
Journal of Information Systems Engineering and Management
2025, 10(8s)
e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

UPACPL: Design of an UML Pattern Analysis Model for

Identification of Code Clones via Augmented Deep Learning

Process

Shobha G1 ,Rekha Agarwal2 , Vineet Kansal3 , Sarvesh Tanwar4
1,2,4 Amity Institute of Information Technology, Amity University, Uttar Pradesh (India)

3 Institute of Engineering and Technology, Dr APJ Abdul Kalam Technical Univerity , Lucknow, Uttar Pradesh (India)
1shobhaumesh04@gmail.com

2 ragarwal@amity.edu
3vineetkansal@ietlucknow.ac.in

4stanwar@amity.edu

ARTICLE INFO ABSTRACT

Received: 18 Oct 2024

Revised: 15 Dec 2024

Accepted: 28 Dec 2024

Detection of code clones is necessary for ensuring high code quality, byte-level security,

preserving intellectual property rights, and incorporating various compliance measures.

Existing clone detection models moreover showcase higher complexity otherwise has lower

efficiency when evaluated on large code bases. Moreover, most of these models only consider

syntactical checking, which makes them inapplicable for cross-project analysis. To conquer

these matter, this text suggests intend of a competent novel pattern analysis model for

identification of code clones via augmented deep learning process that uses UML (Unified

Modelling Language) based information sets. The proposed model is trained on different UML

class diagram components that include methods, classes, and attributes, relationships between

classes, their associations, dependency levels, realizations, multiplicity instances and interface

patterns. All these pattern information sets are aggregated, and processed by an Ant Lion

Optimizer (ALO), which helps to analyze very different processes. The selected collection is

divided into ‘clone’, and ‘original’ classes by modified a one-dimensional Convolutional Neural

Network (CNN), which helps to evaluate the degree of cloning probability. Due to evaluation of

UML metrics, the proposed model can be scaled to cross project & cross language deployments.

The proposed model was tested on GPT-J Code Clone Detection Dataset, Code Glue Dataset,

and Smart Embed Code Clone Analysis Datasets. It was anticipated that the suggested model

was able to improve precision of code clone detection by 5.9%, precision by 2.3%, and recall by

4.5% when compared with existing methods on similar data samples.

Keywords: Code, Clone, Detection, UML, ALO, CNN, Delay, Method, Dependency, Graph,

Multiplicity, Network, Patterns.

INTRODUCTION

Code clone detection is the process of identifying sections of code within a codebase that are similar or identical to

other sections. Cloned code can occur for a variety of reasons, including copy-pasting code, reusing similar code

across modules or files, and reusing code across projects. Although code clones may appear harmless, they can

negatively affect code quality, maintenance, and security levels via use of Context-enhanced and Patch-validation-

based Vulnerable code clone Detector (CPVD) process [1, 2, 3].

Code duplication can result in issues such as code bloat, increased development costs, and decreased code

readability. A bug in one cloned section of code may exist in other clones as well. This makes it more difficult to

identify and fix bugs [4, 5, 6]. In addition, malicious code can be concealed using code clones, making it more

difficult for security tools to detect and prevent attacks.

Consequently, code clone recognition is a crucial component of software development and maintenance. By

identifying and eliminating code clones, developers can enhance code quality, reduce security risks, and make the

170

J INFORM SYSTEMS ENG, 10(8s)

codebase easier to maintain and expand. There are numerous techniques and tools for detecting code clones,

ranging from manual code inspection to automated tools capable of detecting clones across large codebases. The

detection of clone codes is crucial for maintaining code quality, as code duplication is frequently an indication of

low-quality code and can result in maintenance issues, increased development costs, and decreased code readability

levels [7, 8, 9]. By identifying and eliminating duplicate code, developers can improve code quality and make the

code base easier to maintain and expand. Clones of code can also be used to conceal malicious code, making it more

difficult for security tools to detect and prevent attacks. By locating and eliminating clone code, security risks can be

diminished. Identifying code clones can contribute to the protection of intellectual property by preventing the

unauthorized use or distribution of proprietary code. This is especially important in industries such as finance,

healthcare, and aerospace where software is an integral component of the product or service. In certain industries,

such as finance and healthcare, compliance regulations mandate that software be audited to ensure that it meets

quality and security requirements. Identification and elimination of clone code can aid in ensuring compliance with

these regulations [10, 11, 12].

There are a variety of techniques for detecting code clones. Some common techniques include:

• Text-based clone detection is a technique that compares code based on its textual similarity. It searches for

code fragments with identical or similar text, ignoring the syntax and structure of the programming language.

This method is useful for detecting simple clones, but it may be ineffective for detecting complex clones [13, 14,

15].

• Token-based clone detection: This method identifies clones based on a sequence of tokens that represent the

code's structure. It is more effective than text-based clone detection because it takes the structure and syntax of

the code into account. Abstract syntax trees (ASTs) that symbolize the code structure can be utilised for token-

based clone detection processes [16, 17, 18].

• Tree-based clone detection: This technique generates a parse tree that represents the code's structure.

Afterwards, the tree is compared to other trees in the codebase to identify clones. Tree-based clone detection is

more efficient than token-based clone detection, but also more expensive computationally for real-time

scenarios [19, 20].

• Metric-based clone detection: This technique identifies clones based on metrics that capture the characteristics

of the code, such as the code's length, number of statements, and complexity levels. This method can identify

clones with distinct syntactic structures but identical characteristics [21, 22].

• Hybrid clone detection: This technique combines two or more of the above techniques to detect clones more

effectively. A hybrid technique may, for instance, combine text- and token-based clone detection or metric- and

tree-based clone detections via Clone Seeker (CS) like techniques [23, 24].

The technique selected is contingent on the nature of the codebase, the types of clones to be detected, and the

available resources for clone detection. Combining these techniques allows automated clone detection tools to

provide a more accurate and efficient clone detection process. In the following section, a survey of these techniques

is presented, where it is observed that existing clone detection models are either more complex or less effective

when evaluated on large code bases. In addition, the majority of these models only account for syntactical checking,

rendering them unsuitable for cross-project analysis. To address these subjects, the third section of this paper

proposes the design of a novel execution-performance pattern analysis model for the identification of code clones

through an augmented deep learning process. In section 4, the proposed model was validated on multiple datasets,

and metrics such as accuracy, precision, and recall were evaluated and compared with existing models under

various conditions. This text concludes with contextual observations regarding the suggested model, as well as

performance enhancement recommendations for various use scenarios.

Motivation

In software engineering, the recognition and organization of code clones—that is, sections of code that are

structurally or functionally similar—is a crucial task. Code clones can result in a number of problems, such as

decreased maintainability, more work needed for bug fixing and evolution, and lower software quality. The primary

focus of conventional clone detection methods is on examining the source code, but they frequently have trouble

spotting clones that have undergone structural or syntactical changes.

171

J INFORM SYSTEMS ENG, 10(8s)

Software systems are represented visually in Unified Modeling Language (UML) diagrams, which capture their

structure and behavior. By incorporating both structural and behavioral similarities between code fragments, we

can possibly improve the detection of code clones by using UML diagrams. We can also benefit from deep learning

methods' capacity to automatically recognize intricate patterns and features by applying them to UML diagrams.

Objectives

Designing a novel UML pattern analysis model that makes utilize of augmented deep learning techniques for the

detection of code clones is the main goal of this research paper, while the following are the precise objectives:

• Gain a thorough understanding of code clones and how they affect the upkeep and quality of software sets.

• Learn about the diverse types of code clones and their features.

