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ARTICLE INFO ABSTRACT

Submitted: 20 Dec 2024 The classification of aerial imagery through automation plays an essential role in areas

Received: 12 Feb 2025 !ike environmental mop?tgring, urban planning, and disaster response. This stufiy
introduces a method utilizing a convolutional neural network (CNN) to classify aerial

Accepted: 22 Feb 2025 landscape images, leveraging the SkyView Aerial Landscape Dataset. The suggested
pipeline includes streamlined preprocessing, immediate data enhancement, and a
simple but powerful CNN architecture crafted with the TensorFlow-Keras framework.
The model underwent training and validation using an 80/20 split of the dataset,
reaching a training accuracy of about 98% and a validation accuracy of 91%, which
suggests a robust ability to generalize. Data augmentation techniques, such as random
flipping, rotation, zoom, and contrast adjustments, greatly improved model
robustness. The confusion matrix analysis showcases the model’s overall dependability
while uncovering slight difficulties in distinguishing between visually similar classes.
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INTRODUCTION

Maps are needed to share and show geographical data across different areas, like urban development, ecological
observation, and emergency response [1]. In the past, recognizing geographical features like coastlines, water bodies,
ridgelines, and elevation lines depended on manual extraction or rule-based methods. Scaling these methods can be
hard, they can be prone to mistakes, and they often take a lot of work. In mapping and geospatial analysis, it is very
important to correctly identify and describe these contours in order to make maps that are easy to read and
understand.

Recent progress in machine learning, especially deep learning, has shown that it can do a great job of automatically
extracting features and classifying data from remote sensing sources like satellite images and digital elevation models.
These methods can make contour classification more accurate and efficient by building on what has come before. ML
models can understand complicated spatial patterns and contextual details, which helps them tell the difference
between different geographic features more clearly [6].

Even with these improvements, using ML for contour classification is still not easy. Some important things to think
about are how different areas are geographically, the lack of labeled contour datasets, and how hard it is to add
classified features to current mapping methods. To solve these problems, we need strong ML models that can
understand and represent contour data and adapt to different types of terrain.

e Aimed at improving accuracy in cartographic representation, this paper offers a framework for the automated
classification of geographical contours using machine learning. This paper makes several important
contributions:

e Designing and evaluating a machine learning model meant to categorize significant geographic features from
satellite pictures and digital elevation models.
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e Examining the variations with traditional classification techniques to assess how effectively the proposed method
works. Examining how the categorized contours might be smoothly integrated into present cartographic
processes to emphasize their effect on precise mapping.

The structure of this article is as follows. Relevant research is summarized in Section 2. The issue is stated in Section
3 along with the objectives. Covering data preparation, feature selection, and the design of the machine learning
model, Section 4 describes the approach followed. Section 5 offers the results and discussion. Ultimately, Section 6
finishes the article and suggests possible next steps.

LITERATURE REVIEW

Accurate classification of geographical contours is a long-standing task in cartography and remote sensing.
Traditional methods rely on manual delineation or heuristic algorithms applied to Digital Elevation Models (DEM),
contour maps, or satellite imagery. These methods, while useful, are often limited in precision and scalability,
especially when handling complex or large-scale datasets [8].

e Traditional Methods for Contour Extraction and Classification

Traditional methods for contour extraction from DEMs and topographic maps include edge detection algorithms,
morphological processing, slope and aspect analysis, and heuristic rule-based methods [8, 9]. The Marching Squares
algorithm remains a classical approach for contour line generation [8], while GIS software like ArcGIS provides semi-
automatic tools for contour extraction using elevation data [10]. However, these methods are often sensitive to noise,
require human supervision, and struggle with complex or irregular landforms. Efforts have also been made to classify
extracted contours into categories like ridgelines, valleys, or coastlines using rule-based systems, but these methods
lack scalability and adaptability to new geographical areas [11].

¢ Machine Learning and Deep Learning-Based Approaches

The application of machine learning has significantly increased specially in the areas of remote sensing and geospatial
data analysis in voew of geographcal struggles among several nation states. Random Forest and Support Vector
Machine models have been utilized for landform classification, employing features obtained from Digital Elevation
Models. However, these methods depend heavily on features that are manually crafted and oftenly have limited
adaptability across different environments.

Deep Learning models, especially Convolutional Neural Networks, have been utilized for extracting features and
classifying remote sensing imagery. In order to extract contour lines from DEMs, Zhang et al. [5] developed a CNN
model, which outperformed traditional techniques. Li et al. [14] utilized a U-Net-based model for extracting river
networks from high-resolution imagery, which could be modified for contour extraction tasks. More recently, Graph
Neural Networks (GNNs) have been explored to model spatial relationships between contours, achieving improved
contour classification performance [6], [15]. Generative models like GANs have also been proposed for enhancing
contour line clarity and for simulating realistic contour patterns in cartographic applications [16]. Despite these
advances, many studies focus primarily on extraction or classification in isolation. Integration of ML-based
classification into cartographic workflows remains limited [7], [17]. Table I below represent a detailed summary of
such works.

