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dependencies, dynamic energy constraints, and agent-specific delivery states. A cooperative reward design, combined 

with identity-aware actor-critic networks, enables efficient training and robust coordination in dense urban 

environments. 

The contributions of this work are threefold: 

(1) We formulate a realistic multi-agent version of TSP-D and present a scalable MARL-based solution using 

decentralized PPO. 

(2) We incorporate a task allocation module and conflict resolution strategy to manage delivery assignments among 

agents. 

(3) We demonstrate through extensive simulations that the proposed approach outperforms traditional heuristics 

and single-agent RL in delivery time, energy efficiency, and scalability. 

This research highlights the practical viability of multi-agent learning in last-mile logistics and opens up new 

directions for intelligent, cooperative delivery systems in smart cities [6][7]. 

2. RELATED WORK 

Travelers Seller Problems (TSP) have been studied a lot because of its gratitude in logistics, transport and 

optimization scenarios. The introduction of drones in the delivery of the last kilometer inspired the development of 

TSP in traveling seller problems with drones (TSP-D), and presented new complications struggling to address 

traditional customization algorithms [1]. Classic methods for solving TSP include accurate algorithms such as 

branches and boundaries, dynamic programming and integer linear programming (ILP). These methods guarantee 

optimal solutions, but their calculation complexity [2] faces scalability problems with large datasets. Estimated 

methods including genetic algorithms (GA), Ant Colony Optimization (ACO) and simulated anealing as a successor 

and metaheyoristic algorithm provide close solutions with better calculation skills with better calculation efficiency, 

[3]. Hybrid learning algorithm combines traditional adaptation techniques with machine learning methodology to 

increase the quality and calculation efficiency of the solution. Elipper et al. [4] To solve TSP, a hybridalgorithm that 

integrates with Multi-agent reinforcement learning, demonstrated adaptation capacity for better convergence rates 

and dynamic environment. Corresponding Tose and Ezterger-C. [5] underwent the metaheyuristic algorithm for TSP-

based planning, highlighting the effectiveness of hybrid approach in complex adaptation problems.  Strengthening 

learning (RL) has proven to be a powerful tool for addressing combinatory optimization problems including TSP-D. 

Procsimal policy optimization (PPO) and Deep Q-Network (DQN) are among the RL algorithms used on these 

problems. Mnih et al. [4] While they paved the way for the use of RL in adaptation work, demonstrated control of 

people on people of people on humans. In terms of TSP-D, Bogirbayeva et al. [7] The proposal for a deep RL approach 

to improve the effectiveness of decision -making, which benefits from the extended state representative. Integration 

of drones into logistics introduces unique obstacles, such as limited battery life, payload capacity and synchronization 

with ground vehicles. Gun-Sezer et al. [8] We introduce a hybrid metaheyuristic method to TSP-D, which optimizes 

both truck routing and drone tasks using a binary pheromone structure. Roberti and Ryuthamayer [9] detected 

accurate methods for TSP-D, mixed with mixed linear linear programming (MILP) yogas that effectively synchronize 

trucks and drones. 

Recent research has focused on increasing the state's representation in RL frameworks to capture the dynamic 

distribution environment more accurately. Hybrid architecture, which combines Convisional Neural Network 

(CNNS) with the recurrent nervous network (RNNS), has shown the promise of dealing with spatial-lethal data in 

drone routing problems [10]. Challenges remain in scaling these models to real world scenarios, optimizing energy 

consumption and dealing with dynamic obstacles such as weather conditions and traffic variations. 

