishing 
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between tumor subtypes and grades. Transfer learning has enhanced the effectiveness of convolutional neural 

networks in neuro-oncological imaging, mainly due to the limited availability of well-annotated medical datasets [41]. 

Using pre-trained architectures, originally optimized on extensive natural image datasets like ImageNet and later 

fine-tuned on specific neuroimaging data, has led to significant performance improvements, even with limited 

training samples [42]. This strategy utilizes convolutional neural networks' hierarchical feature abstraction 

capabilities (CNNs), employing low-level filters such as edge detectors with broad applicability, while higher-order 

representations are adaptively refined to identify pathological anomalies. These methods address challenges related 

to data scarcity and improve model generalizability across various imaging protocols and scanner manufacturers. 

The shift from manual feature engineering to deep learning highlights a significant trend toward data-centric 

approaches in computational neuropathology. Traditional techniques established the foundation for automated 

tumor analysis. In contrast, modern deep learning frameworks have achieved notable diagnostic accuracy, facilitating 

the development of advanced and scalable clinical decision-support systems [43].  

IV. Advanced Architectures 

NASNet-Large, or Neural Architecture Search Network-Large, is a deep convolutional neural network model 

developed through Neural Architecture Search (NAS), an automated machine learning technique pioneered by 

Google [44]. Unlike traditional CNNs, which are manually designed, NASNet-Large is created via a reinforcement 

learning process that seeks the optimal network architecture, resulting in a highly efficient and scalable model that 

excels in image classification tasks, as shown in benchmarks like ImageNet [45]. The architecture consists of two 

building blocks: normal cells, which preserve spatial dimensions and extract features, and reduction cells, which 

downsample the input to enhance feature depth and abstraction [46]. This modular design allows effective scaling 

while maintaining computational efficiency. In medical imaging, NASNet-Large demonstrates potential, particularly 

for high-precision tasks such as brain tumor classification. Its ability to to derive intricate features from MRI scans 

exceeds simpler models. Moreover, its effectiveness across diverse datasets and support for transfer learning make it 

ideal for medical applications with limited labeled data [47]. Fine-tuning NASNet-Large on brain MRI datasets 

enables researchers to accurately differentiate between tumor types, such as gliomas and meningiomas, with 

improved accuracy [48]. 

The Amazon AutoGluon architecture classifies pictures using its ImagePredictor class within the AutoGluon Image 

module. Data preprocessing, neural architecture selection, hyperparameter adjustment, and model assembly are 

automated [49]. It streamlines deep learning model implementation and competes on medical imaging datasets 

utilizing computer vision [50]. EfficientNet, ResNet, and DenseNet are fine-tuned by AutoGluon's ImagePredictor to 

match smaller medical datasets like MRI scans [51]. This tool generates a robust classifier, as its automated data 

augmentation enhances model generalization, and intelligent hyperparameter adjustment improves training 

performance. AutoGluon's ImagePredictor quickly maps MRI features to brain tumor classification [52]. It connects 

with complex models like NASNet-Large, hybrid, and ensemble systems to boost diagnostic reliability [53]. the 

ImagePredictor automates model training and tuning to construct high-performance deep-learning medical imaging 

models for brain tumor classification [54]. 

Multiple models in the stacked ensemble model increase classification [55]. It trains many base models with diverse 

architectures and feeds their outputs to a meta-model for final predictions [56]. The ensemble uses each model's 

strengths and mitigates its shortcomings to improve accuracy and stability. Stacking simplifies brain tumor 

categorization from medical imaging data [57]. Integration of NASNet-Large with AutoGluon-ImagePredictor 

increases feature learning and optimization. The meta-learner improves the understanding of MRI tumors with these 

models. This method increases tumor appearance, imaging ruggedness, and classification accuracy [58]. Smaller 

medical imaging datasets benefit from stacking ensembles to prevent overfitting. The stacked ensemble model for 

brain tumor diagnosis is fast and accurate [59]. 

