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1.INTRODUCTION 

Despite advancements in camera technology, capturing images in low-light conditions remains a challenge, 

particularly in open areas. These situations often result in images with reduced contrast and diminished clarity. 

Enhancing such low-light images continues to be an essential focus in image processing research. The limited 

exposure or coverage in a photograph often affects its brightness or dimness, leading to a lack of clarity in the image. 

To address this issue and the quality of such images can be improved, various image enhancement algorithms can be 

applied. These techniques are selected based on the specific characteristics and requirements of the image, enabling 

better brightness, contrast, and overall appearance. Various histogram-based techniques are commonly used to 

enhance image quality, with histogram equalization (HE) being a popular choice due to its simplicity. HE improves 

contrast by spreading pixel intensity values.  

Across the full range, resulting in a more balanced intensity distribution. This process enhances details in both dark 

and bright areas. However, directly the application of HE can alter the mean brightness, prompting the development 

of advanced methods to address such issues effectively. Image enhancement significantly improves visual quality and 
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By modifying brightness, contrast, sharpness, and color balance, color photographs can be made 

more visually appealing. By highlighting significant characteristics and reducing noise or distortion, 

the main aim of enhancement is to make the image more aesthetically visible, lucid, and 

interpretable. Techniques vary from basic brightness and contrast tweaks to sophisticated 

algorithms. Improved quality in low-light video is vital for distinguishing individuals and activities 

in security and surveillance.  Challenges like noise amplification and over-enhancement can create 

unnatural images with exaggerated features. This paper addresses these issues by introducing the 

Exposure-Based Sub Histogram Equalization (ESIHE) method that uses an Energy Curve to enhance 

low-exposure or night color images effectively, which is similar to a histogram and based on the 

spatial contextual information of an image. To enhance outcomes, the suggested approach, 

ESIHE_Energy, combines an Energy Curve and Exposure-based Sub-image Histogram Equalization 

with spatial contextual information. The evaluation of the proposed approach was conducted on 

multiple datasets consisting of night-time color images. Its performance was benchmarked against 

several established methods, including Histogram Equalization (HE), Brightness Preserving Bi-

Histogram Equalization (BBHE), Contrast Limited Adaptive Histogram Equalization (CLAHE), 

Dynamic Stochastic Histogram Equalization (DSHE), Recursive ESIHE (R-ESIHE), Recursive 

Symmetric ESIHE (RS-ESIHE), and ESIHE. Various image quality metrics, such as Peak PSNR, 

MSE, Entropy, Structural Similarity Index (SSIM), and Feature Similarity Index (FSIM), were 

utilized for comparison. The method yielded an average PSNR of 16.336, surpassing the majority of 

the other techniques. Notably, the proposed ESIHE method integrated with the Energy Curve 

delivered the best results, achieving a PSNR of 29.057, an MSE of 33.982, an SSIM of 0.969, and an 

FSIM of 0.917678. These results emphasize the significance of leveraging spatial contextual 

information to significantly improve image quality 

Keywords:   Color Image Enhancement, Image Exposure, Low Contrast Image, Spatial Contextual 

Information, Energy Curve. 



Journal of Information Systems Engineering and Management 
2025, 10(49s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 874 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

usability across various fields, including medical imaging (X-rays)  and satellite imaging. It also enhances urban 

planning and environmental monitoring through improved satellite imagery. Image enhancement plays a vital role 

in security and surveillance by improving video clarity for better activity identification and analysis. It is also crucial 

for detailed image analysis in scientific research and for enhancing visual appeal in photography and cinematography, 

thereby increasing the functional and aesthetic value of images across various domains. Dealing with low-resolution 

or blurry photos, controlling changing lighting conditions, and striking a balance between noise reduction and the 

preservation of important details are some of the difficulties that image enhancement encounters. Techniques must 

be versatile to accommodate various image types and scenarios, such as tailoring enhancements for security footage 

versus medical scans, each requiring specific adjustments. 