Table I: Review of Related Works

Ref. Method Data Used Application Limitations

[8] Marching Squares DEM Contour extraction Sensitive to noise, lacks
algorithm classification

[a] Slope/aspect rule-based DEM Landform Region-specific thresholds
classification classification

[10] GIS tool (ArcGIS/QGIS) DEM, Semi-automatic Requires expert intervention
workflows topographic contour extraction

maps
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[11] Heuristic rule-based DEM, Contour classification | Inflexible, low scalability
contour labeling topographic
maps
[5] CNN-based contour line DEM Contour line Focus only on extraction, not
extraction detection classification
[14] U-Net for water body High-res River and stream Focused on water bodies only
extraction imagery extraction
[6] GNN for contour Vectorized Classification of Complex models, resource-
classification contours ridges, rivers intensive
[4] Review of DL for landform | Remote sensing | Review of DL Data scarcity, limited
classification images methods generalization
[13] SVM for terrain DEM-derived Terrain unit Poor generalization in
classification features classification complex terrain
[12] RF for slope/aspect-based DEM Landform Needs large feature
landforms classification engineering
[15] GNN with spatial attention | DEM, contour | Ridge/valley High data requirement,
graphs classification computational cost
[16] GAN for contour Topographic Contour refinement Focus only on visual
enhancement maps enhancement
[20] ML integration challenges GIS pipelines ML model Lack of interoperability,
in GIS integration into GIS | workflow gaps
[17] Transformer-based remote | Remote sensing | Feature classification | High data demand,
sensing classification imagery underexplored in contours
[18] Multi-scale CNN for DEM, Ridge, valley, slope Still lacks integration into
landform detection multispectral detection cartography
images

RESEARCH GAPS IDENTIFIED

From the reviewed literature, the following key research gaps have been observed:

Copyright © 2024 by Author/s and Licensed by JI This is an open access article distributed under the Creative Commons Attribution

Limited Research on Contour Classification Most works emphasize contour extraction or landform detection,
with few addressing classification of contours into cartographically meaningful categories (e.g., ridges,

streams, coastlines).

Lack of End-to-End Integration into Cartographic Workflows Very few studies focus on integrating ML/DL
contour classification models into standard GIS or cartographic pipelines ([7], [17]).

Generalization Challenges Across Regions Many ML models are trained on region-specific datasets, limiting
their applicability to new areas with different geographical characteristics ([4], [13]).

Limited Use of Spatial and Contextual Relationships Although GNNs have begun addressing this ([6], [15]),
broader exploitation of spatial and topological features in contour classification remains underexplored.

Scarcity of Annotated Contour Datasets There is a lack of open-access, large-scale, annotated datasets
specifically focusing on contour classification ([4], [7]).

Underutilization of Emerging Models (Transformers, GANs) in Cartographic Contour Tasks While emerging
models like Transformers ([18]) and GANs ([16]) show promise in remote sensing, their application to
contour classification and cartographic enhancement is still in its infancy.
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METHODOLOGY
Dataset Description

The dataset used in this study is the SkyView Aerial Landscape Dataset, which contains RGB images of various
landscape classes captured from aerial perspectives[20, 21]. The images are organized in class-wise directories and
were accessed via the image_ dataset_from_ directory utility in TensorFlow, allowing for automatic label inference.

The dataset was split into:
e Training Set: 80% of the data

e Validation Set: 20% of the data Each image was resized to a uniform dimension of 256x256 pixels and
processed in batches of 32.

Mountain

Highway Agriculture

i o S
Parking Railway

Grassland

City Beach

Figure 1. A sample of the Dataset

Preprocessing and Augmentation

To improve model generalization, a data augmentation pipeline was implemented using Keras’s Sequential API.
This included:

e Horizontal flipping

e Random rotation (+20%)

e Random zoom (20%)

¢ Random contrast adjustment (20%)

The input images were also rescaled to a [0,1] range by dividing pixel values by 255.
Model Architecture

A Convolutional Neural Network (CNN) was designed using the Keras Sequential API with the following
architecture:

1. Input Layer

Copyright © 2024 by Author/s and Licensed by |1 This is an open access article distributed under the Creative Commons Attribution 540

License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Journal of Information Systems Engineering and Management
2025, 10(508)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

o Rescaling and data augmentation
2. Convolutional Block 1

o ConvaD(32 filters, kernel_size=3x3, stride=2)
o BatchNormalization
o MaxPooling2D

3. Convolutional Block 2

o Conv2D(64 filters, kernel_size=3x3, stride=2)
o BatchNormalization
o MaxPooling2D

4. Convolutional Block 3

o ConvaD(128 filters, kernel_size=3x3, stride=2)
o BatchNormalization
o MaxPooling2D

5. Dense Layers

Flatten

Dense(128 units, activation="relu")

Dropout(0.3)

Dense(num__classes, activation="softmax") (final classification layer)

o O O O

The model was compiled using;:

e Loss Function: SparseCategoricalCrossentropy
e Optimizer: Adam
e Metrics: Accuracy