• Examine the drawbacks and shortcomings of the clone detection methods that are currently available for real-

time use cases.

• Investigate the Unified Modeling Language (UML) and how it might improve clone detection efficiency levels.

• Analyze the structural and behavioral data that UML diagrams have captured for different scenarios.

• Determine which UML diagrams and components are most important for clone detections.

• Look into code clone detection methods using deep learning sets.

• Investigate various deep learning architectures suitable for UML diagram analysis.

• Look into the shortcomings of the current code clone detection deep learning models.

• Create and put into use a UML pattern analysis model for identifying code clones.

• Establish a process for combining code analysis methods with UML diagrams& visualization techniques.

• Create a deep learning architecture that is suitable for processing UML diagrams and locating code clones

• Create methods for adding UML-based information to deep learning processes

• Analyze how well the suggested UML pattern analysis model works and performs.

• Amass a varied collection of software projects complete with UML diagrams and related codebases.

• Conduct tests to evaluate the model's recall, precision, accuracy, and other pertinent metrics.

• Compare the efficiency of the suggested model to the current code clone detection methods.

• Discuss about the UML pattern analysis model's implications and real-world uses.

• Examine the advantages and drawbacks of the suggested model in actual software development situations.

• Discuss potential use cases like software maintenance, bug fixing, and code refactoring scenarios.

• Give instructions and suggestions for applying the UML pattern analysis model in real-world situations.

• Give concrete advice to researchers and software engineers who are interested in UML-based methods for code

clone detection.

By achieving these goals, this research paper hopes to advance the field of software engineering by recommending a

cutting-edge UML pattern analysis model that enhances code clone detection and helps maintain high-quality

software systems.

LITERATURE REVIEW

Code clones are duplicated sections of code that can negatively impact the quality, maintenance, and

comprehension of software. For software developers and maintainers to effectively locate and handle code clones,

code clone detection is essential. In this review, we explore various code clone detection methods, such as text-

based, token-based, and tree-based ones.

Code clones are redundant code snippets that can be found in various places throughout a software system. In

order to increase the quality, maintainability, and reusability of software, clone detection aims to recognize and

categorize these clones. Many different methods have been put forth in recent years to address the problem of code

clone detection. This section gives a summary of these methods along with their advantages and disadvantages.

To find copies, text-based techniques examine the source code's textual representation. To find similar code

fragments, these techniques frequently use string matching algorithms like suffix trees, longest common sub-

sequences via Functional Code Clone Detector using Attention [25, 26, 27], or tokenization. They are reasonably

quick, but they may have a lot of false positives and not be flexible enough to capture semantic similarities.

172

J INFORM SYSTEMS ENG, 10(8s)

By dissecting the code into its constituent tokens, token-based techniques take into description the structural and

lexical information. These procedures tokenize the source code, produce token sequences, and then assess

similarity between them. By using Pairwise Feature Fusion (PFF) operations to capture syntactic and partial

semantic similarities, token-based approaches provide greater precision than text-based techniques [28, 29, 30].

For real-time scenarios, common token-based clone detection tools include Simian, CCFinder, and Deckard

techniques.

From the source code, abstract syntax trees (ASTs) are created using tree-based techniques, and the structural

similarities between these trees are compared. A higher level of abstraction is offered by AST-based clone detection,

allowing for the detection of clones with various syntactic variations. Code clones are found using AST-based

techniques by methods like PDG (Program Dependence Graph) and CCFinderX [31, 32, 33, 34].

Due to their capacity to recognize patterns and identify complex clones, machine learning techniques have gained

popularity in the field of code clone detection [35, 36, 37, 38]. These methods frequently start with feature

extraction using tools like n-grams, control flow graphs, or AST-based representations, then use machine learning

techniques like SVM, Random Forest, or deep learning models to process the data. Large codebases can be handled

effectively by machine learning-based clone detection, and the results are also more accurate [39, 40, 41, 42].

In real-time scenarios, hybrid approaches combine multiple detection techniques to increase the efficacy and

accuracy of clone detection [43, 44, 45]. To improve the clone detection process, a hybrid approach, for instance,

might combine text-based and tree-based methods. These strategies aim to balance the weaknesses of various

techniques [46, 47, 48] while maximizing their combined strengths.

Evaluation metrics are used to gauge how well clone detection techniques work. The accuracy, comprehensiveness,

and overall performance of the clone detection algorithms are measured by metrics like precision, recall, and F-

measure. Clone coverage, detection effectiveness, and scalability levels are additional metrics [46][47][48][49]50].

Large codebases, language-specific features, and the dynamic nature of software development, however, present

persistent difficulties. The development of methods for identifying semantic clones, handling evolving clones, and

investigating cutting-edge methods for clone management and refactoring operations are possible future research

directions.

Therefore, code clone detection is important to improve the quality and maintainability of the software. For various

scenarios, various techniques—including text-based, token-based, tree-based, and machine learning approaches—

have been proposed and are still being developed. Each method has strengths and weaknesses. These are important

considerations for researchers and practitioners who must then choose the best technique for their unique needs

and constraints. In order to make progress in clone detection, it is likely that multiple techniques will be combined

in the future. Additionally, new issues are also addressed that arise in the field for real-time scenarios.

PROJECTED DESIGN OF AN UML PATTERN SCRUTINY MODEL FOR IDENTIFICATION OF CODE

CLONES VIA AUGMENTED DEEP LEARNING PROCESS

As per the review of existing models used for code clone detection via UML Pattern Analysis,

in the immediate evaluation, these models may appear to be too complex or have low variability. To overcome these

 problems, this section discusses the design of UML model analysis. Model for identification of code clones via

augmented deep learning process. As per the flow of model in figure 1, it can be observed that the proposed model

is trained on various UML class diagram elements, such as methods, classes, attributes, relationships between

classes, their associations, dependency levels, realizations, multiple instance patterns, and interface patterns. All of

these pattern information sets are aggregated and processed by an Ant Lion Optimizer (ALO), which aids in the

recognition of attribute sets with a high degree of variations for different input sets. A modified one Dimensional

Convolutional Neural Network (CNN) is used to categorize the selected sets into 'clone' and 'original' classes, which

aids in the evaluation of cloning probability levels.As depicted in figure 1, the code sets are initially passed through

an AST parsing mechanism, which has the ability to generate comprehensive trees for different code languages. The

process of generating the Abstract Syntax Tree (AST) for a programming language involves parsing the source code

and constructing the tree-like arrangement that represents the code's abstract syntax.

173

J INFORM SYSTEMS ENG, 10(8s)

Figure 1. Design of the projected model for code clone detection via analysis of UML patterns

The specific algorithms used for AST generation depend on the parsing technique employed, some of which are

discussed as follows,

1. Recursive Descent Parsing:

• Recursive descent parsing is a top-down parsing practice that constructs an AST by recursively parsing the code

based on a set of grammar rules.

• The parsing process typically involves writing separate parsing functions for each non-terminal symbol in the

grammar, which are recursively called to parse the code.

• As the code is parsed, AST nodes are created and linked together to form the tree structure.

2. LALR Parsing (Look-Ahead LR Parsing):

• LALR parsing is a bottom-up parsing technique that constructs an AST using a parser generator like Bison or

Yacc.

• LALR parsers use LR(1) or LALR(1) grammars to handle look-ahead symbols and reduce the input tokens to

AST nodes.

• The generated parser shifts and reduces tokens according to the grammar rules, constructing the AST as it

reduces.

