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Forecasting stock market trends are a difficult endeavor because of the intricate interrelations 

and ever-changing characteristics of financial markets. This paper presents the Differential 

Graph Transformer (DGT), a novel deep learning model that integrates temporal attention with 

differential graph attention methods to understand time-series dynamics and interstock 

relations. Utilizing global and local correlation matrices based on mutual information and 

Pearson coefficients, the DGT surpasses conventional models in forecasting stock prices. 

Experiments performed on the S&P500 dataset indicate that the DGT results in a 13.5% lower 

Root Mean Squared Error (RMSE) and a 12.2% reduction in Mean Absolute Error (MAE) when 

compared to baseline GRU models. Significantly, the DGT utilizing local mutual information 

matrices demonstrates the highest performance, validating its capacity to accurately model 

short-term interstock dependencies. This research highlights the capability of differential 

attention mechanisms in enhancing stock market predictions. 

Keywords: Prediction; Stock Market; Differential Graph Transformer (DGT); Time-Series; 

Stock Prices 

 
INTRODUCTION 

The stock market is an ever-changing and intricate system shaped by multiple interconnected elements, such as 

market sentiment, worldwide economic trends, and the performance of individual companies. Accurately 

forecasting stock prices continues to be a major challenge, since conventional methods frequently overlook the 

complex nonlinear dynamics among stocks. Models like ARIMA and LSTM have been extensively utilized to 

examine temporal dependencies in stock prices, but they do not fully account for interstock relationships 

comprehensively[1-3]. 

Graph Neural Networks (GNNs) have arisen as an effective mechanism to depict relationships among stocks by 

illustrating the market as a graph in which nodes represent stocks and edges reflect their correlations. Nonetheless, 

traditional GNNs have constraints in their capacity to accurately model temporal dynamics[4-6]. To overcome this 

limitation, researchers have progressively adopted hybrid models that combine time-series and graph-oriented 

learning methods. 

This research presents the Differential Graph Transformer (DGT), an innovative deep learning framework aimed at 

capturing temporal and spatial relationships in stock market data. The DGT facilitates a deeper comprehension of 

stock market dynamics by integrating temporal attention mechanisms with differential graph attention[6-9]. 

Incorporating global and local correlation matrices obtained from mutual information and Pearson coefficients 

improves the model's capability to reveal intricate relationships among stocks. 
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This paper examines the effectiveness of the DGT in predicting stock prices, using the S&P500 dataset as a case 

study. The dataset comprises daily stock prices for 472 firms, along with correlation matrices that measure 

interstock connections on both global and local levels. The findings show that the DGT considerably surpasses 

conventional models, like GRU, regarding both Root Mean Squared Error (RMSE) and Mean Absolute Error 

(MAE). 

This research offers two main contributions. Initially, it introduces a novel model structure that connects time-

series analysis with graph-based learning. Secondly, it offers empirical proof of the efficiency of differential 

attention mechanisms in enhancing the accuracy of stock market predictions. These results create new 

opportunities for research and practical uses in financial modeling. 

LITERATURE SURVEY 

Forecasting stock prices has become an essential research domain owing to its substantial influence on investment 

tactics and financial choices. Scholars have investigated numerous approaches to forecast stock price changes, 

ranging from classic methods such as technical and fundamental analysis to sophisticated machine learning and 

deep learning algorithms. Throughout the years, models including support vector machines, random forests, and 

deep learning methods like LSTM, CNN, and transformers have shown significant advancements in forecasting 

stock trends by identifying intricate patterns and time-related dependencies in market information. Moreover, the 

incorporation of sentiment analysis, macroeconomic indicators, and technical indicators has further improved 

prediction accuracy. Even with these developments, forecasting stock prices continues to be a difficult endeavor 

because of the significant volatility, non-linear behavior, and unpredictability inherent in financial markets. 

Nonetheless, continual advancements in computational capabilities and algorithmic strategies persist in expanding 

the limits of stock price forecasting, providing opportunities for enhanced decision-making in the finance sector. 

Shaban et al. [10] have proposed a hybrid deep learning method that integrates Bidirectional Gated Recurrent Unit 

(BiGRU) and Long Short-Term Memory (LSTM) networks for predicting stock market prices, aiming to tackle 

issues like data noise and limited fluctuations. This approach prepares data by cleaning, selecting features, and 

normalizing it prior to forecasting closing prices. Test results showed that the model outperformed conventional 

LSTM and GRU techniques, reaching impressive accuracy benchmarks, featuring an RMSE of 0.2883 and an R² of 

0.9948, on data sourced from IBM, Google, and Apple. Furthermore, the research presented a Smart Trading 

Platform (STP) designed to enable real-time, affordable, and accessible trading, providing features such as technical 

charts, analytical insights, and live alerts. This method highlights the possibilities of hybrid models and user-

focused platforms in boosting prediction precision and increasing trading effectiveness. 

