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Neural networks face catastrophic forgetting as a major drawback for text-based systems that 

need ongoing learning adaptability. Current methods like Elastic Weight Consolidation (EWC) 

and Synaptic Intelligence (SI) rely on static processes when preserving existing knowledge while 

ignoring the specific worth of different tasks. Our innovative Adaptive Knowledge Consolidation 

method (AKC) dynamically modifies knowledge retention rates by evaluating semantic 

connections between tasks along with their individual importance levels. The AKC method 

includes a task embedding module that uses pre-trained language models to gauge task similarity 

while its consolidation process benefits from dynamic weighting controls. Our evaluation process 

used AKC to compete on three NLP benchmarks which included GLUE, AG News, and SQuAD 

against top performing methods such as EWC, SI, and replay-based methods. Experimental 

findings confirm AKC significantly enhances average task performance to 86.7% accuracy which 

exceeds both EWC and SI which achieved 78.2% and 80.1% respectively. AKC achieves lower 

forgetting at 6.2% which shows better results than replay-based methods like GEM that reach 

8.9%. AKC proves effective at reducing catastrophic forgetting and maintaining important 

knowledge to become a valuable technique for text-based neural network continual learning. 

Keywords: Catastrophic forgetting, continual learning, Adaptive knowledge consolidation, 

Task similarity, Text-based datasets, Neural networks. 

 

INTRODUCTION 

The neural network community acknowledges catastrophic forgetting which happens when sequential task 

learning erases previous task memories. Machine translation operations and related activities such as question 

answering and sentiment analysis suffer performance setbacks because retention of earlier task knowledge poses a 

persistent problem. By means of Elastic Weight Consolidation (EWC) and Synaptic Intelligence (SI) models control 

processes are able to prevent specific sensory stimuli’s from interfering with learning processes. Primary deficits in 

the fixed consolidation approaches stem from the fact that these systems are not able to adapt their performance 

depending on the levels of task similarities and priority. Semantically aligned tasks are identified in text-based models 

in which tasks like sentiment analysis are closely related but other task pairs like machine translation and topic 

classification are not significantly related. Static systems damage data retention because it uses uniform relevance 

for all tasks and hence causes performance wastage when running unrelated tasks together. To organize the control 

of forgetting procedures during processing tasks this system has to integrate a dynamic structure for assessing their 

interconnections. The method used in this paper is the Adaptive Knowledge Consolidation (AKC) method that applies 

semantic relationships of the tasks in combination with the relevance metrics of the tasks to store prior knowledge. 

A specialized task embedding module in the Architecture of the Kaizen Cognition (AKC) employs semantical meaning 

at the level of the task with the help of BERT and other standard language models. The system implements dynamic 

weight adjustments to concentrate model resources on vital tasks while maintaining optimal model capacity use. 

Contributions of this work, an embedding framework enables task similarity measurement through semantic overlap 

with support from pre-trained text models. The knowledge consolidation strategy adapts dynamic regularization 
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through the combined evaluation of task similarity and importance. Standard NLP benchmark tests show our method 

performs better than other advanced approaches with higher accuracy scores and less forgetting behaviour. The 

remainder of this paper is structured as follows: Section 2 reviews related work on catastrophic forgetting and 

continual learning. Section 3 presents the proposed AKC methodology in detail. Section 4 describes the experimental 

setup and results. Section 5 provides a discussion of the findings, and Section 6 concludes with future directions. 

RELATED WORK 

Catastrophic forgetting is a fundamental roadblock in neural networks face practical limitations when they 

process text training data for sequential task learning it forgets the previously learned task. The researchers 

recommend combined regularization methods and replay systems along with architecture adjustments for 

catastrophic forgetting solution development. The Elastic Weight Consolidation (EWC) [1] framework serves as a 

foundational method which uses the Fisher information matrix to penalize changes in weights important for earlier 

task performances. Synaptic Intelligence monitors how neural network [2] weights streamline themselves during 

educational episodes yet it ensures the protection of essential parameters in successive learning operations. Baseline 

learning techniques that provide static learning show limited retention potential since they do not account for task-

specific variations which reduce effectiveness in broad sequential task deployment. In order to mitigate catastrophic 

forgetting, most architectures retain samples from previous tasks; synthetic example creation models use replay 

strategies to protect themselves. This is achieved through Generative Replay method [3] that addresses data storage 

requirements through artificial task sample generation. These methods preserve prior task access with stored data 

samples or synthetic data but have major computational efficiency issues when applied to security critical text 

analysis tasks. Progressive Neural Networks [4] function by establishing unique modules for each new task as a 

dynamic expansion approach to fight forgetting problems. Separation of operational tasks continues to be maintained 

through this method but leads to expanding model dimensions during active periods. Through Expand and Merge 

