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In the paper presented, a mathematical framework has been formulated on the basis of the 

FRICE Model to allow the evaluation of accountability in AI systems across five dimensions of 

assessment-Fairness, Robustness, Impact, Compliance and Explanatory Effectiveness-

becoming necessary currently. The framework proposed here focuses on algorithmic 

assessment methods to ensure transparency, reliability and ethical governance in AI-based 

decision-making processes. Accountability score computation in the FRICE model employs a 

structured mathematical method, such as fairness-by Statistical Parity Difference (SPD) and 

Equal Opportunity Difference (EOD)-robustness by adversarial accuracy tests-impact by 

positive and negative outcome assessments-compliance and explanatory effectiveness. These 

features embed the principles of ethics into the system by ensuring compliance with legal 

stipulations and clarity in decision explanations. This framework takes weighted aggregation 

techniques incorporating parameters into account and translates them into a holistic 

accountability score, reflecting the performance of the system as a whole. Each parameter is 

presented together with its detailed formulas to ensure reproducibility and adaptation to 

various AI applications. Trade-offs will equally hinge on how ethical considerations are deeply 

integrated into the designs with fairness, inclusivity, and transparency to mitigate biases and 

ensure equitable results. 
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INTRODUCTION 

Artificial intelligence (AI) systems are increasingly relied upon in high-stakes decision-making, raising the need 

for accountability. AI accountability ensures that systems reliably align with societal and ethical standards while 

minimizing harm. AI accountability plays a critical role in guiding the ethical, reliable, and sustainable development 

and deployment of AI systems across various global domains. With AI systems becoming pervasive in industries such 

as healthcare, finance, education, and government, ensuring accountability directly addresses key societal, legal, and 

ethical concerns while aligning with global AI trends. 

A comprehensive body of work exists identifying methodologies for AI accountability across traceability 

mechanisms, failure analysis, and external oversight, but most contributions focus on conceptual frameworks ([1, 6, 

4]) and tool proposals ([3, 8, 18]) rather than validated, scalable real-world implementations, with critical gaps in 

standardization, integration, and practical failure analysis approaches ([5, 10, 4]). 
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KEY REASONS WHY AI ACCOUNTABILITY IS CRUCIAL IN GLOBAL TRENDS 

A. Building trust and encouraging responsible AI adoption 

Accountability fosters trust by promoting transparency, interpretability, and robust performance of AI systems. 

Users and stakeholders are more likely to adopt AI solutions when they understand how decisions are made, and 

safeguards are in place to address adverse outcomes [1, 3]. Frameworks like CERTIFAI, which provide fairness, 

robustness, and transparency evaluations, are examples of accountability mechanisms designed to improve 

stakeholder confidence in AI [1, 2]. 

B. Addressing ethical concerns, bias and discrimination 

Accountability mechanisms mitigate systemic bias and unfair outcomes by ensuring fairness and equity in AI 

decision-making. This is particularly critical in high-stakes applications such as hiring, credit scoring, and criminal 

justice, where biased models can create discriminatory outcomes [8, 11]. Tools like causal fairness frameworks (e.g., 

Structural Causal Models) provide formal methodologies to detect and address discrimination while adhering to 

ethical and societal norms [8, 14, 19]. 

C. Ensuring legal compliance across jurisdictions 

Global AI regulations, such as the European Union’s AI Act, the General Data Protection Regulation (GDPR), and 

emerging U.S. algorithmic accountability laws, necessitate the alignment of AI systems with legal requirements, 

including transparency, fairness, and explainability [18, 13]. Accountability frameworks that incorporate legal 

compliance, such as by evaluating fairness under disparate impact scenarios, are necessary for AI systems operating 

in multiple regulatory environments [14, 19]. 

REVIEW OF LITERATURE 

A major leap in this domain has been the development of model-agnostic frameworks that assess multiple 

accountability principles in a unified manner: 

1. CERTIFAI ([1, 2]): Combines fairness assessment, robustness evaluation (via CERScore), and counterfactual 

reasoning for explainability into an integrated auditing framework. CERTIFAI is applicable to black-box models 

and supports fairness-sensitive applications. 

2. ComplAI ([3, 4]): Introduces a "Trust Factor," a composite metric evaluating fairness, robustness, explainability, 

and susceptibility to drift. It facilitates comparison and improvement of accountability across diverse machine 

learning models. 