MATERIALS AND PROPOSED METHOD 

1. Materials 

The implementation of the method suggested to solve the travel sales problem with drones (TSP-D) depends on 

specific hardware and software configurations such as Table 1, Table 1, Dataset and Calculation framework to ensure 

high calculation efficiency and accurate modeling of landscape in the real world. 
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Component Specification 

GPU NVIDIA RTX 4060 (8GB VRAM) 

Processor Intel Core i7 13650 HX 

RAM 32GB DDR5 

Operating System Ubuntu 22.04 / Windows 11 

Programming 

Language Python 3.10 

Libraries NumPy v1.26.4, PyTorch v2.5.1 

Table 1: specific hardware and software configurations 

1.1 Hardware and Software Configuration 

• Hardware: The experiments were organized on a high-down data processing system equipped with an 

Nvidia RTX 4060 GPU (8 GB Vram), an Intel Core I7 13650 HX processor and 32 GB of DDR5 RAM. This powerful 

hardware configuration ensured simulation of large -scale, deep learning model training and the ability to handle the 

opportunity to handle repetitions of broad reinforcement without significant performance. The GPU was especially 

important for accelerating matrix operations and acting deep nerve tights effectively. 

• Software: The development environment included Python 3.10, which provided a strong library for 

scientific data processing and machine learning. Numpy V1.26.4 was used for effective numerical components, while 

Pytorch V2.5.1 was served as a primary structure for the development and training of reinforcement of reinforcement 

models [1]. In addition, auxiliary library as a food plotlib for visualization, ponds for data canipulation and scipy for 

adaptation work integrated into workflows to increase productivity. 

1.2 Datasets 

• Random Location Dataset: This Dataset Simulates Arbitrary Network Topology By Randomly 

Distribution Nodes on a Cartian Aircraft. The X and Y coordinates were tested equally from the area [1, 100], creating 

different routing challenges that test the normalization capacity of the model [2]. These Random Configuration 

Helped Evaluate The Adaptability of the Proposed Algorithm in Various Spatial Layouts. 

• Real-World-Inspired Dataset: In order to capture the complications of the real world, a dataset was used 

from urban geographical data. Gossian Kernel Density Estimates (KDE) techniques were used to simulate realistic 

accounting patterns, and copied densely populated urban environments with high distribution of demand [3]. This 

dataset was important to validate the model performance in the scenarios that depict the actual delivery challenges 

for final meal.. 

2. Proposed Method 

The suggested method uses a sophisticated reinforcement learning structure based on proximal political adaptation 

(PPO), which has increased with an advanced condition vector representation and hybrid Deep remaining forward-

looking forward network architecture to effectively handle the complications of TSP-D that effectively cope with the 

complications of TSP-D. 

2.1 Problem Formulation 

The TSP-D is modeled as a Markov Decision Process (MDP) characterized by the tuple (S, A, P, R, γ) 

The state vector integrates: 

•  Transit status in real time for trucks and drones [5] 

•  Dynamic calculation of the remaining travel time for each delivery node 

•  Drone-woelable nodes, determined using the algorithm of dijkstra during battery and energy barriers [5] 
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2.2 Reinforcement Learning Framework 

2.2.1 Proximal Policy Optimization (PPO) 

PPO is used to customize the policy through a cut surrogate objective function, which improves the stability of 

learning by stopping major political updates that can destabilize the training process such as FIG1 [6]: 

 

 

Figure 1: Proximal Policy Optimization (PPO) 

2.2.2 Network Architecture 

 

The actor critic involves deep residual networks to solve the shield problem that disappears and increase learning 

efficiency. Large components include: 

• Residual blocks: Five blocks for actor networks and four for critics, each integrated batch normalization, 

relay activation functions and backpragation leaving the connection to maintain the shield stream below [7]. 

• Lagenormalization: By reducing the internal Covild shift, the middle output was used to stabilize training 

by normalizing the output. 

• Output: The acting network uses a Softmax activation feature to produce a probability distribution on 

possible features, while the critic appoints a linear layer to estimate the state value [7]. 

2.3 Algorithm Workflow 

The proposed method follows a structured workflow: 

1. Data for preroposing: Generalization of input functions such as nodo coordinates, battery level and 

demand for delivery is to ensure continuous data salting [8]. 

2. Conditional calculation: Use of algorithm of dijkstra for dynamic routing, and determine the smallest 

path and available nodes for drones in battery rates [8]. 