Despite its difficulties, image enhancement is essential for real-world applications because it makes visual 

information easier to understand. It facilitates precise medical diagnosis, increases the clarity of security monitoring, 

improves the visual quality of media and photography, and facilitates in-depth data analysis in scientific studies. 

Addressing the challenges of image enhancement is crucial. The process is necessary to overcome limitations that 

often affect images captured by various devices. Image enhancement techniques play a vital role in addressing 

application-specific challenges, ensuring images are both effective and visually appealing. Among these, histogram 

equalization is a widely used method, with numerous adaptations tailored to specific needs. This paper examines 

various image enhancement algorithms built on the principles of histogram equalization. 

2.LITERATURE SURVEY 

The camera struggles to capture high-quality photos in low-exposure and underwater conditions, Current methods 

are unable to effectively reduce noise or improve clarity in such challenging environments. Techniques like CLAHE 

and BBHE have proven inadequate for addressing these issues. Despite advancements in imaging technology, low-

exposure problems persist, particularly in underwater or low-light scenarios, where shadow areas in high dynamic 

range settings often exhibit underexposure artifacts[1]. These issues arise due to imperfect aperture, which directly 

influences the brightness or darkness of image elements [2]. 

The first method introduced is Recursive Exposure-based Sub-image Histogram Equalization (R-ESIHE), which 

builds upon the ESIHE [1,2,16] method. R-ESIHE applies the ESIHE iteratively to an image until the change in 

exposure values between iterations is smaller than a set threshold. The second method, Recursively Separated 

Exposure-based Sub-image Histogram Equalization (RS-ESIHE), differs by dividing the histogram into multiple sub-

histograms based on distinct exposure thresholds, followed by equalizing each sub-histogram. Both methods 

incorporate histogram clipping to avoid over-enhancement of the image. Improper aperture and shutter speed 

settings on a camera can cause low exposure in low-light conditions, affecting the brightness or darkness of each 

element in an image [2]. 

Because of its simplicity and convenience of usage, Histogram Equalization (HE) is a widely used contrast 

enhancement technique [3]. Modifying pixel value ranges it enhances visual contrast and finds extensive use in 

domains such as object detection and medical imaging. However, because HE maintains the average pixel values 

before and after the procedure, it has disadvantages, including the potential to produce photos that are either over- 

or under-saturated. 

Bi-Histogram Equalization (BHE) divides the histogram into two sub-regions, or sub-histograms, to solve image 

brightness problems. One variant that is particularly effective with low-brightness or dimly illuminated images is 

Brightness Preserving Bi-Histogram Equalization (BBHE). BBHE [5,6]affects the overall brightness of the image by 

dividing and equalizing the histogram according to average brightness. 
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Figure 1: Images considered for experimentation 

(A) to (H) 

Contrast Limited Adaptive Histogram Equalization (CLAHE) [7-9] improves visual contrast by dividing the image 

into smaller tiles and applying histogram equalization to each. To prevent excessive noise amplification and reduce 

the risk of over-enhancement or unwanted artifacts—common issues in standard histogram equalization—it limits 

the contrast increase within each tile. 

Dualistic Sub-Image Histogram Equalization (DSIHE) [10–12] is an image processing technique that separates the 

histogram of an image into two equal parts at the median intensity level. To enhance contrast, each of these sub-

histograms is then equalized independently.  

  

Figure 2: Energy Curve  and Histogram of image (H) 

This method guarantees uniform pixel distribution throughout sub-histograms, improving localized contrast while 

maintaining small details. By combining the equalized sub-histograms, DSIHE creates a final image with better 

contrast and balanced intensity, in contrast to normal histogram equalization, which frequently results in over-

enhancement and detail loss. Notwithstanding its benefits, this method has significant drawbacks that reduce its 

efficacy in difficult situations like dim lighting or submerged surroundings. 

Low contrast reduces the perceived quality [13-14] of images and can introduce limitations in captured photographs. 

Contrast enhancement techniques are used to improve the visibility of visual details, especially in images taken under 

low light or poor exposure conditions, resulting in clearer and more appealing visuals. 