[5] modular approaches are able to incorporate extra parameters by using shared embedding retention for pre-

trained tasks. The scalability of these methods becomes problematic when multiple task processing becomes 

necessary. Recent research shows that tasks which are similar each other help reduce forgetting in models. Diverse 

representations enable pre-trained language models trained with large datasets to maintain better resistance against 

forgetting according to Ramasesh et al. [6]. Complementary Online Knowledge Distillation engages imbalanced 

training conditions but it fails to measure semantic relationships between different tasks in real-time. Current 

research identifies task similarity in continual learning for vision-based tasks but shows limited development in its 

application to text-based work. Multi Task Learning approaches allow NLP tasks to benefit from shared knowledge 

without encountering detrimental interference between tasks. The function of Gated Linear Networks (GLNs) [9] 

involves gating mechanisms to distribute shared resources alongside task-specific capacities. Negotiated 

representations [10] enhance resource sharing which helps to maintain retention performance during split 

benchmarks involving MNIST and CIFAR-10 data sets. These effective methods generally miss operational means to 

enable adaptive skills consolidation. Adaptive consolidation techniques develop solutions to fulfill unique 

requirements of different tasks. Neuronal decay [11] employs a method of dynamic adjustment on model parameters 

during learning to prevent knowledge loss. Although hierarchical memory systems modeled from biological learning 

mechanisms have been developed to battle forgetting [12] their use remains restricted for text-based applications. 

Multiple existing methods cannot effectively capture semantic connections among tasks which results in suboptimal 

memory retention approaches. The paper establishes Adaptive Knowledge Consolidation (AKC) as a novel approach 

because it combines task similarity with hierarchical importance metrics to deal with established issues efficiently. 

METHODS 

The Proposed methodology of an Adaptive Knowledge Consolidation framework helps text-based neural 

networks dynamically reduce catastrophic forgetting through assessment of task similarity and task importance. AKC 

integrates three primary components: a Task Embedding Module, a Dynamic Task Weighting Mechanism, and a 

Knowledge Consolidation Loss Function. We provide extensive details about each component used in this approach. 

In the figure 1shows that the Sequential delivery of task-specific data samples occurs through the Task Input. The 

system processes each task in isolation because previous data cannot be accessed directly during task execution. The 

task embedding module generates semantic representations from input data through its integration of the pre-

trained language model BERT. A task-specific vector emerges from averaging the computed embeddings of all data 

samples. By applying cosine similarity the module measures semantic overlap between the current task dataset and 
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all past experienced tasks. This calculation determines the task similarity between current work and previous tasks. 

Important weight scores are determined through the weighting module by integrating similarity measures with task 

performance results (like accuracy and F1 score). The system determines how these components interact using a 

hyperparameter setting.  The loss module implements a dynamically adjusted regulatory factor to control parameter 

updates by using importance scores as a guide. The approach maintains essential insights gained from earlier tasks. 

Fine-tuning of the model for current assignment activates the AKC loss function which blends task-oriented learning 

targets with mechanisms for knowledge retention. Post-learning with the updated model encompasses sustained 

information retention from past tasks and extended capabilities toward upcoming tasks. 

 

Fig. 1. Adaptive Knowledge Consolidation (AKC) Framework 

Given a sequence of tasks 𝒯 = {𝑇1, 𝑇2, … , 𝑇𝑛}, each with its dataset 𝒟𝑡 = {𝑥𝑡 , 𝑦𝑡}, the objective is to train a 

model 𝑓𝜃 such that it minimizes catastrophic forgetting while maintaining adaptability to new tasks. The model is 

trained incrementally without access to the full datasets of previous tasks, which makes knowledge retention 

challenging.   