3. AVOIR ([18]): Focuses on fairness auditing in real-time by monitoring runtime violations of fairness metrics, 

connecting accountability with adaptive system evaluation. 

These frameworks signify a shift from the siloed exploration of fairness, robustness, and explanation toward 

comprehensive accountability metrics. However, none fully address all five principles (e.g., legal compliance or 

societal impact). 

State of the Art: Emerging Techniques Fairness and Explainability Synergies Recent developments target hybrid 

approaches to integrate multiple principles: 

Fairness-aware explanations ([6, 7, 11]): Novel methods like fairness explanation metrics or optimal transport 

apply fairness constraints while producing transparent explanations. 

Causal Fairness Models ([8, 14]): Structural causal models provide fairness-aware explanations and compliance 

diagnostics, aligning accountability with real-world norms. 

Year Contribution to Accountability Models 

2018 
Datasheets for Datasets (Gebru et al.): Introduced dataset-level traceability for 

transparency [15]. 

2019 
FactSheets (IBM Research): Proposed complete documentation for AI systems' 

purpose, performance, provenance, and adjustments [11]. 

2020 
SMACTR Framework: Lifecycle audit model focusing on traceability and ethical 

foresight [6]. 
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2020 
GAF (Global-view Accountability Framework): Framework targeting liability for 

automotive systems and insurance [1]. 

2021 
Traceability Reviews (Kroll, W3C PROV Extensions): Systematic review of 

metadata standards and challenges [9, 10]. 

2021 
Algorithm Audit Framework (Brown et al.): Stakeholder-driven ethical audits for 

governance [16]. 

2022 
Knowledge Graphs for Accountability (Naja et al.): Expanded traceability scope 

using semantic structures [8]. 

2023 
LLM-Specific Auditing Frameworks (Floridi): Introduced three-layered audits for 

large language models [4]. 

2024 
Criterion Audit Framework (Lam et al.): Structured auditing approaches to govern 

decisions in hiring systems [2]. 

2024 
Continuous Auditing Model (AuditMAI): Framework for real-time auditing 

infrastructure across the AI lifecycle [18]. 

2018 
Datasheets for Datasets (Gebru et al.): Introduced dataset-level traceability for 

transparency [15]. 

2019 
FactSheets (IBM Research): Proposed complete documentation for AI systems' 

purpose, performance, provenance, and adjustments [11]. 

Table 1. Trend: Growing focus on regulations and standardization 

PROPOSED FRAMEWORK 

Accountability Score Calculator 

Proposed FRICE formula to compute an overall accountability score for AI model. 

Key Components of the FRICE Formula 

1. Fairness: Measures the equitable treatment of different groups. 

2. Robustness: Assesses how well the model performs under adversarial or noisy conditions. 

3. Impact: Captures the societal and ethical effects of deploying the AI system. 

4. Compliance: Ensures adherence to regulatory and ethical guidelines. 

5. Explanatory Effectiveness: Evaluates the quality and coverage of explanations provided by the system. 

Each parameter is weighted to reflect its relative importance in the overall accountability score. The weights are 

configurable and must sum to 1. 

 

Fig. 1. System Architecture 

Defining the Parameters: 

The presented flowchart demonstrates a hybrid system architecture designed for the calculation of accountability 

scores within an AI accountability framework. The system integrates two primary processes: a rule-based Algorithm 

and an AI model for prediction of missing values. The flowchart follows these structured steps: 
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1. User Input Data: The process begins with user-provided input data, which may include partial or complete 

information about the key parameters necessary for accountability score computation. 

2. Data Completeness Check: A decision node verifies the completeness of the input data: 

Yes Path: If the data is complete, the system proceeds directly to the next module. 

No Path: If the data is incomplete, the AI model is invoked to predict the missing parameters. 

3. AI Model Predicts Missing Values: The AI model uses a trained regression approach to impute missing 

parameter values based on learned relationships from historical data. The predicted values are fed into the 

next module for accountability score computation. 

4. Algorithm Accountability Score Calculator: The Python-based accountability calculator takes the available 

and predicted parameters as inputs and calculates the accountability score using the FRICE formula, which 

incorporates Fairness (F), Robustness (R), Impact (I), Compliance (C), and Explanatory Effectiveness (E). 

