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The classification of aerial imagery through automation plays an essential role in areas 
like environmental monitoring, urban planning, and disaster response. This study 
introduces a method utilizing a convolutional neural network (CNN) to classify aerial 
landscape images, leveraging the SkyView Aerial Landscape Dataset. The suggested 
pipeline includes streamlined preprocessing, immediate data enhancement, and a 
simple but powerful CNN architecture crafted with the TensorFlow-Keras framework. 
The model underwent training and validation using an 80/20 split of the dataset, 
reaching a training accuracy of about 98% and a validation accuracy of 91%, which 
suggests a robust ability to generalize. Data augmentation techniques, such as random 
flipping, rotation, zoom, and contrast adjustments, greatly improved model 
robustness. The confusion matrix analysis showcases the model’s overall dependability 
while uncovering slight difficulties in distinguishing between visually similar classes. 
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INTRODUCTION 

Maps are needed to share and show geographical data across different areas, like urban development, ecological 
observation, and emergency response [1]. In the past, recognizing geographical features like coastlines, water bodies, 
ridgelines, and elevation lines depended on manual extraction or rule-based methods. Scaling these methods can be 
hard, they can be prone to mistakes, and they often take a lot of work. In mapping and geospatial analysis, it is very 
important to correctly identify and describe these contours in order to make maps that are easy to read and 
understand. 

Recent progress in machine learning, especially deep learning, has shown that it can do a great job of automatically 
extracting features and classifying data from remote sensing sources like satellite images and digital elevation models. 
These methods can make contour classification more accurate and efficient by building on what has come before. ML 
models can understand complicated spatial patterns and contextual details, which helps them tell the difference 
between different geographic features more clearly [6].  

Even with these improvements, using ML for contour classification is still not easy. Some important things to think 
about are how different areas are geographically, the lack of labeled contour datasets, and how hard it is to add 
classified features to current mapping methods. To solve these problems, we need strong ML models that can 
understand and represent contour data and adapt to different types of terrain.  

• Aimed at improving accuracy in cartographic representation, this paper offers a framework for the automated 
classification of geographical contours using machine learning. This paper makes several important 
contributions:  

• Designing and evaluating a machine learning model meant to categorize significant geographic features from 
satellite pictures and digital elevation models.  
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• Examining the variations with traditional classification techniques to assess how effectively the proposed method 
works. Examining how the categorized contours might be smoothly integrated into present cartographic 
processes to emphasize their effect on precise mapping.  

The structure of this article is as follows. Relevant research is summarized in Section 2. The issue is stated in Section 
3 along with the objectives. Covering data preparation, feature selection, and the design of the machine learning 
model, Section 4 describes the approach followed. Section 5 offers the results and discussion. Ultimately, Section 6 
finishes the article and suggests possible next steps. 

LITERATURE REVIEW 

Accurate classification of geographical contours is a long-standing task in cartography and remote sensing. 

Traditional methods rely on manual delineation or heuristic algorithms applied to Digital Elevation Models (DEM), 

contour maps, or satellite imagery. These methods, while useful, are often limited in precision and scalability, 

especially when handling complex or large-scale datasets [8]. 

• Traditional Methods for Contour Extraction and Classification 

Traditional methods for contour extraction from DEMs and topographic maps include edge detection algorithms, 
morphological processing, slope and aspect analysis, and heuristic rule-based methods [8, 9]. The Marching Squares 
algorithm remains a classical approach for contour line generation [8], while GIS software like ArcGIS provides semi-
automatic tools for contour extraction using elevation data [10]. However, these methods are often sensitive to noise, 
require human supervision, and struggle with complex or irregular landforms. Efforts have also been made to classify 
extracted contours into categories like ridgelines, valleys, or coastlines using rule-based systems, but these methods 
lack scalability and adaptability to new geographical areas [11]. 

• Machine Learning and Deep Learning-Based Approaches 

The application of machine learning has significantly increased specially in the areas of remote sensing and geospatial 
data analysis in voew of geographcal struggles among several nation states.   Random Forest and Support Vector 
Machine models have been utilized for landform classification, employing features obtained from Digital Elevation 
Models.   However, these methods depend heavily on features that are manually crafted and oftenly have limited 
adaptability across different environments. 

 Deep Learning models, especially Convolutional Neural Networks, have been utilized for extracting features and 
classifying remote sensing imagery.   In order to extract contour lines from DEMs, Zhang et al. [5] developed a CNN 
model, which outperformed traditional techniques.   Li et al. [14] utilized a U-Net-based model for extracting river 
networks from high-resolution imagery, which could be modified for contour extraction tasks. More recently, Graph 
Neural Networks (GNNs) have been explored to model spatial relationships between contours, achieving improved 
contour classification performance [6], [15]. Generative models like GANs have also been proposed for enhancing 
contour line clarity and for simulating realistic contour patterns in cartographic applications [16]. Despite these 
advances, many studies focus primarily on extraction or classification in isolation. Integration of ML-based 
classification into cartographic workflows remains limited [7], [17]. Table I below represent a detailed summary of 
such works. 