Smith et al. [11] utilized Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNN) to forecast the daily 

closing prices of Amazon Inc. stock, demonstrating their capability to model intricate financial time series data. The 

research examined how different hyperparameters affected the model's predictive accuracy, with optimized training 

resulting in a root mean squared error (RMSE) of 2.51 and a mean absolute percentage error (MAPE) of 1.84%. By 

efficiently identifying trends and variations, LSTM-RNN models show considerable promise for stock market 

forecasting tasks, providing tangible benefits for investors and financial organizations. This study highlights the 

significance of predictive modeling in fluctuating market conditions, facilitating informed choices and risk 

management. 

Pawar et al. [12] have utilized Recurrent Neural Networks (RNN) alongside Long Short-Term Memory (LSTM) cells 

for predicting stock markets and managing portfolios, making use of historical stock data in a time-series format. 

This method was evaluated alongside conventional machine learning models, such as Regression, Support Vector 

Machines, Random Forest, Feed Forward Neural Networks, and Backpropagation. The research examined different 

metrics and architectures of the LSTM-RNN model to assess performance, emphasizing its capability to understand 

temporal dependencies more efficiently. Furthermore, the study examined how customer sentiment and changing 

market trends affect stock performance, highlighting the need to integrate sentiment analysis with historical data 

for more thorough predictions. 

Recurrent Neural Networks (RNNs) present promising methods for tackling the intricacies of stock price prediction 

as discussed by Agarwal et al., [13], a difficult endeavor affected by factors like economic indicators, geopolitical 

occurrences, and market sentiment. This research assesses the effectiveness of four RNN designs—Simple RNN, 

Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional RNN (BiRNN). By employing 
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evaluation metrics like Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Mean Squared 

Error (MSE), the BiRNN model exhibited enhanced predictive precision for all measures. The results emphasize the 

BiRNN's capability to grasp complex temporal patterns in financial data, providing important insights into its 

potential as a strong instrument for stock market forecasting and portfolio management. 

Lu et al., [14] present a Time-series Recurrent Neural Network (TRNN) aimed at improving both accuracy and 

efficiency by integrating trading volume into the forecasting model. By employing a sliding window algorithm, the 

TRNN analyzes time-series data, condenses information, and identifies trends and turning points significant to 

financial market behavior. The model enhances the price-volume relationship by utilizing a two-dimensional 

framework, allowing for a more accurate depiction of how recent trading volumes affect current stock prices. A 

comparative study between conventional RNN and LSTM models reveals that the TRNN outperforms them in both 

efficiency and accuracy. Furthermore, the research examines the practicality and versatility of the TRNN model and 

time-series compression methods for wider uses, tackling significant issues such as noisy data and trend detection 

in financial assessments. 

Vijh et al., [15] utilize Artificial Neural Networks (ANN) and Random Forest (RF) approaches to forecast the 

following day's closing prices of shares from five firms in different industries. By utilizing historical data—like high, 

low, open, close prices, and trading volume—new variables were generated to augment model inputs and increase 

predictive accuracy. The comparative analysis, utilizing RMSE, MAPE, and MBE metrics, shows that ANN 

surpasses RF, securing better prediction performance. The results underscore the effectiveness of ANN in 

identifying intricate market patterns and stress the opportunity for future research to combine deep learning 

models that include supplementary factors, like financial news and profit and loss statements, to improve 

prediction accuracy. 

Nikou et al. [16] assess the forecasting ability of machine learning models by analyzing daily closing price data for 

the iShares MSCI United Kingdom exchange-traded fund from January 2015 to June 2018. Four machine-learning 

models were evaluated, revealing that deep learning exceeded other techniques in predictive accuracy, trailed by 

support vector regression, neural networks, and random forests. These results emphasize the advantages of deep 

learning in managing intricate financial information and stress its capability to enhance stock market forecasts. 

Shen et al.,[17] introduces a tailored deep learning-based system for forecasting stock market price movements 

utilizing two years of data from the Chinese stock market. The suggested method combines extensive feature 

engineering with a precisely adjusted long short-term memory (LSTM) model. The approach includes data 

extraction and preprocessing, feature enhancement through recursive feature elimination (RFE) and principal 

component analysis (PCA), along with trend forecasting utilizing LSTM. Assessments indicate that the suggested 

system surpasses conventional machine learning models because of its efficient feature engineering and tailored 

model development. Distinct contributions consist of a feature extension algorithm aimed at improving predictive 

precision and understanding the sensitivity of term durations in RFE. The study highlights the significance of 

integrating technical and textual information, like sentiment analysis, to improve stock trend forecasting models in 

upcoming research. 