This method improves contrast by applying adaptive histogram equalization to individual image tiles instead of the 

entire image. The tiles are aligned using a scattered range of values, and a bilinear interpolation ensures smooth 

transitions, resulting in an image with enhanced overall contrast. Singh and Kapoor introduced the exposure-based 

sub-image histogram equalization (ESIHE) [15–17] technique, which separates images according to their image 

exposure threshold to enhance low-exposure photos. Low-exposure photos have a limited dynamic range, which 

results in low contrast.  Histogram bins are concentrated in the darker gray levels of low-intensity images and in the 

brighter regions of high-intensity images, respectively, resulting in low contrast. Enhancing contrast in low-exposure 

photos is still a little-studied topic, despite the fact that there are numerous techniques for general contrast 

improvement. In order to tackle this particular difficulty, this work presents two extensions of ESIHE [2,15]. 
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3. PROPOSED METHOD FOR HIGH PSNR 

The proposed approach addresses the limitations of the previous method and manages different conditions more 

effectively. Instead of relying on a histogram, it employs an Energy Curve [3], allowing for improved performance by 

applying histogram equalization directly to the energy distribution. 

3.1 Finding  Energy Curve (E) 

The energy curve calculates the energy for each pixel value, unlike a traditional histogram. Let I represent an image 

with pixel values x(i,j), where i and j are the spatial coordinates ranging from 1 to N and 1 to M, respectively. The 

image has dimensions M x N, and I is defined as a matrix of order d. 

for an image (i, j) as Nij
d = {(i + u, j + v), (u, v) ∈ Nd}. The subsystems are used to compute the energy curve of an 

image,i.e.,(u, v) ∈ {(+1,0), (0, +1), (1, +1), (−1, +1)}.First, calculate each pixel's energy for the entire greyscale range 

and generate a binary metrics. Bx = {bij, 1 < i <  M, 1 <  j <  N},the bij = 1if Xij > 𝑥;else bij = −1.let C =

{cij, 1 < i <  M, 1 <  j <  N} other matric is  cij =  1, ∀(i, j).At each pixel X, the energy value E(K) o  I is shown below 

[2] The [t1, t2]represents the pixel range 

E(K) = − ∑ ∑ ∑ bijbpq

pq∈N2
ij

N

j=1

M

i=1

+ ∑ ∑ ∑ cijcpq

pq∈N2
ij

N

j=1

M

i=1

 

   

(1) 

of an image I, for x =  t1 , Bx= 1. As the X value increases for a few elements matrix  Bx be -1, if x =  t2, then the  Bxbe 

-1. The energy curve is computed throughout the grayscale range of 0 to 255, or E(K), once the original image has 

been modified based on the range.  This curve performs better than a histogram and has qualities that are comparable 

to those of a histogram because it considers the spatial contextual information of picture pixels with their nearby 

pixel. 

4.PROPOSED METHOD  

4.1Proposed ESIHE_Energy Method 

This technique uses an energy curve-derived recursive histogram to process photos. By averaging, the recursive 

methods assess the image histogram. Raw images usually have weak energy curve representations and are not easily 

seen. To solve this, the energy curve is refined using the R-ESIHE approach, which improves its informational content 

for better visual display and improved exposure management. 

4.2 Calculation of Exposure of  Image 

 

exposure =
∑ E(K)KL−1

K=0

L ∑ E(K)L−1
K=0

 (2) 

 

The total number of grayscale levels is denoted by L, and the energy curve is represented by E(x). The boundary value 

splits the image into underexposed and overexposed regions based on exposure. If the exposure value is below 0.5, 

the image is underexposed, and if it exceeds 0.5, the image is overexposed.  

Xi = L(1 − exposure) (3) 

4.3 Clipping of the Energy curve 
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The energy curve of the image is calculated by the E and used to cut the image and establish the threshold. The values 

of the binomial picture are combined, and the grayscale image is converted into a matrix. Xpdf is used to compare 

the threshold level and determine the average energy levels. 