174

J INFORM SYSTEMS ENG, 10(8s)

3. LL Parsing (Left-to-Right, Leftmost Derivation):

• LL parsing is a top-down parsing technique that constructs an AST by reading the input tokens from left to

right and performing leftmost derivations.

• LL parsers typically use LL(k) grammars, where k represents the number of look-ahead tokens.

• The parsing process involves constructing the AST nodes based on the grammar rules and the input tokens.

4. Earley Parsing:

• Earley parsing is a general parsing algorithm that can handle any context-free grammar.

• It constructs an AST by parsing the input tokens using dynamic programming and chart parsing.

• The parsing process builds a parse chart that records the possible parse states and transitions, which are used

to construct the AST.

Among these techniques, Earley parsing is considered the most comprehensive in terms of handling any context-

free grammar. Earley parsing is a general parsing algorithm that can parse languages with arbitrary context-free

grammars, including ambiguous and non-deterministic grammars. It is renowned for its capacity to handle a

variety of linguistic constructions and for its expressive potency.

Compared to recursive descent parsing, LL parsing, and LALR parsing, Earley parsing does not have strict

limitations on the grammar and can handle more complex and ambiguous grammars. It is capable of producing all

possible parse trees for an input sentence, accommodating languages with multiple valid interpretations.

However, it's imperative to note that Earley parsing is computationally expensive, especially intended for large

grammars or inputs scenarios. The time complexity of Earley parsing is generally 𝑂(𝑛3), where n is the span of the

input. Therefore, the preference of parsing procedure depends on the specific desires of the language being parsed,

the grammar complexity, and the efficiency constraints of the applications. Due to its comprehensiveness, the

Earley Model with memoization and ambiguity handling is used to parse input codes for generation of ASTs.

Earley parsing is a parsing algorithm that uses dynamic programming and chart parsing to construct parse charts

and recognize sentences based on context-free grammars. The algorithm is extended in this text via memorization

& ambiguity handling, and operates by maintaining sets of states representing the parsing progress and transitions

between those states. This model works via the following process,

1. Initialization: Create an initial set of states, called the start set, representing the set up symbol of the syntax.

Each state consists of a production, a dot indicating the current position within the production, and a position

representing the current index in the inputs & sets.

2. Scanning: For each state in the current set, if the dot is in front of a terminal symbol, scan the corresponding

token from the input and create a new state by advancing the dot levels.

3. Prediction: For each state in the current set, if the dot is in front of a non-terminal mark, predict the

productions where that non-terminal is resting on the left-hand side and create new states by adding these

productions to the sets.

4. Completion: For each state in the current set, if the dot is at the end of a production, find states in the chart

where the non-terminal preceding the dot matches the current production's left-hand side. Create new states by

advancing the dot in those matching states.

5. Combine and Transition:Merge the new states created in the scanning, prediction, and completion steps with

the current set of states to form the next set of states. Repeat the process until no new states can be added for

recurrent operations.

6. Acceptance:If a state with the dot at the end of the start symbol's production and the position at the end of the

input is present in the chart, the input is recognized by the grammar sets.

175

J INFORM SYSTEMS ENG, 10(8s)

7. Memorization: Create a memorization table to store previously computed parse states. When adding a new

state to a chart, check if an identical state already exists in the chart or memorization tables. If a matching state

is found, the processing for that state is skipped, as it has already been computed and added to the charts.

8. Handling Ambiguous Grammars: During the completion step, when multiple states with the same non-

terminal preceding the dot are found, store all resulting states rather than keeping only one set of entries.

Maintain multiple parse paths for ambiguous portions of the input, allowing for multiple valid parse trees.

When constructing the AST, consider all possible parse paths and generate multiple ASTs.

9. Combined Steps with Memorization and Ambiguity Handling: Initialize the memoization table and the charts.

• For each position in the input: Perform scanning, prediction, and completion steps as in the basic Earley

algorithm process.Before adding a new state to the chart, check the memoization table for an identical set of

states.If a matching state is found, skip the processing for that set of states.Otherwise, add the state to the

chart and memoization tables.

• After all positions in the input have been processed:Perform additional completion steps until no new states

can be added for current set of inputs & samples.Consider all resulting states during completion, even if there

are multiple states with the same non-terminal preceding the dot sets.

10. Generate the AST:Traverse the chart to construct the parse tree or multiple parse trees if ambiguity

exists.Generate AST nodes based on the chart states, grammar rules, and tokens.Link the AST nodes together

according to the grammar rules and parse paths.

Based on this process, ASTs are generated, which are used to extract methods, classes, attributes, relationships

between classes, their associations, dependency levels, realizations, multiplicity instances and interface patterns.

An example AST which is generated via this process can be observed from figure 2, where comparison function was

passed to Earley Model, and a tree with different classes and entities was extracted, which is used for further

extraction operations.

Figure 2. Extracted AST from the input codes

To extract methods, classes, attributes, relationships between classes, associations, dependency levels, realizations,

multiplicity instances, and interface patterns from the Abstract Syntax Tree (AST) generated through the Earley

parsing algorithm, the AST was travervedand its nodes were analyzed via the following operations,

1. Extracting Classes:

• Traverse the AST and identify nodes representing class declarations.

• Extract the class name, superclass (if any), interfaces implemented, and modifiers.

• Store this information as class objects or in a data structure for further analysis.

2. Extracting Methods:

• Traverse the AST and locate nodes representing method declarations within classes.

• Extract the method name, return type, parameters, modifiers, and method body (if available).

• Store this information in the corresponding class object or data structure.

176

J INFORM SYSTEMS ENG, 10(8s)

3. Extracting Attributes:

• Traverse the AST and identify nodes representing variable declarations within classes.

• Extract the attribute name, type, modifiers, and default value (if provided).

• Store this information in the corresponding class object or data structure.

4. Extracting Relationships between Classes:

• Analyze the AST to identify nodes representing relationships between classes.

• Look for nodes indicating inheritance (superclass), interface implementation, or association.

• Extract the related classes and the nature of the relationship (e.g., superclass, interface, association).

• Store this relationship information in a suitable data structure.

5. Extracting Dependency Levels:

• Analyze the AST and identify nodes representing method calls or variable references.

• Track the dependencies between classes and methods based on these references.

• Assign levels or weights to indicate the degree of dependency or the number of references.

• Store the dependency information in a data structure, such as a dependency graph or matrix.

6. Extracting Realizations:

• Analyze the AST and identify nodes representing interfaces and their implementations.

• Extract the interface name and the implementing class.

• Store this information as a realization relationship between the interface and class.

7. Extracting Multiplicity Instances:

• Analyze the AST and identify nodes representing associations between classes.

• Extract the participating classes and the type of association (e.g., one-to-one, one-to-many).

• Determine the multiplicity instances or cardinality constraints for each class in the association.

• Store this information as part of the association relationship or in a separate data structure.

8. Extracting Interface Patterns:

• Analyze the AST and identify nodes representing interfaces and their implementations.

• Look for patterns such as adapter, decorator, or observer.

• Extract the relevant classes and their relationships within the pattern.

• Store this information as part of the interface pattern or in a separate data structure.

Once these parameters were extracted, then an Ant Lion Optimizer (ALO) was used to maximize the variance levels

of these feature sets. The ALO Model works via the following operations,

• Initially, generate a set of 𝑁𝐴 Stochastic Ants, where each Ant selects extracted features via equation 1,

𝑁 = 𝑆𝑇𝑂𝐶𝐻(𝐿𝐴 ∗ 𝑁𝑓, 𝑁𝑓) … (1)

Where, 𝑁 represents the selectively extracted features, 𝐿𝐴 represents Ant’s Learning Rate, and 𝑁𝑓 represents total

number of features which were extracted by the Earley method including methods, classes, attributes, relationships

between classes, associations, dependency levels, realizations, multiplicity instances, and interface patterns.