5. Accountability Score Output:The final accountability score is generated and presented as the output. This 

score reflects the holistic evaluation of the system's fairness, robustness, impact, compliance, and explainability. 

D. Algorithms for FRICE Formula: 

Algorithm Calculate_FRICE_Score: 

 Input: F, R, I, C, E  // Fairness, Robustness, Impact, Compliance, Explanatory Effectiveness 

 Input: W_F, W_R, W_I, W_C, W_E  // Weights for FRICE parameters 

 Output: A  // Accountability Score 

 

Step 1: Initialize weights such that W_F + W_R + W_I + W_C + W_E = 1 

Step 2: Check if F, R, I, C, E ∈ [0, 1] 

If any parameter is not in range [0, 1], return “Invalid Input” 

Step 3: Compute weighted contributions: 

Fairness_Contribution← W_F * F 

Robustness_Contribution← W_R * R 

Impact_Contribution← W_I * I 

Compliance_Contribution← W_C * C 

Explanation_Contribution← W_E * E 

Step 4: Calculate Accountability Score: 

A←Fairness_Contribution + Robustness_Contribution+ Impact_Contribution + Compliance_Contribution+ 

Explanation_Contribution 

Step 5: Return A 

End Algorithm 

E. Defining the Parameters 

1) Fairness[2]: 

Fairness[2] (F) in the context of AI accountability ensuresthat the model treats different groups equitably in 

terms of outcomes and opportunities. It is calculated using two key metrics: Statistical Parity Difference (SPD)[2] 

and Equal Opportunity Difference (EOD)[2]. 
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Metrics: 

a) Statistical Parity Difference (SPD)[2] : 

Measures the difference in positive outcome rates between two groups (G=a and G=b) 

Formula: SPD=∣P(Y=1∣G=a)−P(Y=1∣G=b)∣ 

Examples: 

• Group A (men) and Group B (women) apply for loans. 

• P(Y=1∣G=a): Proportion of men approved for loans. 

• P(Y=1∣G=b): Proportion of women approved for loans. 

• SPD = 0: Perfect fairness; equal approval rates. 

• SPD = 0.2: Significant disparity; unfair. 

b) Equal Opportunity Difference (EOD) [2]: 

Measures the difference in true positive rates (TPR) across groups. 

Formula: EOD=∣TPR(G=a)−TPR(G=b)∣ 

TPR=True Positives+(False NegativesTrue Positives) 

Examples: 

• Group A (men) and Group B (women) apply for jobs. 

• TPR(G=a): Proportion of qualified men hired. 

• TPR (G=b): Proportion of qualified women hired. 

• EOD =0: Perfect fairness; equal hiring rates. 

• EOD = 0.15: Significant disparity; unfair. 

Normalization: 

To normalize F and ensure it lies between 0 and 1: 

• F=1−max(SPD,EOD) 

• F=1: Perfect fairness. 

• F=0 Maximum unfairness. 

2) Robustness[3]: 

Robustness [3](R) is a critical parameter to assess how well an AI model performs under varying conditions, 

such as adversarial attacks, noisy inputs, or small perturbations in the input data. It ensures that the model's 

predictions remain reliable and consistent even in non-ideal scenarios. 

Metrics: 

a) Baseline Accuracy (BA) [3] 

Measures the fraction of correct predictions on clean (non-adversarial) data. 

Formula :  BA=Total Predictions/Correct Predictions 

b) Adversarial Accuracy (AA)[3] 

Measures the fraction of correct predictions when the model is subjected to adversarial perturbations. 

Formula: AA=Total Adversarial Predictions/Correct Adversarial Predictions 
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c) Combined Robustness Score (R) [3] 

Combines baseline accuracy and adversarial accuracy to provide a unified measure of robustness. 

Formula: R=(BA+AA) /2 

Normalization of Robustness: 

To ensure consistency and comparability, the robustness score can be normalized using Min-Max scaling: 

Rn=(R−Rmin) (Rmax−Rmin) 

3) Impact[4] 

Impact[4] (I) evaluates the societal and ethical consequences of deploying an AI model. It captures both positive 

contributions (e.g., enhancing user experience, societal benefit) and negative effects (e.g., harm, bias, or risks). 

The overall impact is a normalized score ranging from 0 to 1. 