 

 

 

 

5.EQUALIZATION PROCESS 

The natural image is divided into two regions, WL and WU, based on the exposure threshold value Xi, with WL 

covering grayscale values from 0 to Xi−1 and WU covering values from Xi to L−1. The probability density functions 

(PDFs) of these sub-images are defined by PL(K) and PU(K), where the sum of pixels is denoted by NL and NU. The 

cumulative distribution functions (CDFs) of each image are represented by CL(K) and CU(K), as shown in equations 

8 and 9. 

 

 

 

 

 

Using the transfer function as a guide, equalize and combine four sub-images into one. 

𝐹𝐿 = 𝑋𝑖𝐶𝐿 (10) 

𝐹𝑈 = (𝑋𝑖 + 1) + (𝐿 − 𝑋𝑖 + 1)𝐶𝑈 (11) 

Where FL and FU are transfer functions. 

5.1ESIHE_Energy Algorithm   

To begin, calculate the energy curve of the image, denoted as E(K). Next, determine the threshold value Xi and assess 

the exposure level. Clip the energy Ec(K) according to the threshold Tc. Using the threshold Xi, split the energy curve 

into two distinct sub-sectors. Perform histogram equalization on each of these sub-sectors individually. Finally, 

combine the processed smaller images to reconstruct the larger image. 

6.RESULTS ANALYSIS 

The set of images used for the experimental analysis is presented in Figure 1. Eight distinct low-exposure color 

images, labeled A through H, were processed using eight different image enhancement algorithms. The results 

obtained from these experiments are summarized and displayed in Tables 1 through 4. 

Table 1: PSNR Comparison Across Various Image Enhancement Methods, I: Image, Ave: Average 

I HE BBHE 
CLA 

HE 

DSI 

HE 

R_ 

ESI 

HE 

RS_ 

ESI 

HE 

ESHI 

HE 

ESI 

HE_ 

Energy 

A 4.791 21.543 24.157 6.241 14.874 4.582 14.533 27.166 

𝑇𝑐 =
1

𝐿
∑ 𝐸(𝐾)

𝐿−1

𝐾=0
 (4) 

𝐸𝑐(𝐾) = {
𝐸(𝐾), 𝐸(𝐾) < 𝑇𝑐

𝑇𝑐 , 𝐸(𝐾) > 𝑇𝑐
 (5) 

𝑃𝐿(𝐾) =
𝐸𝑐(𝐾)

𝑁𝐿
⁄  for 0 < 𝐾 <  𝑋𝑖- 1 

(6) 

𝑃𝑈(𝐾) =
𝐸𝑐(𝐾)

𝑁𝑈
⁄  for 𝑋𝑖 <  𝐾 < L - 1 

(7) 
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B 5.717 21.806 14.945 8.799 16.182 6.479 16.055 28.323 

C 6.303 21.336 14.941 11.194 16.264 5.803 16.139 32.686 

D 6.483 22.900 18.993 6.691 18.488 6.565 18.212 22.905 

E 5.776 17.480 19.914 8.587 13.471 6.190 13.046 20.705 

F 9.175 13.403 8.080 10.404 18.967 11.426 18.940 37.437 

G 7.480 16.939 10.970 9.731 19.940 9.223 19.633 34.667 

H 7.169 19.644 12.947 10.516 12.504 9.521 12.000 28.570 

Ave 6.612 19.381 15.618 9.020 16.336 7.474 16.070 29.057 

 

To provide a detailed illustration, the histogram and energy curve of image H are shown in Figure 2. Specifically, the 

third row in this figure represents the histogram of the enhanced image processed using the ESIHE_Energy method. 

It is evident from this histogram that pixel intensities are more uniformly distributed across the entire range of 0 to 

255, indicating a significant improvement in contrast and detail enhancement. 