Lei in [18] employed a Wavelet Neural Network (WNN) alongside Rough Set (RS) theory to forecast stock price 

trends, emphasizing the reduction of computational complexity and the improvement of model efficiency. Rough 

Set was utilized for reducing attributes, successfully decreasing feature dimensions and organizing the WNN. The 

research examined five key stock market indices: SSE Composite Index (China), CSI 300 Index (China), All 

Ordinaries Index (Australia), Nikkei 225 Index (Japan), and Dow Jones Index (USA). The assessment showed the 

model's ability to generalize across these indices, producing encouraging outcomes. Although there are benefits of 

decreased computational complexity and efficient feature optimization, the research mainly focused on parameter 

modifications while not considering possible model constraints. Furthermore, the assessment focused solely on 

indices, prompting worries regarding the model's capacity to adapt to specific stock forecasts, as they might display 

varying behaviors from those of aggregated indices. 

Weng et al. [19] concentrated on predicting short-term stock prices by utilizing ensemble techniques that merged 

four established machine learning models. The research offered a comprehensive examination of ensemble 

techniques designed for predicting short-term stock prices. From a research standpoint, the investigation 
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concentrated on forecasting stock prices for a brief time frame of 1 to 10 days and did not evaluate predictions that 

extended beyond two trading weeks or were shorter than one day. 

Jeon et al. [20] performed a study on predicting stock prices utilizing a large dataset with millisecond intervals and 

techniques for tracking pattern graphs. For identifying patterns, the authors utilized Euclidean distance and 

Dynamic Time Warping (DTW). Feature selection was executed through stepwise regression. The prediction task 

was carried out using an Artificial Neural Network (ANN), employing Hadoop and RHive for processing large data 

sets. The outcomes were determined through a blend of Symbolic Aggregate Approximation (SAX) and Jaro-

Winkler distance. Before processing the data, the authors combined it into 5-minute intervals from the initial 

discrete dataset. 

Pimenta et al. [21] presented an automated investment approach utilizing multi-objective genetic programming 

and implemented it in the stock market. The data utilized in their research was obtained from the Brazilian stock 

market (BOVESPA). The main methods used included a blend of multi-objective optimization, genetic 

programming (GP), and trading rules based on technical analysis. Genetic programming was employed to refine 

decision rules for optimization. An innovative feature of this paper was its assessment method, which encompassed 

a historical timeframe characterized by an important juncture in Brazilian politics and economics. This context 

enhanced the applicability of their suggested model. In choosing the sub-dataset for assessment, the authors set 

criteria to guarantee improved asset liquidity. Nonetheless, a major drawback of the study was that the comparison 

baseline was quite basic and elementary, and there were no comparisons with other current models. 

Billah et al. [22] suggested employing long short-term memory (LSTM) networks for forecasting stock prices, 

emphasizing their capability to manage the nonlinear features of financial time-series data efficiently. Their 

research showed that LSTM models greatly surpassed conventional forecasting techniques, attaining a 23.4% 

decrease in mean absolute error (MAE) and an average accuracy of 89.7% in predictions. The method concentrated 

on forecasting asset values by examining past market data, including price and volume, to determine if stocks were 

overvalued or undervalued. This approach offered important perspectives on market trends and improved the 

precision of financial market forecasts. 

Friday et al.[23] suggested a hybrid deep learning strategy that integrates convolutional neural network (CNN), 

attention mechanism (AM), and gated recurrent unit (GRU) to forecast short-term stock market trends for different 

indices (BSE, HSI, IXIC, NIFTY, N225, SSE). The model adaptively modifies input sequence weights via the AM 

model, identifies local patterns using CNN, and represents long-term dependencies through GRU to categorize 

stock positions as "buy" or "sell." The model was assessed using classification metrics including accuracy, precision, 

recall, and financial indicators like annualized returns and ROI. 

Moodi et al. [24] introduced an innovative hybrid network that integrates three different architectures—CNN, GRU, 

and LSTM—to forecast stock price trends. By combining feature extraction with sequence learning, the model 

utilizes the complementary advantages of both architectures to enhance predictive performance. CNNs identify 

short-term relationships and significant characteristics in time series data, like trends or fluctuations in stock 

prices. GRUs effectively manage sequential data and recognize dependencies over time, while being less 

computationally demanding than LSTMs. In the hybrid model, GRUs retain important historical data without 

experiencing vanishing gradient issues, which enables them to perform well with long sequences. LSTMs are highly 

effective at capturing long-term dependencies by storing information for prolonged durations, thereby maintaining 

significant trends. The innovation of the hybrid model is its capacity to concurrently capture short-term trends and 

long-term relationships, leading to more precise predictions of stock prices. 