V. Research Gap 

Radiologists have traditionally used MRI or CT imaging to identify and classify malignancies. Professional 

radiologists can provide reliable interpretations, but this method is laborious, time-consuming, and subject to 

observer variance, leading to diagnosis inconsistencies [60]. Early in the disease or atypical presentations, tumor 
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morphological changes can be complex to detect [61]. AI is increasingly used to address these issues. It uses complex 

computational models to identify complex picture patterns, often achieving high performance. Deep learning in 

medical image analysis uses Convolutional Neural Networks (CNNs) to detect, segment, and classify cancers with 

exceptional precision [62, 63]. Conventional CNN-based approaches face challenges [64]. Overfitting, in which 

models focus too much on noise or specific qualities in training data, hinders generalization to new cases. In medical 

applications, privacy constraints, high annotation costs, and patient population fluctuation limit labeled data 

availability [65].  

CNN architectures require strong hardware and extended training cycles, which may make them unsuitable for 

clinical settings with low resources [66]. The limited interpretability of deep learning models is a challenge. CNNs 

are commonly seen as opaque models with unclear decision-making procedures despite their high accuracy [67]. 

Healthcare practitioners seeking explainable AI (XAI) to verify model outputs before incorporating them into clinical 

processes are concerned about this issue's ambiguity. Hyperparameter tuning and architecture optimization in deep 

learning pipelines are complicated and require domain knowledge [68]. These issues have led to Automated Machine 

Learning (AutoML) frameworks that simplify model selection, hyperparameter optimization, and feature 

engineering. AutoML reduces manual experimentation to make deep learning applications more accessible and 

efficient [69]. Despite advancements, Deep Learning and Automated Machine Learning in medical settings must be 

tested for robustness, interpretability, computational efficiency, and clinical validation. Continuous research is 

needed to overcome these issues and create efficient, accurate, reliable, and adaptive models for clinical 

circumstances. 

VI. Proposed Solution 

Advanced machine learning methods like NASNet-Large, AutoGluon ImagePredictor, and stacked ensemble models 

develop a resilient and effective brain tumor classification framework that overcomes the limitations of conventional 

diagnostic methods and deep learning. Brain MRI scans are classified into four categories to ensure accurate and 

reliable predictions across varied datasets: Glioma, Meningioma, Pituitary Tumor, and No Tumor. A deep learning 

classification model is developed using AutoGluon ImagePredictor and NASNet-Large, an innovative convolutional 

neural network architecture with superior feature extraction. The automated machine-learning platform simplifies 

model training and optimization. Integrating base learner strengths in stacked ensembles reduces generalization 

errors and improves classification accuracy. A vast collection of MRI brain scans is used to examine tumor-type 

characteristics. Results will be measured by accuracy, precision, recall, and F1-score. The metrics will evaluate the 

model's ability to detect tumors with few false positives and negatives. This study emphasizes early and accurate 

tumor diagnosis and categorization. This method uses deep learning and AutoML to help radiologists and doctors 

diagnose brain cancer early. The main goal is to create non-invasive, automated, and precise diagnostic equipment 

to enhance clinical decision-making, diagnostic duration, and patient outcomes through rapid intervention and 

treatment planning. 

METHODS 

I. Data Collection 

 

This study utilizes publicly available datasets from Kaggle, specifically the "brain-tumor-mri-dataset" and "brain-

tumors-dataset" [70]. These datasets contain MRI scans categorized into four classes: Glioma, Meningioma, Pituitary 

Tumor, and No Tumor. This dataset includes 7,023 images of human brain MRI scans organized into four classes: 

glioma - meningioma - no tumor and pituitary. Figure 1 shows breakdown of the datasets used in present study. 
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Fig. 1. Datasets used in present study 

 

II. Data Processing 

 

The collected MRI scans undergo a series of pre-processing steps to enhance their quality and ensure consistency. 

This includes resizing all images to a uniform dimension (168x168 pixels) to match the input specifications of the 

NASNet-Large model. Further pre-processing steps include grayscale normalization, intensity scaling, and noise 

reduction techniques such as Gaussian filtering. Data augmentation methods, including rotation, flipping, and 

brightness adjustments, are employed to improve model generalization and prevent overfitting. Figure 2 shows the 

data pre-processing steps. 