The Task Embedding Module computes a semantic representation of each task based on its data. Using a 

pre-trained language model BERT, we extract contextualized embeddings for task samples. For task 𝑇𝑡, the task 

embedding vector 𝑒𝑡 is computed as: 

𝑒𝑡 =
1

|𝒟𝑡|
∑  𝑥∈𝒟𝑡

BERT⁡(𝑥)   (1) 

where in the equation 1, the BERT⁡(𝑥) is the embedding of sample 𝑥. In the equation 2 the semantic similarity 𝑆(𝑇𝑖 , 𝑇𝑗) 

between tasks 𝑇𝑖  and 𝑇𝑗 is then calculated using cosine similarity: 

𝑆(𝑇𝑖 , 𝑇𝑗) =
𝑒𝑖⋅𝑒𝑗

∥∥𝑒𝑖∥∥∥∥𝑒𝑗∥∥
   (2) 

This similarity score provides a quantitative measure of overlap between tasks, enabling adaptive modulation of 

knowledge retention.  

The Dynamic Task Weighting Mechanism to prioritize critical tasks, we introduce a dynamic task weighting 

mechanism that combines task similarity and performance metrics. For a given task⁡𝑇𝑡, the importance score 𝐼𝑡 is 

defined as in the equation 3.  

𝐼𝑡 = 𝛼𝑆(𝑇𝑖 , 𝑇𝑗) + (1 − 𝛼)Perf⁡(𝑇𝑖)   (3) 

Where, the 𝑆(𝑇𝑖 , 𝑇𝑗) is Semantic similarity between tasks, Perf(𝑇𝑖) 𝑖𝑠 Performance metric (e.g., F1 score) for task 𝑇𝑖, 

and 𝛼 is Hyperparameter controlling the balance between similarity and performance. The importance score 

determines the degree to which knowledge from a task should be preserved during new task training. 
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Fig. 2. Dynamic Task Weighting Module 

The figure 2 shows the module utilizes cosine similarity to process task embeddings and calculate task 

similarity scores. The metrics assess how similar current task semantics are compared to previous tasks. The 

contribution of each task to total performance is evaluated using specific metrics like F1 score, accuracy or loss values 

to establish its relative importance. The hyperparameter 𝛼 specifies the balance between similarity measures and 

performance metrics. During training task-specific importance scores control how knowledge from each task will get 

integrated. Task scores increment leads to a stronger preservation of the corresponding parameters.  

Knowledge Consolidation Loss Function of the AKC extends Elastic Weight Consolidation (EWC) by 

incorporating task importance into the regularization term.  For the task 𝑇𝑡 is having the total loss of AKC as 

formulated in the equation 4. 

ℒAKC = ℒ𝑡 + 𝜆∑  𝑖 𝐼𝑡 ⋅ 𝐹𝑖(𝜃𝑖 − 𝜃𝑖
∗)2  (4) 

where, ℒ𝑡 is Loss for the current task 𝑇𝑡. 𝜆 is Regularization coefficient, 𝐹𝑖 has Fisher Information Matrix for parameter 

𝜃𝑖 and 𝜃𝑖
∗ is Optimal parameter for previous tasks. The importance score 𝐼𝑡 dynamically modulates the regularization 

strength for each parameter, ensuring critical tasks are prioritized. Figure 3 shows that the Knowledge Consolidation 

Loss Module plays a central role in preserving prior knowledge while simultaneously facilitating new task learning. 

A specific loss (ℒ𝑡 ) for every task is introduced first which uses appropriate loss functions such as cross-entropy or 

mean squared error along with the task. Task-specific importance scores which reflect the importance of the tasks 

based on their similarity and their performance levels are provided to this module from the Dynamic Task Weighting 

Module.⁡𝐹𝑖 called the Fisher Information Matrix serves as an indicator of which parameters were discussed in the 

previous lessons and which parameters are critical to remember.ion alongside enabling new task learning. A 

specialized loss (ℒ𝑡) unique to each task appears first which employs proper loss functions like cross-entropy or mean 

squared error to combine with the task at hand. Task-specific importance scores which represent the relative 

importance of tasks based on how similar they are to other tasks and their performance levels come from the Dynamic 

Task Weighting Module to support this module. The Fisher Information Matrix 𝐹𝑖 functions as an indicator which 

flags the parameters which carry significance in previous lessons thus guiding decisions for stronger parameter 

retention. These components are used by the module to come up with a regularization loss calculation that prevents 

alteration of some parameters. In this model 𝜃𝑖
∗ is the current set of parameters while 𝜃𝑖