Table 2: Entropy Comparison Across Various Image Enhancement Methods 

I HE BBHE 
CLA 

HE 

DSI 

HE 

R_ 

ESI 

HE 

RS_ 

ESIHE 

ESHI 

HE 

ESIHE_ 

Energy 

A 2.975 2.795 0.093 3.245 4.320 3.218 3.901 3.437 

B 5.079 5.277 0.432 5.496 5.866 5.746 5.608 5.363 

C 3.813 4.279 0.373 4.195 4.342 4.790 4.848 4.356 

D 1.843 1.965 0.045 1.942 3.523 1.940 2.567 2.121 

E 5.131 5.289 0.454 5.453 5.717 5.771 5.501 5.364 

F 5.420 5.803 0.771 6.462 6.259 6.256 6.448 5.975 

G 4.985 5.547 0.484 5.987 5.779 6.007 6.167 5.481 

H 5.671 5.769 0.491 6.245 6.578 6.544 6.325 6.100 

Ave 4.364 4.590 0.393 4.878 5.298 5.034 5.171 4.775 

Table 3:  SSIM Comparison of Various Image Enhancement Methods 

I HE BBHE 
CLA 

HE 

DSI 

HE 

R_ 

ESIHE 

RS_ 

ESIHE 

ESHI 

HE 

ESIHE_ 

Energy 

A 0.019 0.560 0.642 0.024 0.138 0.020 0.116 0.620 

B 0.063 0.798 0.130 0.100 0.427 0.027 0.408 0.918 

C 0.076 0.435 0.487 0.404 0.395 0.084 0.375 0.899 

D 0.065 0.737 0.010 0.069 0.447 0.094 0.576 0.494 

E 0.059 0.338 0.110 0.104 0.202 0.047 0.184 0.536 

F 0.241 0.523 0.087 0.262 0.664 0.307 0.642 0.984 

G 0.088 0.573 0.120 0.184 0.591 0.061 0.535 0.972 

H 0.215 0.826 0.022 0.358 0.413 0.254 0.386 0.924 
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Ave 0.103 0.599 0.201 0.188 0.410 0.112 0.403 0.793 

 

Table 4: FSIM  Comparison Across Various Image Enhancement Methods 

I HE BBHE 
CLA 

HE 

DSI 

HE 

R_ 

ESIHE 

RS_ 

ESIHE 

ESHI 

HE 

ESIHE_ 

Energy 

A 0.422 0.773 0.751 0.328 0.607 0.412 0.595 0.920 

B 0.523 0.931 0.520 0.539 0.833 0.584 0.829 0.985 

C 0.543 0.884 0.664 0.615 0.831 0.587 0.824 0.998 

D 0.314 0.756 0.850 0.275 0.686 0.468 0.689 0.965 

E 0.564 0.862 0.688 0.560 0.760 0.614 0.761 0.898 

F 0.581 0.772 0.545 0.600 0.881 0.672 0.877 0.998 

G 0.477 0.843 0.705 0.540 0.918 0.554 0.915 0.998 

H 0.634 0.919 0.761 0.691 0.819 0.720 0.823 0.990 

Ave 0.507 0.842 0.686 0.518 0.792 0.576 0.789 0.969 

 

Further, Figure 3 demonstrates the enhancement results for all eight images using the eight different methods. The 

top row of this figure displays the original low-exposure input images, while the subsequent rows present the 

corresponding enhanced images for each method. The final row highlights the output generated by the proposed 

ESIHE_Energy method. Notably, this method produces images with significantly improved visibility compared to 

the original inputs. 

For instance, in the case of image H, the original input image contains very little visible information due to its low 

exposure. However, after applying the proposed enhancement method, much more visual detail becomes discernible, 

which validates the effectiveness of the ESUHE_Energy technique. 

For evaluating the performance of various image enhancement techniques, five key comparative metrics are utilized. 

These metrics include Peak Signal-to-Noise Ratio (PSNR), Mean Square Error (MSE), Entropy, Structural Similarity 

Index (SSIM) [22], and Feature Similarity Indexing Method (FSIM). Each of these metrics provides a different 

perspective on image quality, allowing for a comprehensive assessment. PSNR measures the ratio between the 

maximum possible signal and the noise that affects the image, making it useful for gauging overall image fidelity. 