 

Fig. 2. Data pre-processing. 

III. Feature Extraction 

 

Feature extraction is a fundamental process in the classification of brain tumors, transforming raw MRI data into 

actionable representations for machine learning models. In this research, we employ NASNet-Large, AutoGluon-

ImagePredictor, and a stacked ensemble approach to capture critical spatial, texture, and structural attributes of 

brain tumors. Extracting characteristics helps differentiate glioma, meningioma, and pituitary adenoma. High-

resolution MRI imaging quantifies spatial and structural properties like tumor size by measuring the lesion's pixel 

area in the MRI slice. Tumor shape has important classification insights; geometric measures like circularity and 

aspect ratio help distinguish compact, symmetrical tumors from irregular or infiltrative ones. Smooth or uneven 

tumor boundaries suggest malignancy and invasive potential. Texture-based characteristics capture intra-tumoral 

heterogeneity and tissue composition variations. The traits are caused by tumor intensity fluctuations. We use the 

Gray Level Co-occurrence Matrix (GLCM) to derive statistical parameters including contrast, correlation, energy, and 

homogeneity to determine pixel intensity texture and distribution. Local Binary Patterns (LBP) let the model 

distinguish fine tissue properties by identifying micro-textural details.   
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IV. NASNet-Large 

NASNet-Large, an efficient convolutional neural network architecture, functions as the feature extractor for brain 

tumor classification. This model, after pre-training on large image datasets, can identify intricate patterns and 

structural differences in MRI scans. The final layers of NASNet-Large are fine-tuned on the brain tumor dataset to 

improve classification performance. Figure 3 (a) shows architecture of NASNet-Large while Figure 3 (b) shows 

working of NASNet-Large 

 

(a) 

 

(b) 

Fig. 3. (a) NASNet-Large Architecture (b) Working of NASNet-Large. 

V. Model Selection and Stacked Ensemble 

 

This research employs AutoGluon, an advanced AutoML framework, to enhance the accuracy and efficiency of 

brain tumor classification. This system automates essential steps in the deep learning pipeline, including 

hyperparameter optimization for NASNet-Large and the selection and transformation of features. Automatic 

methods identify critical features and optimize model parameters independently, thereby reducing training time and 

enhancing classification accuracy. AutoGluon enhances model training efficiency by evaluating various 

configurations and architectures to identify the optimal setup for high-performance classification.   
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Stacked ensemble learning models are utilized to boost predictive performance. This ensemble method employs 

multiple base models that utilize MRI features extracted from NASNet-Large. Diverse base models effectively capture 

a variety of data features, thereby minimizing model-specific biases and enhancing generalization. A meta-learner, 

such as logistic regression or gradient boosting, integrates the predictions of these models to produce a final decision. 

This layered structure allows the system to leverage the strengths of each model while mitigating their weaknesses, 

leading to a more robust and precise classification framework for brain tumor detection. Figure 4 shows complete 

workflow of model development. 

 

Fig. 4. Complete model development workflow 

2. RESULTS AND DISCUSSION 

Figure 5 illustrates the confusion matrix of model’s performance across all four classes. The diagonal values indicate 

the number of correctly classified samples per class, and off-diagonal values represent misclassifications. Table 1 

summarizes the model performances. 

 

Fig. 5. Confusion matrix of proposed model 
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Table 1. Model Performance 

Class Accuracy Precision Recall F1-Score 

Glioma 98.88% 99.31% 96.00% 97.63% 

Meningioma 97.62% 96.15% 98.04% 97.09% 

Pituitary 99.07% 98.35% 99.33% 98.84% 

No Tumor 99.57% 99.51% 99.75% 99.63% 

The results demonstrate that the model achieved excellent classification performance, with the highest precision, 

recall, and F1-scores for the No Tumor and Pituitary Tumor classes. Further, Training and validation accuracy/loss 

curves (Figure 6) indicate that the model converged smoothly, with minimal overfitting. The validation accuracy 

peaked at 98.40% at epoch 17, demonstrating the model's strong generalization capability. The loss plots for both 

training and validation sets show a consistent decline, affirming that the model was trained stably. At the final epoch, 

the training accuracy was approximately 99%, and the validation loss was around 0.05, indicating robust training 

results. 