3. Policy training: PPO application with mini-batch stochastic gradient boxes, estimates of surplus reduction 

and initial restriction criteria to prevent overfeating [9]. 
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4. Evaluation: as a comprehensive study on both synthetic and genuine -world data sets, organic algorithms 

(GA), Particle Flock Optimization (PSO) and grasshopper optimization algorithms such as top marks against 

traditional algorithms such as Figures 3. [9]. 

 

Figure 3: Convergence Plot of PPO Algorithm 

2.4 Evaluation Metrics 

• Solution quality: Max pane (total distribution time) and calculations such as gap calculations were 

evaluated, which measure deviations from optimal solution [10]. 

• Calculation efficiency: To determine the scalability of the proposed method in the form of FIG2, the 

average driving time, memory use and convergence rate were evaluated. 

• Scalability: Demonstrations on separate graph sizes (up to 20 to 500 nodes) to evaluate the reinforcement 

and adaptability of the algorithm as the algorithm and the strength and adaptability of the algorite as Table 2 [10]. 

 

Algorithm Makespan 

Reduction (%) 

Convergence Time 

(Iterations) 

Computational 

Efficiency (s) 

PPO (Proposed) 15.2 3500 12.4 

Genetic Algorithm (GA) 10.1 5000 18.7 

Particle Swarm 

Optimization (PSO) 

9.8 5200 20.1 

Grasshopper 

Optimization Algorithm 

(GOA) 

8.7 5400 22.5 

Table 2: Benchmark Algorithm Performance Comparison 
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Figure 2: Evaluation Metrics 

2.5 Equations and Mathematical Formulations 

• Reward Function: [11] 

 

Where α and β are weighting factors that balance the trade-off  between delivery speed and energy efficiency. 

• Advantage Function Estimation: [11] 

 

Where δt represents the temporal difference error, and λ is the decay factor that controls the bias-variance trade-off 

in advantage estimation. 

3.1 Data Preprocessing 

Data Preaching plays an important role in ensuring that travelers sellers with drones (TSP-D) are adapted to input 

structured, generalized and effective training and evaluation used to learn the reinforcement of the problem. This 

phase includes several stages, including generalization of functions, condition vector calculation and calculation of 

distance matrix to facilitate accurate decision -making of the reinforcement. 

3.1.1 Feature Normalization 

• To standardize the input data and improve the training stability as Table 3, the following PreProsaucating 

techniques were used: 

• Distance generalization: All distances between nodes were normally normalized to a limit of [0.1] [0.1].12].: 

 

•  Battery level standardization: Drone battery level was expanded to a similar degree to 

ensure continuous interpretation of the policy network [13]. 
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•  Warge Generalization: Truck and drone speeds were generalized so that the learning process either 

avoids bias against the vehicle [14]. 

Feature Normalization Method Range Feature 

Distance Min-Max Scaling [0,1] Distance 

Battery Level Standard Scaling Standardized 

(Mean=0, Std=1) 

Battery Level 

Velocity Min-Max Scaling [0,1] Velocity 

Table 3: Feature Normalization 

3.1.2 Distance Matrix Computation 

The distance between each pair of nodes such as Table 4 was calculated using the Euclidian distance formula: 

 
 

A B C D E 

A 0 3.605551 5.09902 8.062258 9.219544 

B 3.605551 0 3.605551 5.09902 5.656854 

C 5.09902 3.605551 0 3.605551 6.082763 

D 8.062258 5.09902 3.605551 0 3.162278 

E 9.219544 5.656854 6.082763 3.162278 0 

 Table 4: Distance Matrix Computation 

Coordinates of nodes II and JJ respectively. This distance matrix was used to determine the optimal route for both 

trucks and drones and was a significant input for reinforcement learning structure [15]. 

3.1.3 State Vector Construction 

The state vector StS_t for reinforcement learning was structured as follows: 

• Truck and drone current locations [12]. 

• Remaining travel time to the next node [13]. 

• Battery status of the drone [14]. 

      • Dynamic nodes were calculated dynamically using the algorithm [15] for the drone batteries and truck 

placement. 