MSE quantifies the average squared differences between corresponding pixels, giving an indication of error 

magnitude. Entropy assesses the information content of the image, reflecting its richness in detail. SSIM evaluates 

the perceptual similarity between two images, focusing on luminance, contrast, and structure. FSIM, on the other 

hand, incorporates low-level features like edges and gradients to gauge similarity more accurately. 

Eight distinct image enhancement techniques were examined in a sequential manner. These methods include HE, 

BBHE, CLAHE, DSIHE, ESIHE, Recursive ESIHE (R_ESIHE), Recursive Sub-Image Histogram Equalization 

(RS_ESIHE), and ESIHE integrated with an energy curve approach (ESIHE_Energy). 

To evaluate the effectiveness of these techniques, each method was applied to a set of eight low-exposure color 

images. The results were compared based on the average values of the aforementioned metrics across all images. This 

comparative analysis aimed to identify which method produced the best overall enhancement in terms of clarity, 

detail, and structural similarity. 

A higher Peak Signal-to-Noise Ratio (PSNR) signifies more effective noise reduction and greater retention of fine 

details in an image. Among the evaluated methods, ESIHE_Energy stands out by delivering a PSNR of 29.57, which 
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demonstrates its exceptional capability to minimize noise while maintaining crucial image features. This result clearly 

indicates that ESIHE_Energy is the most proficient technique in preserving image quality after processing. 

Additionally, BBHE, which achieves a PSNR of 19.38, also performs well, highlighting its ability to reduce noise while 

keeping significant image details intact. On the other hand, HE exhibits the poorest outcome, with a PSNR value of 

only 6.612, reflecting insufficient noise suppression and a substantial loss of image detail. In essence, these PSNR 

values provide a quantifiable measure of each method’s efficiency in image enhancement, where a higher PSNR 

correlates with clearer, less noisy images. The disparity in values emphasizes the superiority of ESIHE_Energy and 

BBHE over HE in achieving optimal noise reduction without compromising the integrity of image details. 

The Mean Squared Error (MSE) serves as a key indicator for evaluating the accuracy of image enhancement 

techniques by calculating the average of the squared differences between the original image and the enhanced 

version. A smaller MSE value is desirable, as it signifies a closer resemblance of the enhanced image to the original, 

with fewer distortions or errors introduced during the enhancement process. Among the evaluated methods, the 

ESIHE_Energy technique achieves the lowest MSE value of 33.982, implying that it produces minimal error and 

offers high fidelity in preserving the original image details. Similarly, the BBHE method, with an MSE of 312.775, 

performs relatively well by keeping error levels low. However, the HE method demonstrates a significant deviation 

from the original images, evident from its notably high MSE value of 4387.683, which indicates substantial errors 

and reduced image quality following enhancement. 

Entropy is a fundamental metric used to assess the level of randomness or structural complexity in an image. It 

quantifies how much detailed information is present within the image by examining the distribution of pixel 

intensities. A higher entropy value signifies that pixel values are more evenly spread across different intensity levels, 

which usually corresponds to an image containing greater visual detail and richer texture. 

In this context, the technique R_ESIHE achieves the highest entropy score of 5.298, which clearly indicates a superior 

enhancement in image detail. This high value suggests that the method effectively redistributes pixel intensities, 

resulting in a more complex and visually appealing output. Additionally, other methods, such as ESIHE, with an 

entropy of generated using various techniques listed in the first column.5.171, and R_ESIHE_Energy, which records 

an entropy of 4.775, also demonstrate commendable performance in improving image detail by boosting the overall 

randomness of pixel intensities. 

On the other hand, CLAHE produces the lowest entropy value of 0.393, implying that it fails to enhance the details 

significantly. The low entropy score suggests limited complexity in the enhanced images, resulting in less visual 

richness and a poorer distribution of pixel intensities when compared to the other methods. 