• Use these 𝑁 features for code clone detection via the 1D Convolutional Neural Network (CNN), and calculate

Ant fitness via equation 2,

177

J INFORM SYSTEMS ENG, 10(8s)

𝑓 = 𝐹1 ∗
𝐷𝑅

𝐹𝐷𝑅
∗

𝐶𝐶

𝑑
∗ 𝑣𝑎𝑟(𝐹) … (2)

Where, 𝐹1 signifies FMeasure of the code clone detection procedure, and is estimated via equation 3, 𝐷𝑅 represents

Detection Rate and is calculated via equation 4, 𝐹𝐷𝑅 represents False Discovery Rate and is calculated via equation

5, 𝐶𝐶 represents Clone Coverage and is calculated via equation 6, 𝑑 represents the delay needed for code clone

detection and is estimated via equation 7, while 𝑣𝑎𝑟(𝐹) represents variance between the extracted features and is

calculated via equation 8 as follows,

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
… (3)

𝐷𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
… (4)

The detection rate, also identified as the recall or true positive rate, measures the proportion of actual code clones

that were effectively detected by the model sets. It indicates the model's ability to find code clones.

𝐹𝐷𝑅 =
𝐹𝑃

𝑇𝑃 + 𝐹𝑃
… (5)

The false discovery rate measures the percentage of clones detected that are not real code. This indicates that the m

odel is biased towards negativity..

𝐶𝐶 = (
𝑇𝑃 + 𝐹𝑁

𝑇𝑜𝑡𝑎𝑙
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑜𝑛𝑒𝑠) ∗ 100 … (6)

Clone coverage measures the percentage of code clones detected among all the actual code clones present in the

datasets & samples. It indicates the model's ability to find a significant portion of the clones.

𝑑 = 𝑡𝑠(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) − 𝑡𝑠(𝑒𝑛𝑑) … (7)

𝑣𝑎𝑟(𝐹) =
√∑ (𝐹(𝑖) − ∑

𝐹(𝑗)

𝑁

𝑁
𝑗=1)

2
𝑁
𝑖=1

𝑁 − 1
… (8)

Where, Precision & Recall are sketchy via equations 9 & 10 as follows,

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
… (9)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
… (10)

The percentage of true positive clones among the clones found is known as precision. It demonstrates how well the

model detects real code clones.TP represents the number of correctly identified code clones, and FP stands for the

number of non-clone code segments falsely acknowledged as clones. A higher precision indicates fewer false

positives. Recall measures the proportion of true positive clones that are fruitfully detected through the model. It

indicates the model's capability to find all active code clones. TP represents the number of correctly identified code

clones, and FN represents the number of code clones that were not detected by the models. A higher recall indicates

fewer false negatives. F1 score is a compromise between precision and recall, providing a balance between model

performance. It combines precision and recall into a single metric, giving equal importance to both metric sets. The

F1 score varies from 0 to 1, with 1 indicating the finest potential recital levels.

• Based on fitness levels for each Ant, a fitness threshold is calculated via equation 11 as follows,

𝑓𝑡ℎ =
1

𝑁𝐴
∑ 𝑓(𝑖) ∗ 𝐿𝐴

𝑁𝐴

𝑖=1

… (11)

Where, 𝐿𝐴 represents Learning Rate for the ALO process.

178

J INFORM SYSTEMS ENG, 10(8s)

• Based on this value, if 𝑓 > 𝑓𝑡ℎ, then Ants are marked as ‘Antlions’ and approved directly to the further set of

Iterations, while other Ants are discarded, and mutated via equations 1 to 10, which helps in generation of new-

fangled Ant configurations.

• This process is repeated for 𝑁𝐼 Iterations, and Ant configurations are continuously generated for each set of

Iterations.

At the end of final Iteration, features with higher fitness levels (that indicate higher variance levels) are selected for

classification process.

The selected features are classified via an efficient Customized 1D CNN, which fuses multiple sized Convolutional,

Max Pooling, Drop Out and Fully Connected Neural Network (FCNN) layers. Design of the model can be observed

from figure 3, where different layers and their interconnections are used to for identification of ‘clone’ codes.

Figure 3. Design of the customized 1D CNN Model for identification of ‘clone’ codes

The model initially calculates convolutional features from the ALO-selected features via equation 12,

𝐶𝑜𝑛𝑣 = ∑ 𝑥(𝑖 − 𝑎) ∗ 𝐿𝑅𝑒𝐿𝑈 (
𝑚 + 2𝑎

2
) … (12)

𝑚

2

𝑎=−
𝑚

2

Where, 𝑚, 𝑎 represents different window & stride sizes, while 𝐿𝑅𝑒𝐿𝑈 represents a Leaky Rectilinear Unit, which is

used for activation of features. This layer is represented via equation 13,

𝐿𝑅𝑒𝐿𝑈(𝑥) = 𝑙𝑎 ∗ 𝑥, 𝑤ℎ𝑒𝑛 𝑥 < 0, 𝑒𝑙𝑠𝑒 𝑥 … (13)

Where, 𝑙𝑎 is the leaky activation constant, and is used to retain positive feature sets. The activated features are

given to a Max Pooling layer, which is a down-sampling operation that reduces the spatial dimensions of the feature

maps obtained from convolutional layers. It extracts the maximum value from a local region of the inputs & their

respective sets. The output of Max Pooling can be evaluated via equation 14 as follows,

179

J INFORM SYSTEMS ENG, 10(8s)

𝑂𝑢𝑡𝑝𝑢𝑡[𝑖, 𝑗, 𝑐] = 𝑚𝑎𝑥(𝑋[𝑖 ∗ 𝑝𝐻 ∶ (𝑖 + 1) ∗ 𝑝𝐻, 𝑗 ∗ 𝑝𝑊 ∶ (𝑗 + 1) ∗ 𝑝𝑊, 𝑐]) … (14)

Where,𝑖 ranges from 0 to (
𝐻

𝑝𝐻
) and j ranges from 0 to (

𝑊

𝑝𝑊
), and c ranges from 0 to (C - 1) for different use cases.In

this equation, Output is the resulting pooled feature map, and 𝑚𝑎𝑥() represents the maximum function levels. The

pooling size (pH, pW) determines the size of the pooling window, and (i, j) represents the location of the pooled

regions.

Dropout is a regularization technique commonly used in CNNs to prevent overfitting scenarios. It stochastically

sets a fraction of the input units to 0 at each training step, effectively "dropping out" those units.Given an input

feature map 𝑋 of size (H, W, C) and a dropout rate of 𝑝, the output of dropout is calculated via equations 15 & 16 as

follows,

𝑀𝑎𝑠𝑘[𝑖, 𝑗, 𝑐]~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝑝) … (15)

𝑂𝑢𝑡𝑝𝑢𝑡[𝑖, 𝑗, 𝑐] = 𝑋[𝑖, 𝑗, 𝑐] ∗ 𝑀𝑎𝑠𝑘[𝑖, 𝑗, 𝑐] … (16)

In this evaluation, Mask represents an augmentedstochastically generated binary mask with a probability of (1 - p),

whilethe mask is generated independently for each unit in the input feature maps. Multiplying the input X with the

mask effectively drops out a fraction of the units by setting them to 0 for initialization operations. During inference

or testing, when dropout is not applied, the output is scaled by (1 - p) to ensure that the expected value remains the

same for different inputs & sample sets. The selected features are classified by an efficient SoftMax based activation

layer, which is represented via equation 17 as follows,

𝑐(𝑜𝑢𝑡) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (∑ 𝑓(𝑖) ∗ 𝑤(𝑖)

𝑁𝑓

𝑖=1

+ 𝑏(𝑖)) … . (17)

Where, 𝑤 & 𝑏 are weights and biases for different input variables, and 𝑁𝑓 represents number of features extracted.