 

Fig. 6. Training and validation loss curves 

Further, the MRI slices classified by the model were visually inspected, and Grad-CAM (Gradient-weighted Class 

Activation Mapping) was applied to analyze the model's focus during classification. The model demonstrated high 

spatial accuracy in tumor identification. For example, glioma cases showed distinct tumor boundaries, and the 

distinction between No Tumor and tumorous cases was clear, based on texture and contrast patterns. Moreover, the 

model maintained high consistency across different MRI views, including sagittal, coronal, and axial orientations, as 

illustrated in Figure 7. The model's improved performance is due to the comprehensive multi-scale data sourced from 

MRI scans via NASNet-Large and the hyperparameter optimization executed by AutoGluon ImagePredictor, which 

enhanced training efficiency. The stacked ensemble learning strategy combines the advantages of various base 

models to improve classification predictions. The classification task illustrates that our method accurately 

distinguishes between various types of brain tumors, achieving high precision and recall. Medical diagnostics require 

minimizing both false positives and false negatives. Ensemble models exhibit enhanced accuracy and robustness 

relative to baseline models. Grad-CAM interpretability improves transparency, which is crucial in therapeutic 

contexts where trust and explainability are important. 
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Fig. 7. Model prediction 

To further evaluate the model’s discriminative ability, we computed the Receiver Operating Characteristic - Area 

Under the Curve (ROC-AUC) scores along with Precision-Recall (PR) curves. Figure 8 (a) shows the ROC-AUC 

analysis, with scores for each class computed using a one-vs-rest approach. The model exhibited excellent separability 

across all tumor types, achieving ROC-AUC scores of 0.993 for Glioma, 0.991 for Meningioma, 0.995 for Pituitary 

Tumor, and 0.998 for No Tumor, resulting in a mean ROC-AUC score of 0.9943. This demonstrates the model's 

robustness and strong ability to distinguish between tumor and non-tumor classes. Figure 8 (b) displays the 

Precision-Recall (PR) curve analysis, with the Area Under the Precision-Recall Curve (AUPRC) values for each class 

as follows: 0.985 for Glioma, 0.978 for Meningioma, 0.990 for Pituitary Tumor, and 0.996 for No Tumor. These PR 

curves indicate high precision and recall across all tumor types, which is essential for minimizing false positives and 

false negatives in clinical applications. 

 

Fig. 8. (a) ROC-AUC Analysis. (b) Precision-Recall curve analysis 
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t-SNE was utilized to visualize the learned feature representations in the feature space. Figure 9 presents an t-

SNE plot that accurately depicts high-dimensional data in a reduced-dimensional space, emphasizing distinct 

differences among tumor classes. The minimal overlap among the various tumor types suggests that the model 

effectively delineated unique characteristics for each category. This visualization demonstrates the efficacy of the 

feature extraction process and the model's capacity to distinguish among different tumor categories.  

The model's deployment potential was assessed through testing on unseen samples, resulting in an average 

inference time of 0.07 seconds per image and a model size of approximately 275 MB following quantization. The 

findings validate the model's appropriateness for incorporation into lightweight clinical diagnostic tools or mobile 

MRI viewing systems. The model exhibited improved real-time inference capabilities, achieving an inference speed 

that aligns with acceptable standards for clinical applications. The assessment of the system on edge devices and 

GPUs revealed strong compatibility with current hospital PACS systems. 

 

Fig. 9. t-SNE feature space visualization 

To compare our model against existing approaches, we compared its performance with recent studies in brain tumour 

classification. Table 2 summarizes the performance metrics of these models. 

Table 2. Comparison of proposed method to existing literature 

Study Model Dataset Accuracy (%) Notes 

Tandel et al. 