Li et al.[25] presented MASTER (MArket-guided Stock TransformER) to tackle the difficulties in stock price 

prediction arising from significant market fluctuations and the intricate relationships among stocks. Existing 

models generally depend on a shared neural architecture that identifies temporal patterns from individual stock 

series and subsequently merges these patterns to determine correlations. However, they encounter two major 

limitations: first, stock correlations frequently occur temporarily and over time spans, and second, the efficacy of 

features changes dynamically according to market conditions, influencing both sequential patterns and their 

correlations. MASTER addresses these constraints by analyzing instantaneous and temporal stock correlations and 

employing market data for automatic feature selection. The model switches between gathering intra-stock and 

inter-stock data, successfully illustrating the intricate connections among stocks. Experimental findings show that 
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MASTER exceeds the performance of earlier models and offers significant insights through the visualization of the 

realistic stock correlations it identifies. 

Zicheng et al. [26] introduced the Series Decomposition Transformer with Period-correlation (SDTP) to tackle the 

difficulties of predicting stock prices. Conventional deep learning models that utilize RNNs and LSTMs have faced 

challenges due to the significant volatility of stock prices and the diminishing relevance of historical data, negatively 

impacting their prediction precision. Recent studies have employed Transformer models for time series forecasting, 

but these approaches typically prioritize integrating uncertain social media data as supplementary input instead of 

enhancing feature extraction from past stock information. The SDTP model incorporates a period-correlation 

mechanism along with series decomposition layers to enhance the understanding of relationships in historical data 

and identify the changing trends in the stock market. Comprehensive experimental findings indicate that the SDTP 

model surpasses leading techniques on various datasets, attaining superior forecasting precision and adaptability. 

Ma et al.[27] introduced a regularized ensemble approach that integrates Graph Convolutional Networks (GCNs) 

for forecasting stock prices, filling a significant research void in employing GCNs to examine transaction data, 

which typically displays stable and clearly defined correlations. The framework employs several multi-graph 

convolutional networks to form an ensemble GCN that captures spatiotemporal connections in transaction data 

over different time scales. To improve feature extraction, the Variational Modal Decomposition (VMD) technique is 

used on each dimensional sequence of the transaction data, allowing the model to identify features at various time 

scales while minimizing noise and non-stationarity. The research additionally presents a regularization factor 

grounded in trend accuracy to harmonize numerical precision with trend accuracy, enhancing model effectiveness. 

Liao et al.[28] introduced a dynamic hypergraph spatio-temporal network (DHSTN) to overcome the drawbacks of 

current stock prediction methods, which generally concentrate solely on pairwise connections and fail to consider 

intricate higher-order associations between stocks. The DHSTN framework employs a GRU to understand the 

sequential embeddings of stocks and incorporates a dynamic hypergraph network to identify the spatio-temporal 

connections among them. The network includes an innovative dynamic hypergraph construction component 

utilizing a graph attention network, which dynamically identifies higher-order spatial relationships between stocks 

over time. Moreover, an industry relations aggregator is incorporated into the hypergraph convolution to improve 

the model even more. A multi-relation fusion module is also incorporated to merge both static and dynamic stock 

relationships. 

METHODOLOGY 

This research utilizes the Differential Graph Transformer (DGT) to predict stock prices by adeptly identifying 

temporal patterns and relationships between stocks. The methodology consists of five main elements: data 

preprocessing, feature engineering, model design, training, and assessment. Every phase guarantees that the 

abundant temporal and spatial characteristics of the stock market are leveraged to enhance prediction precision. 

The data preprocessing phase readies the unprocessed S&P500 dataset for examination. Stock prices are 

standardized through z-score normalization to normalize the data, removing the influence of differing price scales. 

Furthermore, correlation matrices are created to reflect interstock connections. These encompass global 

correlations that cover the full dataset and local correlations that concentrate on brief intervals such as fiscal 

quarters. Mutual information and Pearson coefficients are employed to build these matrices, offering 

complementary perspectives on stock relationships. 

The DGT framework serves as the foundation of the methodology, incorporating both temporal and spatial 

attention mechanisms. Temporal attention layers identify sequential trends in stock prices, whereas spatial 

attention layers utilize differential graph attention to represent interstock connections. During preprocessing, 

correlation matrices are used as adjacency matrices, allowing the model to focus spatial attention on both local and 

global correlations. This dual attention mechanism guarantees that the model comprehends intricate relationships 

in both dimensions. 