The 𝑐(𝑜𝑢𝑡) value determines if input codes are ‘clone’ or ‘original’, which assists in identification of code

authenticity levels. These levels were calculated for different datasets & samples, and performance was evaluated in

terms of FMeasure of the code clone detection process, Detection Rate (or accuracy levels), False Discovery Rate (or

recall), Clone Coverage (or AUC) and the delay needed for code clone detection process. This evaluation along with

its comparison with existing methods is discussed in the next section of this text.

RESULT ANALYSIS

The proposed framework incorporates Earley Method with Memoization and ambiguity handling, which assists in

formation o\f efficient ASTs. These ASTs are used to extract high-efficiency UML feature sets, which are selected

via an ALO based optimization process. The selected feature sets are classified into ‘clone’ and ‘non-clone’

categories via 1D CNN process, which assists in evaluation of block-level priorities. To evaluate performance of the

proposed model, it was tested on the following datasets & samples,

• GPT-J Code Clone Detection Datasets & Samples (https://zenodo.org/record/6548030)

• Code Glue Datasets & Samples (https://paperswithcode.com/dataset/codexglue)

• Smart Embed Code Clone Analysis Datasets & Samples

(https://www.kaggle.com/datasets/diarmuidodonoghue/graphs-of-code/code)

A total of 400k code samples were created from the combination of all these sets, of which 320k were used for

training and 40k each for validation and testing scenarios. This method was used to measure the proposed model's

accuracy (A), recall (R), precision (P), FMeasure (F), AUC, and delay for various test sample counts. The percentage

of correctly classified samples to all samples is the accuracy. Equation 18 assesses how well the model predicts the

correct "clone" class.

𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
… (18)

Where TP represents the number of true positives (positive samples that were correctly classified), TN represents

the number of true negatives (negative samples that were correctly classified), FP represents the number of false

positives (positive samples that were incorrectly classified), and FN represents the number of false negatives

(negative samples that were incorrectly classified). The precision ratio measures how many positive samples are

180

J INFORM SYSTEMS ENG, 10(8s)

correctly identified out of all the positive samples. Equation 19 provides an estimate of the model's capacity to

classify positive samples correctly,

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
… (19)

Where FP is the number of false positives (positive samples that were incorrectly classified) and TP is the number

of true positives (positive samples that were correctly classified).

Recall is the ratio of correctly identified positive samples to all positive samples overall. Equation 20 is used to

estimate the model's capacity to identify all positive samples.

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
… (20)

Where FN is the number of false negatives (negative samples that were incorrectly classified) and TP is the number

of true positives (positive samples that were correctly classified). Delay is the interval of time between finishing and

beginning the clone detection process. Equation 21 is utilized to estimate it as follows,

𝐷 = 𝑡(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) − 𝑡(𝑠𝑡𝑎𝑟𝑡) … (21)

Where t(start) is the model's starting timestamp for the code clone detection process and t(complete) is the

timestamp of completion.

The model's ability to distinguish between positive and negative samples is measured by the area under the curve

(AUC). Equation 22 is used to determine AUC by plotting the true positive rate (TPR) against the false positive rate

(FPR) at different threshold settings.

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅) ∗ 𝑑𝐹𝑃𝑅
1

0

… (22)

TPR stands for true positive rates, while FPR stands for false positive rates. The harmonic mean of the precision

and recall levels is the F1 score. Equation 23 is used to estimate it as a measure of the model's accuracy in

classifying positive samples while minimizing false positives and false negatives for real-time scenarios.

𝐹1 = 2 ∗
𝑃 ∗ 𝑅

𝑃 + 𝑅
… (23)

Figure 4 illustrate the outcomes of the model's performance comparison with CPVD [3], CS [23], and PFF [28] for

various test sample numbers (NTS) as follows,

Figure 4. Accuracy obtained during code clone analysis

0

20

40

60

80

100

120

3
2

k

4
8

k

6
4

k

8
0

k

9
5

k

1
1

3
k

1
3

0
k

1
4

5
k

1
6

0
k

1
7

5
k

1
9

4
k

2
0

0
k

2
2

5
k

2
4

0
k

2
6

0
k

2
7

5
k

2
9

0
k

3
0

0
k

3
2

0
k

3
4

0
k

3
4

5
k

3
7

0
k

3
8

0
k

4
0

0
k

CPVD [3] CS [23] PFF [28] Proposed

181

J INFORM SYSTEMS ENG, 10(8s)

When compared to CPVD [3], CS [23], and PFF [28], the proposed model is able to increase code-clone detection

accuracy by 6.4%, 10.5%, and 8.3%, respectively, according to this evaluation. Because of this, it can be very helpful

in a wide range of real-time scenarios. These accuracy levels are improved by combining ALO with 1D CNN, which

aids in the discovery of high-density parameter sets for a variety of scenarios. Similar to Figure 4, figure 5 shows the

precision levels as follows:

Figure 5. Precision obtained during code clone analysis

When compared to CPVD [3], CS [23], and PFF [28], the suggested model is able to increase code-clone detection

precision by 3.5%, 8.3%, and 10.5%, respectively, according to this evaluation. Because of this, it can be very helpful

in a wide range of real-time scenarios. The use of ALO and the Earley Model, which aids in the taxonomy of high-

density attribute sets for a variety of code-clone detection scenarios, improves these precision levels. Similar to this,

figure 6's recall levels can be seen as follows,

Figure 6. Recall obtained during code clone analysis

By comparison to CPVD [3], CS [23], and PFF [28], the proposed model is able to increase code-clone detection

recall by 10.4%, 9.5%, and 10.5%, respectively, according to this evaluation. As a result, it is very beneficial for a

wide range of real-time scenarios. The use of 1D CNN, ALO, and the Earley Model, which aids in the classification

of high-density aspect sets for a variety of code-clone detection scenarios, improves recall levels. Similar to that,

figure 7 shows the F1 levels as follows,

0

20

40

60

80

100

120

CPVD [3] CS [23] PFF [28] Proposed

0

20

40

60

80

100

120

CPVD [3] CS [23] PFF [28] Proposed

182

J INFORM SYSTEMS ENG, 10(8s)

Figure 7. F1 Score obtained during code clone analysis

When compared to CPVD [3], CS [23], and PFF [28], the proposed model can achieve better competent to get

better F1 of code-clone detection by 4.5%, 10.4%, and 9.5%, in that order, according to this evaluation. Since it can

detect Code-Clone Instances more precisely for various scenarios, it is very helpful for a extensive range of real-time

state of affairs. The augmentation made for various use cases have amplified the precision and recall levels of such

F1measure sets. Alike to Figure 7, the AUC levels can be observed as follows from Figure 8,

Figure 8. AUC obtained during code clone analysis

The test shows that the proposed model can improve the area under the curve (AUC) by 8.3% in code clone detectio

n compared to the previous model. CPVD [3], 4.9% compared to CS [23], and 9.5% compared to PFF [28]. Because

of this, it can be very supportive in a extensive series of real-time situations. This AUC is enhanced by using ALO to