Table I: Review of Related Works 

Ref. Method Data Used Application Limitations 

[8] Marching Squares 
algorithm 

DEM Contour extraction Sensitive to noise, lacks 
classification 

[9] Slope/aspect rule-based 
classification 

DEM Landform 
classification 

Region-specific thresholds 

[10] GIS tool (ArcGIS/QGIS) 
workflows 

DEM, 
topographic 
maps 

Semi-automatic 
contour extraction 

Requires expert intervention 



Journal of Information Systems Engineering and Management 
2025, 10(50s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 539 Copyright © 2024 by Author/s and Licensed by JI This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

[11] Heuristic rule-based 
contour labeling 

DEM, 
topographic 
maps 

Contour classification Inflexible, low scalability 

[5] CNN-based contour line 
extraction 

DEM Contour line 
detection 

Focus only on extraction, not 
classification 

[14] U-Net for water body 
extraction 

High-res 
imagery 

River and stream 
extraction 

Focused on water bodies only 

[6] GNN for contour 
classification 

Vectorized 
contours 

Classification of 
ridges, rivers 

Complex models, resource-
intensive 

[4] Review of DL for landform 
classification 

Remote sensing 
images 

Review of DL 
methods 

Data scarcity, limited 
generalization 

[13] SVM for terrain 
classification 

DEM-derived 
features 

Terrain unit 
classification 

Poor generalization in 
complex terrain 

[12] RF for slope/aspect-based 
landforms 

DEM Landform 
classification 

Needs large feature 
engineering 

[15] GNN with spatial attention DEM, contour 
graphs 

Ridge/valley 
classification 

High data requirement, 
computational cost 

[16] GAN for contour 
enhancement 

Topographic 
maps 

Contour refinement Focus only on visual 
enhancement 

[20] ML integration challenges 
in GIS 

GIS pipelines ML model 
integration into GIS 

Lack of interoperability, 
workflow gaps 

[17] Transformer-based remote 
sensing classification 

Remote sensing 
imagery 

Feature classification High data demand, 
underexplored in contours 

[18] Multi-scale CNN for 
landform detection 

DEM, 
multispectral 
images 

Ridge, valley, slope 
detection 

Still lacks integration into 
cartography 

RESEARCH GAPS IDENTIFIED 

From the reviewed literature, the following key research gaps have been observed: 

• Limited Research on Contour Classification Most works emphasize contour extraction or landform detection, 
with few addressing classification of contours into cartographically meaningful categories (e.g., ridges, 
streams, coastlines). 

• Lack of End-to-End Integration into Cartographic Workflows Very few studies focus on integrating ML/DL 
contour classification models into standard GIS or cartographic pipelines ([7], [17]). 

• Generalization Challenges Across Regions Many ML models are trained on region-specific datasets, limiting 
their applicability to new areas with different geographical characteristics ([4], [13]). 

• Limited Use of Spatial and Contextual Relationships Although GNNs have begun addressing this ([6], [15]), 
broader exploitation of spatial and topological features in contour classification remains underexplored. 

• Scarcity of Annotated Contour Datasets There is a lack of open-access, large-scale, annotated datasets 
specifically focusing on contour classification ([4], [7]). 

• Underutilization of Emerging Models (Transformers, GANs) in Cartographic Contour Tasks While emerging 
models like Transformers ([18]) and GANs ([16]) show promise in remote sensing, their application to 
contour classification and cartographic enhancement is still in its infancy. 
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METHODOLOGY 

Dataset Description 

The dataset used in this study is the SkyView Aerial Landscape Dataset, which contains RGB images of various 
landscape classes captured from aerial perspectives[20, 21]. The images are organized in class-wise directories and 
were accessed via the image_dataset_from_directory utility in TensorFlow, allowing for automatic label inference. 

The dataset was split into: 

• Training Set: 80% of the data 

• Validation Set: 20% of the data Each image was resized to a uniform dimension of 256x256 pixels and 
processed in batches of 32. 

 

Figure 1. A sample of the Dataset 

Preprocessing and Augmentation 

To improve model generalization, a data augmentation pipeline was implemented using Keras’s Sequential API. 
This included: 

• Horizontal flipping 

• Random rotation (±20%) 

• Random zoom (20%) 

• Random contrast adjustment (20%) 

The input images were also rescaled to a [0,1] range by dividing pixel values by 255. 