The model is developed with historical stock prices and their related correlation matrices as inputs. The training 

procedure utilizes a supervised learning method, refining the Mean Squared Error (MSE) loss function. To 

guarantee strong performance, the dataset is divided into training, validation, and testing subsets. A grid search is 

employed to optimize hyperparameters including the learning rate, dropout rate, and batch size. Throughout the 
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training process, the model's predictions are assessed on the validation set with RMSE and MAE metrics, 

confirming its capability to generalize successfully. 

Ultimately, the trained model undergoes evaluation on a test dataset to determine its predictive accuracy. The 

outcomes are evaluated against a standard GRU model to highlight the benefits of the DGT. Essential metrics, 

including RMSE and MAE, are calculated to assess the model's effectiveness. The results indicate that the DGT, 

especially when utilizing local mutual information matrices, exceeds the performance of baseline models and 

alternative configurations. This detailed approach demonstrates the possibilities of integrating temporal and spatial 

attention mechanisms for precise stock market predictions. The design is presented in Figure 1. 

  

Figure 1 System Structure 

Algorithm: Stock Market Forecasting Using Differential Graph Transformer (DGT) 

Step 1: Preprocessing the Dataset 

Input: Daily stock prices Pt for N stocks over T time steps. 

Normalize Stock Prices: 

Normalize Pt using z-score normalization: 

𝑃𝑡
′ =

𝑃𝑡 − 𝜇𝑡𝑟𝑎𝑖𝑛

𝜎𝑡𝑟𝑎𝑖𝑛

 

Where 𝜇𝑡𝑟𝑎𝑖𝑛 and 𝜎𝑡𝑟𝑎𝑖𝑛 are the mean and standard deviation of training data. 

Generate Correlation Matrices: 

Global Correlation: Compute 𝐶𝑜𝑟𝑟𝑔𝑙𝑜𝑎𝑏𝑙(𝑖, 𝑗) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑡𝑜𝑐𝑘𝑠 𝑖, 𝑗:  

Daily Stock Prices , (Input Data) 
Pre-processing 

Z-score Normalization 

Compute Correlations 
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Feature Engineering 

Temporal Correlation 

Differential Graph Transformer 

(DGT) 
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𝐶𝑜𝑟𝑟𝑔𝑙𝑜𝑎𝑏𝑙(𝑖, 𝑗) = 𝑀𝐼(𝑖, 𝑗)𝑜𝑟 𝑃𝐶𝐶(𝑖, 𝑗) 

where MI is mutual information, and PCC is the Pearson correlation coefficient. 

Local Correlation: Split data into Q quarters, and compute correlations for each quarter q:  

𝐶𝑜𝑟𝑟𝑙𝑜𝑐𝑎𝑙.𝑞(𝑖, 𝑗) 

 

Step 2: Feature Engineering 

Create temporal features 𝑋𝑡 where each sample contains L past days' stock prices: 

 𝑋𝑡 = [𝑃𝑡−𝐿+1, 𝑃𝑡−𝐿+2, … . , 𝑃𝑡] 

Pair each temporal feature with corresponding correlation matrices 𝐶𝑜𝑟𝑟𝑔𝑙𝑜𝑏𝑎𝑙  and 𝐶𝑜𝑟𝑟𝑙𝑜𝑐𝑎𝑙 . 

 

Step 3: Differential Graph Transformer (DGT) 

Input Features: 

𝑋𝑡𝜖𝑅𝑁×𝐿 , 𝐶𝑜𝑟𝑟𝑔𝑙𝑜𝑏𝑎𝑙  , 𝐶𝑜𝑟𝑟𝑙𝑜𝑐𝑎𝑙  

Xt represents normalized stock prices for N stocks over L time steps. 

 

Node Embedding: Compute initial node embeddings for stocks: 

𝐻0 = 𝐿𝑖𝑛𝑒𝑎𝑟(𝑋𝑡) + 𝑆𝑡𝑜𝑐𝑘𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑁) + 𝑇𝑖𝑚𝑒𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝐿) 

Where 𝐻0𝜖𝑅𝑁×𝑑 d is the embedding dimension. 

 

Temporal Attention: For each layer l in 𝐿𝑇temporal layers, compute: 

AttentionT(H(l−1)) = Softmax(
QSKS

T

√d
)VT 

Where 𝑄𝑇 , 𝐾𝑇 , 𝑉𝑇 are query, key, and value matrices derived from H(l−1), update node embeddings 

HT
(l)

= LayerNorm(H(l−1) + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑇(H(l−1))) 

Differential Graph Attention: For each layer l in 𝐿𝑆 spatial layers, compute: 

AttentionS(H(l−1), A) = Softmax(
QSKS

T

√d
− λ. A)vs 

where A is the adjacency matrix derived from 𝐶𝑜𝑟𝑟𝑔𝑙𝑜𝑏𝑎𝑙  and 𝐶𝑜𝑟𝑟𝑙𝑜𝑐𝑎𝑙.and λ is the differential coefficient. 