The Structural Similarity Index (SSIM) is a metric commonly used to measure the degree of resemblance between 

two images, focusing on the preservation of structural details. A higher SSIM score reflects better maintenance of the 

original image’s structure, as well as improved visual quality in the processed image. In this context, the method 

referred to as ESIHE_Energy demonstrates superior performance by achieving the highest SSIM value of 0.965. This 

score indicates that ESIHE_Energy effectively retains fine structural details and ensures excellent visual fidelity. 

Similarly, BBHE also performs well with an SSIM value of 0.842, signifying its capability to maintain structural 

features to a considerable extent. In contrast, the standard histogram equalization (HE) method yields the lowest 

SSIM score of 0.507. This result highlights HE’s limited ability to preserve structural information, which may lead to 

noticeable visual distortion or degradation in the enhanced image. 
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Figure.3: The first row contains the input images, while the subsequent rows display enhanced images 

 

The FSIM (Feature Similarity Index Measure) serves as a metric for assessing how similar two images are by focusing 

on key features that are critical to human visual perception. Essentially, it gauges how well an image retains important 

structural and perceptual elements when compared to its original version. A higher FSIM score reflects superior 

preservation of these important features. 

Among the techniques compared, ESIHE_Energy achieves the highest FSIM score of 0.793, signifying that it excels 

in maintaining crucial visual details and features. This high score indicates that the processed image remains visually 

close to the original in terms of essential perceptual qualities. Another technique, BBHE, also performs reasonably 

well with an FSIM score of 0.593, demonstrating good preservation of key image features.  

On the other hand, HE yields the lowest FSIM score of 0.103, indicating significant degradation of  

important image details. This low score implies that the method likely results in a substantial loss of critical visual 

elements, which may negatively affect the perceived quality of the processed image. 

To conclude, ESIHE_Energy consistently stands out as the most effective method across a range of evaluation 

criteria. Its performance is particularly impressive in minimizing noise (as indicated by high Peak Signal-to-Noise 

Ratio, or PSNR), reducing errors (low Mean Squared Error, or MSE), maintaining the structural integrity of images 

(Structural Similarity Index, or SSIM), and preserving key image features (Feature Similarity Index, or FSIM). 

Additionally, BBHE demonstrates reliable results in multiple performance metrics, making it another dependable 

option for image enhancement tasks. 

In contrast, Histogram Equalization (HE) consistently shows the poorest outcomes in several key aspects. Its weak 

performance is especially evident in maintaining brightness consistency (measured by Absolute Mean Brightness 
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Error, or AMBE), reducing noise (PSNR), and retaining both structural and feature-based details (SSIM and FSIM). 

Consequently, HE emerges as the least effective technique among the ten image enhancement methods evaluated. 

7. CONCLUSIONS 

The proposed method leverages an energy curve to enhance image quality by implementing an advanced histogram 

equalization strategy. Traditional image processing techniques face significant challenges in underwater 

environments and low-light conditions, as they struggle to enhance image clarity or effectively suppress noise for 

improved visual perception. To address these limitations, the suggested technique demonstrates superior 

performance by effectively enhancing low-exposure images and solving issues related to inadequate lighting. A 

comparative evaluation was conducted using ten different image enhancement techniques applied to a dataset of 

eight low-exposure color images. The performance was assessed using six widely recognized metrics, including 

AMBE, Peak Signal-to-Noise Ratio (PSNR), Entropy, SSIM, and FSIM. The results consistently showed that the 

ESIHE_Energy method surpassed other enhancement techniques in terms of noise reduction, minimizing image 

distortion, and preserving key structural details and features. Furthermore, techniques such as BBHE (Bi-Histogram 

Equalization) and RS_ESIHE_Energy also displayed commendable performance across various metrics, 

highlighting their potential reliability in image enhancement tasks. In contrast, the standard Histogram Equalization 

(HE) method was found to be the least effective, exhibiting notable drawbacks in brightness preservation, noise 

suppression, and retention of structural integrity. This study underscores the advantages of energy curve-based 

enhancement approaches, particularly ESIHE_Energy, which excels at improving image quality under challenging 

low-light conditions while maintaining high visual fidelity and structural coherence. 
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