Model Architecture 

A Convolutional Neural Network (CNN) was designed using the Keras Sequential API with the following 
architecture: 

1. Input Layer 
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o Rescaling and data augmentation 

2. Convolutional Block 1 

o Conv2D(32 filters, kernel_size=3x3, stride=2) 

o BatchNormalization 

o MaxPooling2D 

3. Convolutional Block 2 

o Conv2D(64 filters, kernel_size=3x3, stride=2) 

o BatchNormalization 

o MaxPooling2D 

4. Convolutional Block 3 

o Conv2D(128 filters, kernel_size=3x3, stride=2) 

o BatchNormalization 

o MaxPooling2D 

5. Dense Layers 

o Flatten 

o Dense(128 units, activation='relu') 

o Dropout(0.3) 

o Dense(num_classes, activation='softmax') (final classification layer) 

The model was compiled using: 

• Loss Function: SparseCategoricalCrossentropy 

• Optimizer: Adam 

• Metrics: Accuracy 

Training Protocol 

The model was trained over 25 epochs with real-time batch generation and augmentation. Early stopping and model 

checkpointing mechanisms were considered to avoid overfitting and to preserve the best-performing model during 

training. 

 

 

 

 

 

 

 

 

Figure 2: Training vs validation accuracy and loss per epoch graphs of the proposed CNN 
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RESULTS 

Training and Validation Accuracy 

The model demonstrated effective learning progression over epochs, with accuracy steadily increasing and loss 
decreasing across both training and validation sets. The final model achieved: 

• Training Accuracy: ~98% 

• Validation Accuracy: ~91% 

This reflects a strong generalization capacity of the model over unseen validation data, supported by effective 
augmentation and regularization. below figure 2 shows the training vs validation accuracy and loss per epoch 
graphs of the proposed CNN 

Visualization of Model Predictions 

Representative images from different classes were visualized alongside their predicted labels. The predictions 
mostly aligned with the ground truths, affirming the robustness of the trained classifier. Figure 2 shows the output 
of the classification alongwith the Ground truth and actual classification of the image. 

Confusion Matrix Analysis 

A confusion matrix was computed to identify class-wise performance and misclassification trends. The majority of 
confusion occurred between visually similar classes (e.g., “Forest” and “Woodland” types), which is common in 
aerial datasets. Overall, class-wise accuracies were relatively balanced. 

Model Robustness and Efficiency 

Due to the use of: 

• progressive convolutional filters, 

• batch normalization, and 

• strategic max-pooling, 

the model remained computationally efficient and scalable. The use of dropout and augmentation contributed to 
mitigating overfitting. 

 

Figure 3 Ground truth and actual classification of the image. 
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DISCUSSION 

The results of this study demonstrate the effectiveness of using convolutional neural networks (CNNs) for classifying 
aerial landscape imagery. The custom-designed CNN architecture, combined with a robust data augmentation 
pipeline, yielded high classification accuracy while maintaining generalizability. Several important insights and 
considerations emerge from the findings: This study demonstrates the effectiveness of convolutional neural networks 
(CNNs) in classifying aerial landscape imagery.   The thoughtfully designed CNN architecture, paired with an effective 
data augmentation process, reached remarkable classification accuracy while maintaining flexibility.   Several 
important reflections and observations emerge from the findings: 

Effects of Data Augmentation 

Using techniques such as random horizontal flips, zoom, rotation, and contrast shifts played a crucial role in 
improving the model’s ability to adapt to variations in aerial imagery.   These enhancements replicate different 
environmental and camera settings, effectively expanding the variety of the training data without requiring additional 
image collection. 

 Model Performance and Flexibility 

The model achieved approximately 91% validation accuracy, which is fairly near the 98% training accuracy, indicating 
it generalizes effectively and exhibits minimal overfitting.   This performance validates the design choices, particularly 
the use of progressive convolutional blocks combined with batch normalization and dropout layers.   These 
techniques allowed for a smoother gradient flow and regularization, which are essential when working with high-
dimensional image data. The confusion matrix revealed that numerous misclassifications occurred among similar-
looking landscape types. 5.4 Scalability and Deployment Readiness 

Limitations and Future Directions 

Despite the high accuracy, the model’s performance could further improve with the inclusion of: 

• Transfer Learning: Incorporating pretrained CNN backbones (e.g., ResNet, MobileNet) could enhance 
feature extraction, especially for small or ambiguous classes. 

• Multimodal Inputs: Combining RGB data with elevation, infrared, or land use metadata may help the 
model better disambiguate similar classes. 

• Class Balancing Techniques: While not explicitly mentioned in the current implementation, techniques 
such as oversampling underrepresented classes or using class weights could address any residual data 
imbalance. 

Additionally, longitudinal evaluations across seasonal imagery or different geographies would validate the model’s 
adaptability to diverse real-world scenarios. 

CONCLUSION 

This study offers a thorough method for classifying aerial landscape images through a specially designed 
convolutional neural network.  The combination of thorough data preprocessing, focused data augmentation, and a 
thoughtfully designed CNN architecture led to impressive training and validation accuracies, showcasing the model’s 
ability to adapt well to various landscape types.  This paper presents several important contributions: a practical 
pipeline for processing aerial imagery with TensorFlow and Keras, real-time data augmentation to mimic actual 
conditions, and a flexible CNN model architecture suitable for deployment in real-time monitoring systems. The 
model showed good performance, but small classification mistakes among visually similar categories suggest that 
there could be advantages in combining different types of data and using advanced deep learning techniques like 
transfer learning. 
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