Update node embeddings: 

𝐻𝑆
(𝑙)

= 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐻𝑇
(𝑙)

+ 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑆(𝐻𝑇
(𝑙)

, 𝐴)) 

Output Embeddings: After 𝐿𝑇  temporal and  𝐿𝑆 spatial layers, the final embeddings H are passed to a linear 

layer for price prediction: 

𝑃̂𝑡+1 = 𝐿𝑖𝑛𝑒𝑎𝑟(𝐻) 

 

Step 4: Training the Model 

Loss Function: Use Mean Squared Error (MSE) as the loss function: 
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𝐿 =
1

𝑁
∑(𝑃̂𝑡+1

(𝑖)
− 𝑃𝑡+1

(𝑖)
)2

𝑁

𝑖=1

 

Optimizer: Train the model using the Adam optimizer with a learning rate η. 

Validation: Evaluate the model on validation data using RMSE and MAE: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑃̂𝑡+1

(𝑖)
− 𝑃𝑡+1

(𝑖)
)2

𝑁

𝑖=1

 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑃̂𝑡+1

(𝑖)
− 𝑃𝑡+1

(𝑖)
|

𝑁

𝑖=1

 

 

Step 5: Testing and Analysis 

Testing: Evaluate the trained model on test data to compute final RMSE and MAE. 

Comparison: Compare DGT's performance with baseline models like GRU using percentage improvements in 

RMSE and MAE. 

DATASET DESCRIPTION 

The S&P500 dataset utilized in this research offers an extensive depiction of stock market behavior, incorporating 

daily stock prices for 472 firms across several years. The price data for each stock is standardized through z-score 

normalization to maintain uniformity and comparability among stocks. This preprocessing phase also improves 

both the stability and convergence of the model while it trains. 

Alongside the stock price information, the dataset contains correlation matrices that measure interstock 

relationships. Two kinds of correlation matrices are created: global and local. Global matrices reflect relationships 

across the complete dataset, offering insights into long-term patterns, whereas local matrices target shorter 

timeframes (e.g., fiscal quarters), highlighting short-term connections. The research further utilizes mutual 

information and Pearson coefficients as measures to create these matrices, providing additional insights into the 

connections among stocks. 

For a thorough assessment, the dataset is split into training, validation, and testing subsets using an 8:1:1 

proportion. This division enables the model to gain insights from past data while setting aside distinct segments for 

adjusting hyperparameters and evaluating generalization capability. Temporal attributes, like delayed stock prices, 

and spatial attributes, illustrated by correlation matrices, serve as input for the model. 

The training subset concentrates on many-to-many forecasts, enabling the model to predict the following day's 

prices for all stocks by using a sequence of previous days. In contrast, the validation and test subsets adopt a many-

to-one method, in which the model forecasts the next day's price for one stock at a time. This design allows for an 

extensive assessment of the model's capability to generalize over various prediction tasks. 

The dataset's abundant temporal and spatial characteristics render it perfect for evaluating sophisticated models 

such as the Differential Graph Transformer. By integrating both forms of correlations and utilizing thorough 

preprocessing and assessment methods, the research establishes a solid basis for proving the model's efficacy in 

predicting stock prices. 

The graph depicted in Figure 2 illustrates the stock price movements of AAPL and its three most globally correlated 

stocks (BA, DHI, AKAM) determined by Pearson correlation. The Global Mutual Information accurately reflects 

common trends, as evidenced by the comparable long-term paths, even with differences in the volatility of 

individual stocks. 
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Figure 2 Top3 Correlated stocks with AAPL trends with Global Pearson 

The chart displayed in Figure 3 depicts the stock price movements of AAPL along with its three primary locally 

correlated stocks (ADI, APH, JBL) through Local Mutual Information across a fiscal quarter. Mutual Information 

and Pearson correlation both excel at capturing short-term price movements, as shown by the strong correlation of 

stock trends in this specific time period. 

 

Figure 3 Top3 Correlated stocks with AAPL trends with MI 

The graph presented in Figure 4 depicts the stock price movements of AAPL alongside its three primary locally 

correlated stocks (ADI, APH, JBL) utilizing Local Pearson over a fiscal quarter. 