Training Protocol

The model was trained over 25 epochs with real-time batch generation and augmentation. Early stopping and model
checkpointing mechanisms were considered to avoid overfitting and to preserve the best-performing model during
training.
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Figure 2: Training vs validation accuracy and loss per epoch graphs of the proposed CNN
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RESULTS

Training and Validation Accuracy

The model demonstrated effective learning progression over epochs, with accuracy steadily increasing and loss
decreasing across both training and validation sets. The final model achieved:

e Training Accuracy: ~98%
e Validation Accuracy: ~91%

This reflects a strong generalization capacity of the model over unseen validation data, supported by effective
augmentation and regularization. below figure 2 shows the training vs validation accuracy and loss per epoch
graphs of the proposed CNN

Visualization of Model Predictions

Representative images from different classes were visualized alongside their predicted labels. The predictions
mostly aligned with the ground truths, affirming the robustness of the trained classifier. Figure 2 shows the output
of the classification alongwith the Ground truth and actual classification of the image.

Confusion Matrix Analysis

A confusion matrix was computed to identify class-wise performance and misclassification trends. The majority of
confusion occurred between visually similar classes (e.g., “Forest” and “Woodland” types), which is common in
aerial datasets. Overall, class-wise accuracies were relatively balanced.

Model Robustness and Efficiency
Due to the use of:

e progressive convolutional filters,
e batch normalization, and
e strategic max-pooling,

the model remained computationally efficient and scalable. The use of dropout and augmentation contributed to
mitigating overfitting.

GT -> Airport ; PRED -> Airport GT -> Lake ; PRED -> Lake GT -> Port ; PRED -> Port GT -> Lake ; PRED -> Lake GT -> Lake ; PRED -> Lake
GT -> Mountain ; PRED -> Mountain GT -> River ; PRED -> River

GT -> Residential ; PRED -> Residential GT -> Highway ; PRED -> Highway

. N

GT -> Desert ; PRED -> Desert GT -> Airport > Airport GT -> Lake ; PRED -> Lake

GT -> Lake ; PRED -> Lake GT -> Forest ; PRED -> Forest ~ GT -> Agriculture ; PRED -> Agriculture  GT -> Airport ; PRED -> Airport

Figure 3 Ground truth and actual classification of the image.

Copyright © 2024 by Author/s and Licensed by |1 This is an open access article distributed under the Creative Commons Attribution 542

License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Journal of Information Systems Engineering and Management
2025, 10(508)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

DISCUSSION

The results of this study demonstrate the effectiveness of using convolutional neural networks (CNNs) for classifying
aerial landscape imagery. The custom-designed CNN architecture, combined with a robust data augmentation
pipeline, yielded high classification accuracy while maintaining generalizability. Several important insights and
considerations emerge from the findings: This study demonstrates the effectiveness of convolutional neural networks
(CNN5s) in classifying aerial landscape imagery. The thoughtfully designed CNN architecture, paired with an effective
data augmentation process, reached remarkable classification accuracy while maintaining flexibility.  Several
important reflections and observations emerge from the findings:

Effects of Data Augmentation

Using techniques such as random horizontal flips, zoom, rotation, and contrast shifts played a crucial role in
improving the model’s ability to adapt to variations in aerial imagery. These enhancements replicate different
environmental and camera settings, effectively expanding the variety of the training data without requiring additional
image collection.

Model Performance and Flexibility

The model achieved approximately 91% validation accuracy, which is fairly near the 98% training accuracy, indicating
it generalizes effectively and exhibits minimal overfitting. This performance validates the design choices, particularly
the use of progressive convolutional blocks combined with batch normalization and dropout layers. These
techniques allowed for a smoother gradient flow and regularization, which are essential when working with high-
dimensional image data. The confusion matrix revealed that numerous misclassifications occurred among similar-
looking landscape types. 5.4 Scalability and Deployment Readiness

Limitations and Future Directions
Despite the high accuracy, the model’s performance could further improve with the inclusion of:

e Transfer Learning: Incorporating pretrained CNN backbones (e.g., ResNet, MobileNet) could enhance
feature extraction, especially for small or ambiguous classes.

e Multimodal Inputs: Combining RGB data with elevation, infrared, or land use metadata may help the
model better disambiguate similar classes.

e Class Balancing Techniques: While not explicitly mentioned in the current implementation, techniques
such as oversampling underrepresented classes or using class weights could address any residual data
imbalance.

Additionally, longitudinal evaluations across seasonal imagery or different geographies would validate the model’s
adaptability to diverse real-world scenarios.

CONCLUSION

This study offers a thorough method for classifying aerial landscape images through a specially designed
convolutional neural network. The combination of thorough data preprocessing, focused data augmentation, and a
thoughtfully designed CNN architecture led to impressive training and validation accuracies, showcasing the model’s
ability to adapt well to various landscape types. This paper presents several important contributions: a practical
pipeline for processing aerial imagery with TensorFlow and Keras, real-time data augmentation to mimic actual
conditions, and a flexible CNN model architecture suitable for deployment in real-time monitoring systems. The
model showed good performance, but small classification mistakes among visually similar categories suggest that
there could be advantages in combining different types of data and using advanced deep learning techniques like
transfer learning.
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