Terms in Impact Calculation: 

a) Positive Impact Score (PI) [4]: 

Measures the proportion of positive effects produced by the model. 

Formula: PI=Positive Effect Count/Total Effect Count 

b) Negative Impact Score (NI)[4]: 

Measures the proportion of negative effects produced by the model. 

Formula: NI=Negative Effect Count/Total Effect Count 

c) Maximum Possible Impact (Max Impact)[4]: 

A constant representing the maximum theoretical impact of the system. 

Default is often set to 1 for normalization. 

d) Impact Score (I): 

Combines PI[4] and NI[4] into a single normalized score. 

Formula: I=(PI−NI)/Max Impact 

4) Compliance:[2] 

Compliance[2] (C) measures the adherence of an AI system to regulatory, ethical, and industry standards. It 

ensures that the system operates within the defined legal and ethical frameworks, thereby safeguarding users' 

rights and societal norms. 

Terms in Compliance 

a) Compliance Score (C)[2] : 

A normalized or discrete score indicating the degree of compliance. 

b) Binary/Discrete Scoring: 

C=1: Fully compliant with all regulations. 

C=0.5: Partially compliant, meeting some but not all requirements. 

C=0: Non-compliant. 

c) Checklist-Based Assessment[2] : 

A list of compliance requirements (e.g., GDPR, CCPA, ISO standards) is evaluated. 

Compliance is calculated as the fraction of requirements met:  

C=Number of Compliant Items/Total Number of Items 
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5) Explanatory Effectiveness  

Explanatory Effectiveness[1] (E) evaluates how well an AI system provides explanations for its decisions. It 

measures two key aspects: Coverage[1]and Effectiveness[1]. 

Terms in Explanatory Effectiveness 

a) Tool Coverage (Coverage)[1]: 

The proportion of decisions for which the system provides explanations. 

Formula: Coverage=Decisions with ExplanationsTotal Decisions 

b) Tool Effectiveness (Ef)[1]: 

Evaluates the quality of the explanations, typically using surveys, expert feedback, or clarity metrics. 

Scored on a scale from 0 to 1 based on responses or evaluations. 

c) Overall Explanatory Effectiveness (E)[1]: 

Combines Coverage and Effectiveness into a single metric. 

Formula: E=0.5⋅Coverage+0.5⋅Effectiveness 

6) Accountability Score Calculation 

Objective: 

Aggregate the five parameters into a single accountability score. 

Steps: 

Formula: 

• A=w_F*F+w_R*R+w_I*I+w_C*C+w_E*E 

• wF,wR,wI,wC,wE Weights for each parameter (sum to 1). 

• Each parameter (F,R,I,C,E) is normalized to [0, 1]. 

Normalization: Ensure A is within [0, 1]: 

A=min(1,max(0,A)) 

 Output: 

The accountability score provides a holistic assessment ofthe AI model. 

REMAINING GAPS AND CHALLENGES 

 Incorporation of Impact: While societal and environmental impacts are significant, these remain poorly 

quantified in technical methodologies. Tools measuring long-term effects of AI decisions require further 

development. 

Legal and Ethical Compliance: Techniques directly connecting accountability systems to compliance with diverse 

legal standards (GDPR, algorithmic accountability laws) need formalization and extensibility. 

Scalability to Complex Models: Applying accountability methods to deep learning and multimodal models (e.g., 

transformers, generative AI) remains a challenging and underexplored field. Hybrid techniques like fairness-aware 

explanations may need adaptation for these models. 

Dynamic Systems: Existing methods do not robustly address accountability in evolving AI models, such as those 

used in reinforcement learning or adaptive environments subject to continual learning. 
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CONCLUSION 

The paper concludes by presenting the FRICE framework as a comprehensive model for evaluating AI 

accountability across five key dimensions: Fairness, Robustness, Impact, Compliance, and Explanatory 

Effectiveness. The framework ensures transparency, reliability, and ethical governance in AI systems by employing 

structured mathematical methods and weighted aggregation techniques. The proposed accountability score 

computation enables reproducibility and adaptability for diverse applications, addressing societal, legal, and ethical 

concerns while fostering trust, mitigating biases, and promoting equitable and responsible AI adoption. This 

framework emphasizes the integration of ethics into AI design, ensuring compliance with legal standards and clarity 

in decision-making processes. 
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