351  

 

J INFORM SYSTEMS ENG, 10(8s) 

 

Figure 4 Top3 Correlated stocks with AAPL trends with Local PCC 

RESULT ANALYSIS 

In this section, we showcase the outcomes and performance evaluation of the DGT_pcc_dual model developed for 

the stock market forecasting task. The model’s effectiveness is assessed using several metrics including RMSE (Root 

Mean Squared Error) and MAE (Mean Absolute Error) throughout various epochs. We concentrate on both training 

and validation losses to evaluate the model's learning development and generalization abilities. Moreover, the 

model's effectiveness on the test set is analyzed to assess its reliability in practical situations. The examination 

emphasizes important trends, including the model's performance while training, its capacity to reduce errors, and 

possible areas for additional enhancement. 

Throughout the training, the RMSE and MAE were monitored to evaluate the model's performance. At first, the 

validation RMSE was 0.514 (epoch 0) and it varied during the training phase. Likewise, the MAE began at 0.343 

and showed considerable fluctuations throughout the epochs. 

The minimum validation RMSE occurred at epoch 0, registering a value of 0.514, demonstrating outstanding 

predictive performance at that moment. 

The validation MAE demonstrated steady enhancement throughout the epochs, culminating in a final value of 0.153 

at epoch 99. This suggests that the model was effective in reducing absolute errors throughout the validation 

process. 

The evaluation stage assesses the generalization capability of the trained model. 

The test RMSE was 1.098, indicating that the model's forecasts closely matched the true values, yet there was still 

opportunity to enhance the reduction of the average squared error. 

The test MAE was 0.566, suggesting a fairly small difference from the actual values in the test set. 

The training loss steadily lowered as the model underwent training for 99 epochs, ultimately stabilizing at 0.030 

during the last epoch. This indicates that the model effectively acquired patterns from the data, reaching a minimal 

loss value. 

The highest validation performance occurred at epoch 0, while later epochs showed fluctuations in error metrics 

because of the model's adaptive learning process. This corresponds to the usual behavior of sophisticated neural 

networks that adjust weights progressively to enhance performance. These measurements are presented in Table 1. 
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Table 1 RMSE, MAE metrics fro validation and testing 

Metric 
Initial Value 

(Epoch 0) 

Final Value (Epoch 

99) 
Best Value 

Best 

Epoch 

Validation RMSE 0.514 0.646 0.514 0 

Validation MAE 0.343 0.153 0.153 99 

Test RMSE - 1.098 1.098 - 

Test MAE - 0.566 0.566 - 

Training Loss 1 0.03 0.03 99 

 

 
Figure 5 Validation RMSE, MAE  over epochs 

The plots for Validation RMSE and MAE metrics are presented in Figure 5. From Figure 5, it can be seen that the 

Validation RMSE begins at 0.514 (epoch 0) and experiences minor fluctuations, reaching a peak of 0.957 (epoch 

70) before stabilizing at 0.646 (epoch 99). This variation indicates that the model was adapting and improving but 

may have encountered issues like overfitting during certain epochs. The Validation MAE continues to decline, 

beginning at 0.343 and finishing at a minimum of 0.153 (epoch 99). This consistent decrease suggests that the 

model improved in reducing absolute errors as training advanced. 

 
Figure 6 Training Loss over epochs 
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Figure 6 shows the training loss. From Figure 6, it is evident that the Training Loss begins at a high level of 1.0 and 

drops sharply in the early epochs, indicating quick learning. As training advances, the curve levels off and 

approaches a minimum value of 0.030 by epoch 99, indicating that the model has successfully absorbed 

information from the data and attained a stable condition. This curve emphasizes that the model effectively reduced 

its objective function, an essential sign of adequate training. 

 
Figure 7 RMSE and MAE comparison for test metrics 

The bar chart illustrated in Figure 7 offers a straightforward visual comparison of the test RMSE and MAE, 

encapsulating the model’s performance on the previously unseen test dataset. The Test RMSE (1.098) exceeds the 

Validation RMSE at the last epoch (0.646). This suggests a minor decrease in performance on the test set, likely 

caused by variations in data distribution or a bit of overfitting. The Test MAE (0.566) is greater than the Validation 

MAE at the last epoch (0.153), emphasizing the difference in performance between validation and test. 