(2025) [71] 

DL-MajVot 

(AlexNet, VGG16, 

ResNet50) 

Multiple Datasets 96.51 Applied majority voting 

ensemble across different 

architectures to boost 

classification performance. 

Chen et al. 

(2024) [72] 

Feature Fusion Figshare Dataset 99.18 Enhanced performance via 

feature fusion techniques. 

Incir and 

Bozkurt (2024) 

[73] 

Inception V3 MRI Dataset 96.70 Effective classification 

achieved using the Inception 

architecture. 

Kaifi (2024) 

[74] 

13-layer CNN Benchmark Dataset 97.20 Proposed a lightweight 

architecture for efficient 
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classification with minimal 

computational cost. 

Khan and 

Auvee (2024) 

[75] 

Custom CNN Br35H & Brain 

Tumor MRI Dataset 

98.09 Focused on developing a 

resource-efficient architecture 

suitable for real-time 

applications. 

     

Zahoor & Khan 

(2024) [76] 

Res-BRNet Kaggle & Figshare 

Datasets 

98.22 Employed regional-based 

feature extraction to improve 

classification accuracy. 

Altwijri et al. 

(2022) [77] 

Custom CNN Kaggle MRI Dataset 99.3 Focused on distinguishing 

between normal and tumorous 

brain images. 

Díaz-Pernas et 

al. (2021) [78] 

Multiscale CNN Public MRI Dataset 97.30 Inspired by the human visual 

system to enhance feature 

extraction capabilities. 

Proposed 

Study 

NASNet-Large + 

AutoGluon + 

Stacked Ensemble 

Kaggle Brain Tumor 

MRI Datasets 

98.40 Utilized advanced ensemble 

learning with automated 

hyperparameter tuning for 

enhanced performance. 

The classification of brain tumors is a vital component of contemporary medical imaging and diagnostic research, 

essential for enabling timely diagnosis, evaluating prognosis, and planning effective treatment strategies. Tumor 

classification enables physicians to differentiate between types that may show similarities on MRI scans. Timely and 

precise tumor subtyping influences patient survival and quality of life. Deep learning, particularly convolutional 

neural networks (CNNs), has significantly improved medical image analysis through the automation of feature 

extraction from raw data, thereby improving brain tumor classification. LeNet-5 established a foundational 

framework; however, subsequent architectures such as AlexNet, VGGNet, ResNet, InceptionNet, and EfficientNet 

have demonstrated enhanced accuracy through greater depth and distinctive designs. A modified VGGNet 

architecture demonstrated improved accuracy compared to traditional methods. The application of pre-trained 

models such as AlexNet for transfer learning is effective in adapting to medical datasets when data availability is 

limited. This approach enhances model convergence and accuracy. Data augmentation techniques, such as rotation 

and scaling, mitigate issues related to limited sample sizes and class imbalances, thereby enhancing model 

robustness. Despite advancements, challenges like overfitting and limited generalizability remain, underscoring the 

necessity for additional research to enhance deep learning methods for brain tumor detection and classification. 
 

CONCLUSION 

Brain tumor identification is difficult, requiring quick action and better outcomes. Traditional diagnostic methods, 

such manual MRI analysis, are time-consuming, subjective, and inaccurate. Recent deep learning advances have 

enabled automatic and accurate MRI-based brain tumor classification systems. Convolutional neural networks 

(CNNs) classify brain malignancies into glioma, meningioma, pituitary tumor, and no tumor. Precision, recall, F1-

score, and accuracy metrics are applied to a labeled MRI dataset to evaluate the proposed model. Experimental 

results show 98.40% accuracy and F1-scores above 96% across all tumor types, supporting the model's tumor 

classification. The findings show that deep learning-based diagnostic tools increase medical imaging interpretation, 

diagnostic delays, and accuracy. CNN architectures aid radiologists and healthcare workers in clinical decision-

making with this automated, non-invasive tumor detection method. Comprehensive and diversified datasets, model 

generalizability across imaging modalities, and clinical workflow integration remain important. Future study must 

enhance, integrate explainability methodologies, and validate clinical usefulness of the model. 
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