∗ is the set of parameters that 

were learned from previous learning exercises. a key element which upholds previous knowledge retention alongside 

enabling new task learning. A specialized loss (ℒ𝑡 ) unique to each task appears first which employs proper loss 

functions like cross-entropy or mean squared error to combine with the task at hand. Task-specific importance scores 

which represent the relative importance of tasks based on how similar they are to other tasks and their performance 

levels come from the Dynamic Task Weighting Module to support this module. The Fisher Information Matrix  𝐹𝑖 

functions as an indicator which flags the parameters which carry significance in previous lessons thus guiding 

decisions for stronger parameter retention. The module employs these components to generate a regularization loss 

calculation which discourages modifications to essential parameters. This regularization is defined as ℒreg = ∑  𝑖 𝐼𝑡 ⋅

𝐹𝑖 ⋅ (𝜃𝑖 − 𝜃𝑖
∗)2. In this model 𝜃𝑖 ⁡refers to current parameter settings while⁡𝜃𝑖

∗ stands for optimized parameter values 

from previous learning tasks. Two elements constitute the total final loss ℒAKC  which integrates the task loss with an 

additional term that allows for the preservation of previously learned behaviors in the course of learning new tasks. 
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By the active knowledge consolidation, the model prevents the catastrophic forgetting this is helpful in enhancing the 

continual learning capability for text-based systems. 

 

Fig. 3. Knowledge Consolidation Loss Module 

EXPERIMENTAL SETUP 

This experimental investigation intended to measure how well Adaptive Knowledge Consolidation (AKC) 

prevented catastrophic forgetting and kept performance levels high for sequential text-based tasks. The experimental 

core architecture from a pre-trained BERT-base model fulfilled dual roles as both Task Embedding Module and base 

model in task-specific fine-tuning for all experiments. The model trained sequential tasks without access to prior task 

datasets during each application. The researchers implemented consistent training settings across experiments to 

create valid comparative data. AdamW formed the basis of parameter optimization during training using a learning 

rate of 2e-5 together with a batch size configuration of 32. A training period of three epochs proved adequate for task 

convergence while preventing model overfitting during each independent task training process. Through precise 

hyperparameter tuning researchers set α at 0.7 to manage task similarity versus performance importance together 

with task-dependent variations of λ as regularization for optimal retention versus adaptation balance.The 

experimental setup created a strong base for assessing AKC performance alongside baseline method evaluations.  

Datasets of the AKC framework was evaluated on three widely used NLP benchmarks, each chosen to reflect 

different text-based task characteristics are [13] GLUE Benchmark: A generalized language understanding 

assessment is supported by this comprehensive suite of testing tasks. The benchmark measures performance across 

sentiment analysis through SST-2 runs, natural language inference with MNLI datasets and multiple text 

classification tasks. The benchmark contained multiple different types of tasks which allowed examination of AKC's 

ability to adapt. [14] AG News: The AG News database serves for text classification with its news articles labeled 

under four categories which are World News, Sports Coverage, Business Reports and Technology Science Articles. 

AKC researchers examined model capability for short text classification using this dataset. [15] SQuAD (Stanford 

Question Answering Dataset): This question-answering dataset presents a difficult task that models need to solve 

involving the detection of answer present within specific contextual text segments. In this dataset AKC demonstrated 

learning and retention capabilities during deeper and contextually complex tasks analysis. The evaluation used 

multiple datasets which provided broad assessment capabilities that subjected AKC to distinct text processing 

challenges extending from classification to question answering contexts.  

Evaluation Metrics of Our performance evaluation of the Adaptive Knowledge Consolidation (AKC) 

framework involved using four principal evaluation metrics. These metrics were chosen to evaluate both task 

performance and the ability to mitigate catastrophic forgetting effectively are Average Accuracy (𝐴avg) is an 

assessment of the model’s performance includes all tasks once they undergo sequential training. It is calculated as 

the mean accuracy across all tasks is formulated in the equation 5. 

𝐴avg =
1

𝑛
∑  𝑛
𝑡=1 𝐴𝑡    (5) 
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where 𝐴𝑡 stands for the accuracy of task 𝑡. A higher 𝐴avg values indicate better task retention and adaptation. 

Forgetting Measure (𝐹) is an evaluation mechanism detects how prior task performance drops once a new sequence 

of tasks trains the neural network. It is calculated as in the equation 7. 