0

20

40

60

80

100

120

3
2

k

4
8

k

6
4

k

8
0

k

9
5

k

1
1

3
k

1
3

0
k

1
4

5
k

1
6

0
k

1
7

5
k

1
9

4
k

2
0

0
k

2
2

5
k

2
4

0
k

2
6

0
k

2
7

5
k

2
9

0
k

3
0

0
k

3
2

0
k

3
4

0
k

3
4

5
k

3
7

0
k

3
8

0
k

4
0

0
k

CPVD [3] CS [23] PFF [28] Proposed

0 20 40 60 80 100 120

32k

48k

64k

80k

95k

113k

130k

145k

160k

175k

194k

200k

225k

240k

260k

275k

290k

300k

320k

340k

345k

370k

380k

400k

Proposed PFF [28] CS [23] CPVD [3]

183

J INFORM SYSTEMS ENG, 10(8s)

find the best parameter settings. This makes it easy to choose a high-speed protocol for various clone code detection

scenarios. Similarly, in Figure 9, the latency level is shown as follows,

Figure 9. Delay needed during code clone analysis

By comparison to CPVD [3], CS [23], and PFF [28], the projected model is able to speed up code-clone detection by

4.5%, 6.4%, and 8.5%, respectively, according to this evaluation. As of this, it is very obliging in a extensive range of

real-time scenarios. Three rule engines are used with bioinspired operations and recommendations to quickly

identify high-density feature sets suitable for various code-clone detection scenarios. Due to these developments for

emergency use cases, the proposed model can be used in many emergency situations and areas.

CONCLUSION AND FUTURE SCOPE

By combining deep learning techniques with UML pattern analysis, this paper introduces a novel method for

detecting code clones. The proposed model outperforms existing clone detection techniques, such as CPVD, CS, and

PFF, in terms of accuracy, precision, recall, F1 score, AUC, and speed after an augmented set of thorough

evaluations.

This work is necessary because conventional clone detection methods have difficulty correctly identifying code

clones that have undergone structural or syntactical changes. The proposed model addresses this limitation and

improves code clone detection accuracy by incorporating UML diagrams, which capture both the structural and

behavioral aspects of software systems.

The proposed model has numerous real-time use cases that span different software development and maintenance

scenarios. It can help with software evolution, bug fixing, and code refactoring by allowing developers to recognize

and effectively handle code clones. The model helps to increase the quality and maintainability of software by

offering a more accurate and precise detection of code clones.

The evaluation results make the benefits of the suggested model clear. In stipulations of accuracy, precision, recall,

F1 score, AUC, and speed, it performs better than existing methods like CPVD, CS, and PFF. Combining the Earley

Model with augmented deep learning techniques like ALO and 1D CNN gives the model the ability to recognize

high-density parameter and feature sets, improving detection accuracy and precision for various code clone

detection scenarios.

This research makes a significant contribution to the field of software engineering. The suggested model provides a

more thorough and efficient solution by advancing code clone detection methods through the incorporation of UML

pattern analysis and deep learning. The enhanced software maintainability, decreased debugging effort, and

improved software quality can result from its capacity to detect code clones accurately and effectively in real-time

scenarios.

0

50

100

150

200

250
3

2
k

4
8

k

6
4

k

8
0

k

9
5

k

1
1

3
k

1
3

0
k

1
4

5
k

1
6

0
k

1
7

5
k

1
9

4
k

2
0

0
k

2
2

5
k

2
4

0
k

2
6

0
k

2
7

5
k

2
9

0
k

3
0

0
k

3
2

0
k

3
4

0
k

3
4

5
k

3
7

0
k

3
8

0
k

4
0

0
k

CPVD [3] CS [23] PFF [28] Proposed

184

J INFORM SYSTEMS ENG, 10(8s)

In conclusion, the paper presents a revolutionary method for detecting code clones that combines UML pattern

analysis with enhanced deep learning techniques. The model's superior performance when compared to existing

approaches shows how well it may be able to handle the difficulties associated with accurate and precise code clone

identification. The benefits, use cases, and impact of the proposed model highlight its applicability and potential for

enhancing software development procedures and upholding high-quality software systems.

Future Scope

The following are a few potential future focus areas:

1. Further fine-tuning and optimization of the deep learning architecture used in the proposed model has the

potential to improve the model's performance and efficacy.

• Researching different deep learning architectures and algorithms, such as transformers or recurrent neural

networks (RNNs), can offer more information about how to increase the accuracy of code clone detection.

• Researching additional feature engineering methods and data augmentation techniques that are unique to UML

diagrams may aid in improving the representation and comprehension of the structural and behavioral

characteristics of software systems.

2. Integration of Multiple Modalities: The current focus of the proposed model for detecting code clones is UML

pattern analysis. A more thorough and integrated approach to clone detection may be achieved by investigating the

integration of various modalities, such as source code, comments, and other artifacts, along with UML diagrams.

• By Leveraging multimodal deep learning

techniques, the accuracy and reliability of the clone strive to be better by analyzing the synergy of the UML diagram

 with other software artifacts.

3.

Evaluation of larger and more diverse datasets: The evaluation can be extended to include larger datasets, differenc

es, and standards to determine the generality and robustness of the proposed model.

• Open-source projects from various domains, incorporating various programming languages and development

paradigms, would be used in experiments to validate the model's efficacy in a wider variety of scenarios.

4. Real-Time Application and Integration with Development Tools: Integration of the proposed model into current

software development tools and environments would enable real-time code clone detection during the development

process. Development of plugins or extensions for well-known integrated development environments (IDEs) that

make use of the model can offer developers on-the-fly code clone detection and assistance, leading to more effective

and efficient softw

5. Transfer Learning and Domain Adaptation: • Examining the use of transfer learning techniques to the proposed

model may enable the leveraging of knowledge from previously trained models on related tasks or datasets,

potentially enhancing its performance and negating the need for extensive training on new datasets.

• The model's accuracy and applicability in specialized contexts can be further enhanced by investigating domain

adaptation techniques to adapt it to particular software domains or industries.

6. Analysis of Clone Evolution and Code Maintenance: • The model's ability to analyze clone evolution over time

and support code maintenance tasks, such as locating code refactorings or following code clones through software

versions, can offer insightful information for software evolution and maintenance processes.

7. Examination of Interactions with Software Architecture: Analyzing how code clones interact with software

architecture can reveal architectural smells, anti-patterns, and the effects these have on code clones.

• Using code clone analysis to find opportunities for architectural refactoring or to develop techniques for detecting

and preventing architectural clones can help to create more maintainable and well-designed software sets.

The research can advance the field of code clone detection, software engineering practices, and the creation of more

clever and effective tools to support software development and maintenance scenarios by investigating these

potential future scopes.

185

J INFORM SYSTEMS ENG, 10(8s)

REFERENCES

[1] Fang Ren, Haiyan Xiu, Chuxin Ji, Dong Zheng, Ziyi Wu, "A New Code-Based Linkable Threshold Ring

Signature Scheme", Wireless Communications and Mobile Computing, vol. 2022, Article ID 3150714, 9

pages, 2022. https://doi.org/10.1155/2022/3150714

[2] Yuchao Li, Qin Zhao, Yunhe Liu, Xinhong Hei, Zongjian Li, "Semiautomatic Generation of Code Ontology

Using ifcOWL in Compliance Checking", Advances in Civil Engineering, vol. 2021, Article ID 8861625, 18

pages, 2021. https://doi.org/10.1155/2021/8861625

[3] Junjun Guo, Haonan Li, Zhengyuan Wang, Li Zhang, Changyuan Wang, "A Novel Vulnerable Code Clone

Detector Based on Context Enhancement and Patch Validation", Wireless Communications and Mobile

Computing, vol. 2022, Article ID 3822836, 12 pages, 2022. https://doi.org/10.1155/2022/3822836

[4] Shobha G, Rana A, Kansal V, Tanwar S. Code Clone Detection—A Systematic Review. In: Hassanien AE,

Bhattacharyya S, Chakrabati S, Bhattacharya A,editors. Emerging Technologies in Data Mining and

Information Security;vol. 1300. Springer. 2021;p. 645–655. Available from: https://doi.org/10.1007/978-

981-33-4367-2_61.