TESTING:  The testing results are presented here. The illustration presented in Figure 8 contrasts the forecasted 

and actual normalized AAPL (Apple Inc.) stock prices on a test dataset spanning 250 days. The forecasts are 

produced utilizing three models: "Global MI with DGT," "Local MI with DGT," and "Dual MI with DGT." The "Real" 

stock price (green line) indicates the true stock price, whereas the remaining lines illustrate the forecasts from each 

model. The "Dual MI with DGT" model (orange line) tracks the actual stock price closely, demonstrating superior 

prediction accuracy relative to "Global MI with DGT" (pink line) and "Local MI with DGT" (blue line). This 

indicates that integrating global and local mutual information (MI) with DGT enhances the model's predictive 

effectiveness. 
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Figure 8 Predicted vs Real AAPL stock price on test for MI 

This Figure 9 shows a comparison between predicted and actual normalized AAPL (Apple Inc.) stock prices using a 

test dataset spanning 250 days. The forecasts are produced by employing three models: "Global Pearson with DGT," 

"Local Pearson with DGT," and "Dual Pearson with DGT." The "Real" stock price (green line) indicates the true 

stock price, whereas the other lines show the forecasts from every model. Of the models, "Dual Pearson with DGT" 

(orange line) closely follows the actual stock price, showing enhanced prediction accuracy relative to "Global 

Pearson with DGT" (pink line) and "Local Pearson with DGT" (blue line). This suggests that integrating global and 

local Pearson correlations with DGT enhances predictive performance. 

 

Figure 9 Predicted vs Real AAPL stock price on test for Pearson 
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Comparison 

Assessing predictive models frequently requires a comprehensive comparison of effectiveness among various 

architectures and correlation methods. This examination centers on eight varied models, such as GRU, DGT with 

different configurations, Transformer, LSTM, and GNN. The analysis is performed utilizing two key error metrics: 

Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). These metrics offer an in-depth insight into the 

models' predictive precision and ability to minimize errors. Particular focus is placed on models utilizing Mutual 

Information (MI) and Pearson Correlation Coefficient (PCC) in global, local, and dual scenarios to evaluate how 

correlation range influences performance. This analysis enables a distinct visualization of model-specific strengths 

and weaknesses by differentiating RMSE and MAE plots for all models, including MI- and PCC-based 

configurations. 

From Figures 10 through 15, the ensuing observations can be noted: 

Overall RMSE Comparison: The RMSE comparison graph showcases the effectiveness of all models being 

analyzed. It indicates that GRU has the highest RMSE, signifying worse prediction accuracy relative to the others. 

Among the models, "DGT (MI - Dual)" attains the lowest RMSE, showcasing its exceptional ability to reduce 

prediction errors. 

General MAE Comparison: The MAE comparison graph highlights the efficiency of models in diminishing the 

average size of errors. Like RMSE, "DGT (MI - Dual)" shows the lowest MAE, with other MI-based and PCC-based 

models following, thereby validating its strength in preserving accuracy. 

RMSE for MI-Based Models: The RMSE plot specific to MI highlights the group of models that utilize MI 

correlation. It clearly demonstrates that "DGT (MI - Dual)" exceeds both "DGT (MI - Global)" and "LSTM (MI - 

Global)" by achieving a lower RMSE, indicating its superior accuracy in both global and dual scope configurations. 

MAE for MI-Driven Models: The MAE graph for MI-driven models reflects the RMSE pattern, with "DGT (MI - 

Dual)" steadily exhibiting the lowest MAE. This demonstrates its effectiveness in lowering average mistakes while 

preserving generalization across various tasks. 

RMSE for PCC-Driven Models: The RMSE chart dedicated to PCC compares the models that employ PCC 

correlation. In this case, "GNN (PCC - Local)" attains the lowest RMSE, showing that local correlation 

configurations can provide improved prediction precision in certain scenarios. 

MAE for PCC-Based Models: In the PCC-specific MAE graph, "GNN (PCC - Local)" takes the lead with the lowest 

MAE value, highlighting its efficiency in reducing average error sizes among PCC-based models. 

 

Figure 10 RMSE comparison of models 
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Figure 11 MAE comparisons of models 

 

 

Figure 12 RMSE for MI-based models 

 

 

 

Figure 13 MAE for MI-based models 
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Figure 14 RMSE for PCC-based models 

 

 

Figure 15 MAE for PCC-based models 

CONCLUSIONS 

This research illustrates the enhanced capability of the Differential Graph Transformer (DGT) in predicting stock 

market trends by combining temporal and spatial attention techniques. The suggested model attained a 13.5% 

decrease in RMSE and a 12.2% reduction in MAE when compared to GRU, underscoring its capability to effectively 

model interstock relationships. Of the configurations evaluated, DGT utilizing local mutual information matrices 

yielded the best results, demonstrating the most notable enhancements in identifying short-term relationships. The 

results highlight the promise of utilizing differential attention and graph-oriented learning in predicting financial 

outcomes. Future research can investigate the scalability of this method for larger datasets, real-time forecasting, 

and cross-market evaluations. Moreover, including external elements like economic indicators and market updates 

could further strengthen the model's reliability. 
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