𝐹 =
1

𝑛−1
∑  𝑛−1
𝑡=1 max

𝑘>𝑡
 (𝐴𝑡

(𝑘)
− 𝐴𝑡

(𝑛)
)  (7) 

where 𝐴𝑡
(𝑘)

 is the accuracy of task 𝑡 after training on task 𝑘, and 𝐴𝑡
(𝑛)

 is the accuracy of task 𝑡 at the end of all training. 

Lower 𝐹 values indicate reduced forgetting. Time Efficiency (𝑇eff) is a metric calculates the performance speed of the 

training process. The total time needed for sequential training of all tasks represents its fundamental measurement. 

Rapid training durations prove real-world applicability of the method which meets computational limitations.It is 

computed as in the equation 8. 

𝑇eff = ∑  𝑛
𝑡=1 𝑇𝑡        (8) 

Where, 𝑇𝑡 is the training time for task 𝑡, and 𝑛 is the total number of tasks. A lower 𝑇eff  value indicates that the method 

is computationally efficient. Memory Usage (𝑀usage) is the evaluation of the method's memory usage measures 

necessary storage while considering parameter regularization and replay mechanisms. AKC operates as a lightweight 

method which reduces previous task memory demands and surpasses replay-based methods in terms of efficiency. 

Better memory efficiency appears when 𝑀usage values are reduced. 

𝑀usage = 𝑆params + 𝑆data    (9) 

Where in the equation 9, 𝑆params  is the memory used for storing task-specific parameter information (e.g., Fisher 

Matrix in AKC), 𝑆data  is the memory used for storing any task data or generated samples (e.g., for replay-based 

methods). For AKC, 𝑆data = 0 as it does not rely on replay storage, making it more memory-efficient. 

Baselines AKC was compared against the following methods ar Elastic Weight Consolidation (EWC): EWC tool uses 

the Fisher Information Matrix to hold parameter values steady. Synaptic Intelligence (SI): This method establishes 

parameter importance through analysis of their update patterns. Generative Replay (GEM): GEM generates training 

data by reutilizing samples from earlier completed tasks. Vanilla Fine-Tuning: Sequential task training without any 

forgetting mitigation.  

RESULTS 

Table. 1. Performance Metrics Comparison across Methods 

Method 
Average 

Accuracy (%) 

Forgetting 

Measure (%) 

Time Efficiency 

(Minutes) 

Memory Usage 

(MB) 

EWC 78.2 12.5 120 500 

SI 80.1 10.3 110 550 

GEM 84.5 8.9 160 700 

Vanilla Fine-Tuning 71.3 19.4 90 400 

AKC 86.7 6.2 100 450 

 

The table 1 presents a detailed comparison of the methods across four key metrics: Through its impressive 

average accuracy of 86.7% and minimal forgetting measure at 6.2% we can conclude AKC successfully reduces 

catastrophic forgetting. Third-place data shows that AKC demonstrates exceptional performance when compared to 

memory-demanding methods like GEM since it requires only 100 minutes for training and 450 MB for memory 

usage. 
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Fig. 4.  Average Accuracy across Methods 

The figure 4 shows that each method's average accuracy is displayed through the bar graph. The AKC method 

reaches peak accuracy levels with a rate of 86.7%, outperforming other techniques such as EWC and SI which show 

78.2% and 80.1% respectively. The low accuracy of Vanilla Fine-Tuning (71.3%) highlights the impact of catastrophic 

forgetting. 

 

Fig. 5. Forgetting Measure across Methods 

The Figure 5 compares the forgetting measure for all methods. Between evaluated methods AKC maintains 

the smallest level of forgetting at 6.2% but EWC and GEM lag behind with forgetting rates of 12.5% and 8.9% 

respectively. Ranking first among all examined methods at 19.4% forgetting Vanilla Fine-Tuning indicates that we 

need effective consolidation techniques. The training time required by each method appears in this graph. AKC 

performs with competitive timing at 100 minutes yet GEM demonstrates the longest duration because its replay-

based method results in 160 minutes of training time. Vanilla Fine-Tuning completes operations quickly in 90 

minutes but gives up performance outcomes as shown in the figure 6. Memory usage across different methods is 

presented in the bar graph. Because GEM uses its replay-based method the memory consumption reaches 700 MB 

which makes it the most demanding yet Vanilla Fine-Tuning uses only 400 MB for operations. The AKC maintains 

moderate memory consumption at 450 MB functioning as an efficient choice in comparison to high-memory 

approaches. 
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Fig. 6. Time Efficiency across Methods 