[5] Sachin Lalar, Shashi Bhushan, Surender Jangra, Mehedi Masud, Jehad F. Al-Amri, "An Efficient Three-

Phase Fuzzy Logic Clone Node Detection Model", Security and Communication Networks, vol. 2021, Article

ID 9924478, 17 pages, 2021. https://doi.org/10.1155/2021/9924478

[6] Lan Zhang, Hao Hu, Yi Fang, ZhenyuQiang, "Code Compliance in Reinforce Concrete Design: A Comparative

Study of USA Code (ACI) and Chinese Code (GB)", Advances in Civil Engineering, vol. 2021, Article ID

5517332, 9 pages, 2021. https://doi.org/10.1155/2021/5517332

[7] ZhihuaZha, Chaoqun Li, Jing Xiao, Yao Zhang, Hu Qin, Yang Liu, Jie Zhou, Jie Wu, "An Improved Adaptive

Clone Genetic Algorithm for Task Allocation Optimization in ITWSNs", Journal of Sensors, vol. 2021, Article

ID 5582646, 12 pages, 2021. https://doi.org/10.1155/2021/5582646

[8] Xingzheng Li, Bingwen Feng, Guofeng Li, Tong Li, Mingjin He, "A Vulnerability Detection System Based on

Fusion of Assembly Code and Source Code", Security and Communication Networks, vol. 2021, Article ID

9997641, 11 pages, 2021. https://doi.org/10.1155/2021/9997641

[9] Harlinah Sahib, WaodeHanafiah, Muhammad Aswad, Abdul Hakim Yassi, Farzad Mashhadi, "Syntactic

Configuration of Code-Switching between Indonesian and English: Another Perspective on Code-Switching

Phenomena", Education Research International, vol. 2021, Article ID 3402485, 10 pages, 2021.

https://doi.org/10.1155/2021/3402485

[10] Yao Zhang, Yan Liu, Chaoqun Li, Yang Liu, Jie Zhou, "The Optimization of Path Planning for Express

Delivery Based on Clone Adaptive Ant Colony Optimization", Journal of Advanced Transportation, vol.

2022, Article ID 4825018, 15 pages, 2022. https://doi.org/10.1155/2022/4825018

[11] Rui Yang, Mengying Xu, Jie Zhou, "Clone Chaotic Parallel Evolutionary Algorithm for Low-Energy Clustering

in High-Density Wireless Sensor Networks", Scientific Programming, vol. 2021, Article ID 6630322, 13

pages, 2021. https://doi.org/10.1155/2021/6630322

[12] Guohong Qi, Jie Zhou, Wenxian Jia, Menghan Liu, Shengnan Zhang, Mengying Xu, "Intrusion Detection for

Network Based on Elite Clone Artificial Bee Colony and Back Propagation Neural Network", Wireless

Communications and Mobile Computing, vol. 2021, Article ID 9956371, 11 pages, 2021.

https://doi.org/10.1155/2021/9956371

[13] Yanhong Qi, Li-Ping Wang, "A New Code-Based Traceable Ring Signature Scheme", Security and

Communication Networks, vol. 2022, Article ID 3938321, 10 pages, 2022.

https://doi.org/10.1155/2022/3938321

[14] Jing Xiao, Yang Liu, Hu Qin, Chaoqun Li, Jie Zhou, "A Novel QoS Routing Energy Consumption

Optimization Method Based on Clone Adaptive Whale Optimization Algorithm in IWSNs", Journal of

Sensors, vol. 2021, Article ID 5579252, 14 pages, 2021. https://doi.org/10.1155/2021/5579252

[15] Yang Li, Fei Kang, Hui Shu, Xiaobing Xiong, Zihan Sha, Zhonghang Sui, "COOPS: A Code Obfuscation

Method Based on Obscuring Program Semantics", Security and Communication Networks, vol. 2022, Article

ID 6903370, 15 pages, 2022. https://doi.org/10.1155/2022/6903370

[16] Jia Chen, Quankai Qi, Yongjie Wang, Xuehu Yan, Longlong Li, "Data Hiding Based on Mini Program

Code", Security and Communication Networks, vol. 2021, Article ID 5546344, 12 pages, 2021.

https://doi.org/10.1155/2021/5546344

186

J INFORM SYSTEMS ENG, 10(8s)

[17] Ke Tang, Zheng Shan, Fudong Liu, Yizhao Huang, Rongbo Sun, Meng Qiao, Chunyan Zhang, Jue Wang,

Hairen Gui, "SROBR: Semantic Representation of Obfuscation-Resilient Binary Code", Wireless

Communications and Mobile Computing, vol. 2022, Article ID 4095481, 11 pages, 2022.

https://doi.org/10.1155/2022/4095481

[18] Yao Meng, "An Intelligent Code Search Approach Using Hybrid Encoders", Wireless Communications and

Mobile Computing, vol. 2021, Article ID 9990988, 16 pages, 2021. https://doi.org/10.1155/2021/9990988

[19] Massimiliano Ferraioli, "Behaviour Factor of Ductile Code-Designed Reinforced Concrete Frames", Advances

in Civil Engineering, vol. 2021, Article ID 6666687, 18 pages, 2021. https://doi.org/10.1155/2021/6666687

[20] Yang Liu, Jing Xiao, Chaoqun Li, Hu Qin, Jie Zhou, "Sensor Duty Cycle for Prolonging Network Lifetime

Using Quantum Clone Grey Wolf Optimization Algorithm in Industrial Wireless Sensor Networks", Journal

of Sensors, vol. 2021, Article ID 5511745, 13 pages, 2021. https://doi.org/10.1155/2021/5511745

[21] Wanzhi Wen, Jiawei Chu, Tian Zhao, Ruinian Zhang, Bao Zhi, Chenqiang Shen, "Code2tree: A Method for

Automatically Generating Code Comments", Scientific Programming, vol. 2022, Article ID 6350686, 9

pages, 2022. https://doi.org/10.1155/2022/6350686

[22] Zixuan Rui, Xiaofeng Ouyang, Fangling Zeng, Xu Xu, "Blind Estimation of GPS M-Code Signals under

Noncooperative Conditions", Wireless Communications and Mobile Computing, vol. 2022, Article ID

6597297, 14 pages, 2022. https://doi.org/10.1155/2022/6597297

[23] M. Hammad, Ö. Babur, H. A. Basit and M. Van Den Brand, "Clone-Seeker: Effective Code Clone Search

Using Annotations," in IEEE Access, vol. 10, pp. 11696-11713, 2022, doi: 10.1109/ACCESS.2022.3145686.

[24] W. Hua, Y. Sui, Y. Wan, G. Liu and G. Xu, "FCCA: Hybrid Code Representation for Functional Clone

Detection Using Attention Networks," in IEEE Transactions on Reliability, vol. 70, no. 1, pp. 304-318, March

2021, doi: 10.1109/TR.2020.3001918.