3.1.4 Drone Reachability Computation 

To determine which nodes were available with the drone, the algorithm of Dijkstra was used to calculate the smallest 

paths for energy barrier. The following obstacles were included: 

1.  The drone can only go to the nodes where the time for round trip does not exceed the remaining battery [2]. 

2.  If the drone cannot reach the node, the truck is assigned to complete this delivery as FIG. 4 [3]. 
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3.  

Figure 4: Illustration of Preprocessed Data (Node Locations and Reachability) 

3.1.5 Pseudo-Code for Data Preprocessing 

Below is the pseudocod that emphasizes the data for the pre -programming steps: 

Entrance: Node location, distance, drone battery capacity, truck speed 

Count the distance between nodes matrix d 

Perfect distance and other entrance features for PPOS 

Start truck and drone parameters (battery, payload, office) 

Calculate the initial available -nodes for the drone using the algorithm of Dijkstra 

Set of state vector s_0: 

  - Truck and Drone In-Transit Status 

  - the remaining time for the next node 

  - Available nodes for drones based on today's battery level 

4. DISCUSSION 

The results highlight the effectiveness of the proposed reinforcement learning method in solving the TSP-D. The 

model demonstrated superior route planning, improved truck-drone coordination, and reduced total delivery time. 

This section discusses solution quality, computational efficiency, scalability, and practical applicability. 

4.1 Solution Quality and Optimization Performance 

The PPO-based model achieved high-quality solutions, outperforming heuristic algorithms like GA, PSO, and GOA 

[1,2], with a 10–15% reduction in makespan. This is attributed to PPO’s adaptability, enabling the model to refine 

optimal routing strategies. The deep residual network further enhanced learning by reducing vanishing gradient 

issues, enabling stable training and better convergence [3,4]. 

4.2 Computational Efficiency. 

The method showed fast convergence (within 3000–5000 iterations), outperforming traditional algorithms that 

require more tuning [5,6]. Efficient training was supported by mini-batch updates and adaptive learning rates. 

Entropy regularization stabilized training and avoided premature convergence to suboptimal policies [7,8]. 
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4.3 Scalability and Adaptability 

The framework scaled well across problem sizes from 20 to 500 nodes. Unlike traditional methods that struggle with 

larger instances, PPO maintained performance as complexity increased [9,10]. The hybrid coordination mechanism 

dynamically managed agent roles based on battery levels, distances, and payloads, preserving performance in large-

scale delivery networks [11,12]. 

4.4 Practical Applicability and Real-World Feasibility 

The method is well-suited for real-world logistics applications. 

• Real-time adaptability: It adjusts effectively to dynamic routing conditions [13,14]. 

• Cost efficiency: Optimized routing reduces fuel use and delivery time, cutting operational costs [15,16]. 

• System integration: The modular design enables easy integration with existing logistics systems without major 

infrastructure changes [17,18].4.5 Limitations and Future Work 

Despite the benefits, the proposed method has some restrictions that should be addressed in future research: 

1. Multi-agent coordination: The current framework optimizes a single truck-drone pair. Extending the 

model to multi-drone and multi-truck scenarios presents an avenue for further research [19,20]. 

2. Real-world constraints: Incorporating additional constraints such as weather conditions, no-fly 

zones, and time-sensitive deliveries would enhance practical applicability [21,22]. 

3. Hybrid optimization approaches: Integrating reinforcement learning with classical metaheuristic 

methods could further improve performance and robustness [23,24]. 

4. Scalability for larger problem instances: While the current method scales well, exploring graph 

neural networks (GNNs) and distributed computing techniques could further enhance its efficiency [25,26]. 

5. Economic and environmental impact analysis: Future studies should evaluate the broader economic 

and environmental implications of RL-driven last-mile delivery [27,28]. 

5 Conclusion 

This discussion underscores the significant contributions of the proposed PPO-based reinforcement learning method 

to solving TSP-D. The results demonstrate superior solution quality, enhanced computational efficiency, 

and practical scalability. While certain limitations remain, the potential for future improvements positions this 

approach as a viable and innovative solution for optimizing last-mile delivery logistics. 
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