 

 

Fig. 7. Memory Usage across Methods 

ABLATION STUDY RESULTS 

Table 2. Ablation Study Results for AKC Configurations 

Configuration Average Accuracy (%) Forgetting Measure (%) 

Without Embedding Module 83.4 8.5 

Without Weighting Mechanism 81.2 10.1 

Full AKC Framework 86.7 6.2 

 

The table 2 presents how each component affects the performance within the AKC framework. The average accuracy 

of the system decreases to 83.4% when the Task Embedding Module is removed but falls further to 81.2% after 

excluding the Dynamic Weighting Mechanism. The Full AKC Framework demonstrates superior performance by 

achieving both the best accuracy of 86.7% and the smallest forgetting measure at 6.2% proving both modules crucial 

in avoiding catastrophic forgetting. Each configuration of the AKC framework achieves different average accuracies 

as displayed by this bar graph. Performance metrics reveal the Full AKC Framework achieves optimal results at 86.7% 

but performance drops if researchers remove either the Task Embedding Module or the Dynamic Weighting 

Mechanism as show in the figure 8. The figure 9 compares the forgetting measure for each configuration. In view of 

the fact that the Full AKC Framework attains a forgetting rate of 6.2% this is a clear indication of the effectiveness 

that has been put in place in preserving prior knowledge. Experiments reveal that forgetting increases to 8.5% when 

the Task Embedding Module is removed and then escalates further to 10.1% when the Dynamic Weighting Mechanism is also 

turned off. 
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Fig. 8. Ablation Study Average Accuracy across configuration 

 

 

Fig. 9. Performance Analysis between Different Configurations through Forgetting Measure Evaluation 

DISCUSSION 

The experiments with the AKC model show that it outperforms the basic methods in fighting against 

catastrophic forgetting. The dynamic task-aware consolidation system of AKC outperforms other traditional static 

regularizations such as EWC and SI. The separate analysis shows that both task embedding units and dynamic 

weighting elements are critical for achieving the highest possible system performance. The design of the AKC 

framework is flexible and achieves high efficiency by eliminating computational costs that are ordinarily incurred 

when using replay techniques such as GEM making it an effective approach for text-based CL applications. 

CONCLUSION 

A new Adaptive Knowledge Consolidation (AKC) framework presented in this paper is designed to address 

catastrophic forgetting issues in text-based neural networks. The AKC framework combines task similarity measures 

and task importance evaluations in its dynamic consolidation subsystem to protect stored data and ensure the highest 

quality of task execution. The proposed framework incorporates three key components: The proposed framework 

uses a Task Embedding Module and Dynamic Task Weighting Mechanism for tracking task semantic overlap and 

retention and Knowledge Consolidation Loss Module for ensuring key knowledge. As for the experimental results, 

AKC achieves better results than EWC, SI, and GEM on all the GLUE, AG News and SQuAD benchmarks. These 

assessments normalized the results and revealed that AKC realized the highest accuracy (86.7%) and had the 
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minimum knowledge retention decay (6.2%) proving its effectiveness for sequential tasks. A comparison experiment 

was conducted to evaluate the effectiveness of each module and to prove its contribution to overall performance. The 

effectiveness of the AKC system can be seen from the fact that it can complete tasks within 100 minutes and also the 

system only takes up 450MB of memory space. Modified characteristics of this technology are suitable for 

contemporary applications that demand the integration of continuous learning and the development of new natural 

language tools using autonomous agents and specific, personalized recommendation engines. The system’s high 

quality measurements provide guidance to scientists on where further studies should be taken. Further assessment 

of its flexibility will be made when researchers apply the proposed framework to analyze complex data with multiple 

data components including textual and visual data. The combination of various pre-trained model choices and 

sophisticated hyperparameter optimization strategies offers a robust way of enhancing the adaptability of the task. 

The AKC system provides a robust solution for catastrophic forgetting while at the same time providing feasible ways 

of improving the continual learning capabilities of text-trained neural architectures. Thus the present study by 

employing dynamic task adaptation identifies new development principles. 
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