[25] F. Zhang, S. -C. Khoo and X. Su, "Improving Maintenance-Consistency Prediction During Code Clone

Creation," in IEEE Access, vol. 8, pp. 82085-82099, 2020, doi: 10.1109/ACCESS.2020.2990645.

[26] A. Sheneamer, S. Roy and J. Kalita, "An Effective Semantic Code Clone Detection Framework Using Pairwise

Feature Fusion," in IEEE Access, vol. 9, pp. 84828-84844, 2021, doi: 10.1109/ACCESS.2021.3079156.

[27] M. Wu, P. Wang, K. Yin, H. Cheng, Y. Xu and C. K. Roy, "LVMapper: A Large-Variance Clone Detector Using

Sequencing Alignment Approach," in IEEE Access, vol. 8, pp. 27986-27997, 2020, doi:

10.1109/ACCESS.2020.2971545.

[28] H. Zhang and K. Sakurai, "A Survey of Software Clone Detection From Security Perspective," in IEEE Access,

vol. 9, pp. 48157-48173, 2021, doi: 10.1109/ACCESS.2021.3065872.

[29] J. Svajlenko and C. K. Roy, "The Mutation and Injection Framework: Evaluating Clone Detection Tools with

Mutation Analysis," in IEEE Transactions on Software Engineering, vol. 47, no. 5, pp. 1060-1087, 1 May

2021, doi: 10.1109/TSE.2019.2912962.

[30] C. Guo et al., "Review Sharing via Deep Semi-Supervised Code Clone Detection," in IEEE Access, vol. 8, pp.

24948-24965, 2020, doi: 10.1109/ACCESS.2020.2966532.

[31] W. Zhang, S. Guo, H. Zhang, Y. Sui, Y. Xue and Y. Xu, "Challenging Machine Learning-Based Clone Detectors

via Semantic-Preserving Code Transformations," in IEEE Transactions on Software Engineering, vol. 49, no.

5, pp. 3052-3070, 1 May 2023, doi: 10.1109/TSE.2023.3240118.

[32] C. Ragkhitwetsagul, J. Krinke, M. Paixao, G. Bianco and R. Oliveto, "Toxic Code Snippets on Stack Overflow,"

in IEEE Transactions on Software Engineering, vol. 47, no. 3, pp. 560-581, 1 March 2021, doi:

10.1109/TSE.2019.2900307.

[33] Z. Li, T. -H. Chen, J. Yang and W. Shang, "Studying Duplicate Logging Statements and Their Relationships

With Code Clones," in IEEE Transactions on Software Engineering, vol. 48, no. 7, pp. 2476-2494, 1 July

2022, doi: 10.1109/TSE.2021.3060918.

[34] N. Mehrotra, N. Agarwal, P. Gupta, S. Anand, D. Lo and R. Purandare, "Modeling Functional Similarity in

Source Code With Graph-Based Siamese Networks," in IEEE Transactions on Software Engineering, vol. 48,

no. 10, pp. 3771-3789, 1 Oct. 2022, doi: 10.1109/TSE.2021.3105556.

[35] F. Khan, I. David, D. Varro and S. McIntosh, "Code Cloning in Smart Contracts on the Ethereum Platform:

An Extended Replication Study," in IEEE Transactions on Software Engineering, vol. 49, no. 4, pp. 2006-

2019, 1 April 2023, doi: 10.1109/TSE.2022.3207428.

[36] Y. Hu, G. Xu, B. Zhang, K. Lai, G. Xu and M. Zhang, "Robust App Clone Detection Based on Similarity of UI

Structure," in IEEE Access, vol. 8, pp. 77142-77155, 2020, doi: 10.1109/ACCESS.2020.2988400.

187

J INFORM SYSTEMS ENG, 10(8s)

[37] H. Koo, S. Park, D. Choi and T. Kim, "Binary Code Representation With Well-Balanced Instruction

Normalization," in IEEE Access, vol. 11, pp. 29183-29198, 2023, doi: 10.1109/ACCESS.2023.3259481.

[38] Y. Hu, H. Wang, Y. Zhang, B. Li and D. Gu, "A Semantics-Based Hybrid Approach on Binary Code Similarity

Comparison," in IEEE Transactions on Software Engineering, vol. 47, no. 6, pp. 1241-1258, 1 June 2021, doi:

10.1109/TSE.2019.2918326.

[39] A. M. Sheneamer, "An Automatic Advisor for Refactoring Software Clones Based on Machine Learning," in

IEEE Access, vol. 8, pp. 124978-124988, 2020, doi: 10.1109/ACCESS.2020.3006178.

[40] N. -T. Chau and S. Jung, "Enhancing Notation-Based Code Cloning Method With an External-Based

Identifier Model," in IEEE Access, vol. 8, pp. 162989-162998, 2020, doi: 10.1109/ACCESS.2020.3016943.

[41] Z. Gao, L. Jiang, X. Xia, D. Lo and J. Grundy, "Checking Smart Contracts With Structural Code Embedding,"

in IEEE Transactions on Software Engineering, vol. 47, no. 12, pp. 2874-2891, 1 Dec. 2021, doi:

10.1109/TSE.2020.2971482.

[42] H. Wang et al., "Enhancing DNN-Based Binary Code Function Search With Low-Cost Equivalence Checking,"

in IEEE Transactions on Software Engineering, vol. 49, no. 1, pp. 226-250, 1 Jan. 2023, doi:

10.1109/TSE.2022.3149240.

[43] V. Sharma, K. Hietala and S. McCamant, "Finding Substitutable Binary Code By Synthesizing Adapters," in

IEEE Transactions on Software Engineering, vol. 47, no. 8, pp. 1626-1643, 1 Aug. 2021, doi:

10.1109/TSE.2019.2931000.

[44] D. Pizzolotto and K. Inoue, "BinCC: Scalable Function Similarity Detection in Multiple Cross-Architectural

Binaries," in IEEE Access, vol. 10, pp. 124491-124506, 2022, doi: 10.1109/ACCESS.2022.3225100.

[45] I. Reinhartz-Berger and A. Zamansky, "Reuse of Similarly Behaving Software Through Polymorphism-

Inspired Variability Mechanisms," in IEEE Transactions on Software Engineering, vol. 48, no. 3, pp. 773-785,

1 March 2022, doi: 10.1109/TSE.2020.3001512.

[46] Kumar, M., et al. "Self-attentive CNN+ BERT: An approach for analysis of sentiment on movie reviews using

word embedding." Int J Intell Syst Appl Eng 12 (2024): 612.

[47] Narayan, Vipul, et al. "A comparison between nonlinear mapping and high-resolution image." Computational

Intelligence in the Industry 4.0. CRC Press, 2024. 153-160.

[48] J. Gao et al., "Semantic Learning and Emulation Based Cross-Platform Binary Vulnerability Seeker," in IEEE

Transactions on Software Engineering, vol. 47, no. 11, pp. 2575-2589, 1 Nov. 2021, doi:

10.1109/TSE.2019.2956932.

[49] Y. Zhao, L. Xiao, A. B. Bondi, B. Chen and Y. Liu, "A Large-Scale Empirical Study of Real-Life Performance

Issues in Open Source Projects," in IEEE Transactions on Software Engineering, vol. 49, no. 2, pp. 924-946, 1

Feb. 2023, doi: 10.1109/TSE.2022.3167628.

[50] H. Hong, S. Woo, E. Choi, J. Choi and H. Lee, "xVDB: A High-Coverage Approach for Constructing a

Vulnerability Database," in IEEE Access, vol. 10, pp. 85050-85063, 2022, doi:

10.1109/ACCESS.2022.3197786.

