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ABSTRACT 
Due to the constant evolution of technology, each day brings new programming languages, development 
paradigms, and ways of evaluating processes. This is no different with source code metrics, where there is 
always new metric classes. To use a software metric to support decisions, it is necessary to understand how 
to perform the metric collection, calculation, interpretation, and analysis. The tasks of collecting and 
calculating source code metrics are most often automated, but how should we monitor them during the 
software development cycle? Our research aims to assist the software engineer to monitor metrics of 
vulnerability threats present in the source code through a reference prediction model, considering that real 
world software have non-functional security requirements, which implies the need to know how to monitor 
these requirements during the software development cycle. As a first result, this paper presents an empirical 
study on the evolution of the Linux project. Based on static analysis data, we propose low complexity models 
to study flaws in the Linux source code. About 391 versions of the project were analyzed by mining the 
official Linux repository using an approach that can be reproduced to perform similar studies. Our results 
show that it is possible to predict the number of warnings triggered by a static analyzer for a given software 
project revision as long as the software is continuously monitored. 

Keywords: source code static analysis, source code metrics, common weakness enumeration, prediction, 
linux 
 
 

INTRODUCTION 

Source code static analysis is a good means to provide inputs to support software quality assurance. For 
instance, these inputs may be software structural attributes such as object-oriented metrics as presented by 
Chidamber and Kemerer (2002). Attributes related to the possible behaviors of the software at execution time 
(Ernst, 2005), which includes analyses of behaviors that may lead to security issues, could also serve as input 
provided for quality assurance (Ferzund et al., 2009; Misra and Bhavsar, 2003; Nagappan et al., 2006). 

From the source code static analysis point of view, a vulnerability is the result of one or more flaws in software 
requirements, design, implementation, or deployment (Black et al., 2007). Vulnerability correction can be very 
expensive in later stages of a software development cycle, hence the importance of finding and correcting flaws in 
early stages, before they expose actual vulnerabilities. 
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Although no standard to define software flaws is widely accepted, some organizations define and classify them. 
The most accepted form is the one defined by MITRE, where software common flaws are cataloged as CWEs1 
(Common Weakness Enumeration). This catalog establishes a unique language to describe known software flaws, 
like divisions by zero and buffer overflows. 

There are several static analyzers that can detect flaws (Black, 2001). With the support of such tools, this work 
presents a method to define low complexity models for the amount of flaws found in a software through a case 
study of two different types of common weaknesses detected in Linux: Use of Uninitialized Variable and NULL 
pointer Dereference. Thus, we have obtained low complexity polynomial functions to describe the number of 
these flaws present in Linux over time. 

To show our ideas and results in this context, the remainder of this paper is organized as follows: the next 
section describes several related works investigated in this research. The third section shows the research design, 
discussing our research question as well as presenting the data collection and analysis approach. The fourth section 
presents the candidate low complexity models to predict flaws in Linux. The fifth section discusses the results, 
selecting and applying the candidate low complexity models. The last section concludes the paper, highlighting its 
main contributions and pointing to possibilities for future work. 

RELATED WORKS 

Evans and Larochelle (2002) states that although security vulnerabilities are well understood, it is not a common 
practice to include techniques to detect or avoid them in the development processes and suggests that instead of 
solely relying on programmers, tools to prevent and detect software vulnerabilities should be built and integrated 
in software development cycles. It is also known that static analysis helps programmers detect software 
vulnerabilities before they reach production (Evans and Larochelle, 2002) in a cheaper way than solely conducting 
manual inspections (Johnson et al., 2013), thus the interest in static analyzers. 

Zheng et al. (2006) analyzed the effectiveness of security oriented static analyzers using tests and the number 
of failures reported by customers as parameters. They concluded that static analyzers are effective tools to find 
flaws in source code. However, a solution on how to monitor such flaws is not presented. Our research aims to 
find solutions for this issue. 

Pan et al. (2006) proposes a method to predict if a file or function in a given project is buggy or bug-free based 
on the correlation between code quality metrics, like size, complexity and coupling, and software bugs. The authors 
used static analyzers to extract data from 76 revisions of Latex2rtf and 887 revisions of Apache HTTP so they 
could use the 10-fold cross-validation method with a machine learning algorithm to perform their predictions. The 
prediction precision was over 80% for files and over 70% for functions. The authors declared that the costs to run 
the static analysis to generate the method inputs were too high for large projects. In this paper we are testing low 
cost functions to predict some flaws, but running the analyses is still needed.  

In another work, Penta et al. (2008) performed an analysis of the evolution of vulnerabilities detected by static 
analyzers in three different Free Software applications: Samba, Squid, and Horde. The authors analyzed how the 
number of vulnerabilities varies over time. Since they analyzed different development versions (not only releases), 
they could analyze aspects of the development process, like bug fixing efforts right before a release. The focus of 
this work was to understand how long vulnerabilities tend to remain in the system by modeling the vulnerabilities 
decay time with a statistical distribution and comparing the decay time of different classes of vulnerabilities. Our 
research is based on the hypothesis that to effectively take action on such bug fixing effort predictions, monitoring 
the number of flaws or the flaws decay time should be done continuously, during the software development cycle. 
This work is a first step towards such automation. First, we present a model to predict the number of flaws present 
in a specific version of the Linux kernel. Then, we show that such model must be continuously updated to be 
effective, i.e., the greater the difference between the last version used to train the model and the version used for 
the predictions, the less effective are the predictions made. 

RESEARCH DESIGN 

To guide the development of a reproducible method to define low complexity functions that enable the 
longitudinal study of software flaws, we addressed the following research question: 

Q1 – Is it possible to define low complexity models to predict flaws in the Linux source code? 

                                                      
1 cwe.mitre.org  
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With low complexity functions, we are able to automate the continuous monitoring of flaws in a simple way, 
without the need to build complex models, which would be expensive to maintain. If we can easily infer the number 
of flaws predicted in a software as well, improvements in the software development cycle based on it become 
possible. 

We could, for example, make better decisions on when to increase the efforts to fix bugs or refactor code. 

Data Collection 

Although it is common to refer to the whole operating system as Linux, the name refers to the kernel. Its 
development has been active for over 20 years and it is written in the C programming language. The Linux source 
code showed itself adequate for this study due to its size and the fact that it is widely used around the world, which 
led us to believe there is a higher likelihood of finding flaws in it. A total of 391 versions of the kernel were 
analyzed. These version were downloaded from the project's official Git repositories2. By the time of our first 
analyses, the versions between 2.6.11 and 3.9 were available. After that, we have tested the candidate models in 
three recent kernel versions: 4.0, 4.5, and 4.9. 

The static analyzer selected was Cppcheck. According to the description in its homepage3, it aims to be a sound 
(Black, 2001) static analyzer, since its main goal is to find real bugs in the source code, not generating false positives. 
The main characteristic of sound static analyzers is the low rate of false positives. The Cppcheck output is 
composed of a location (source code line) and a message, describing a problem (warning or error). We ran 
Cppcheck 1.67 in each version of Linux and the corresponding output files for each of the analyzed versions are 
publicly available at github.com/lucaskanashiro/linux-analysis. 

Data Analysis 

The risk of Linux versions with more modules to stand out compared to other versions was identified upon 
analyzing the absolute number of flaws found. Thus, the number of flaws was normalized based on the number 
of modules in each version, resulting in the flaw rate per module that is our dependent variable. To analyze the 
influence of the project growth, we used the total number of modules as our independent variable. In this 
context, a kernel module is one C programming language source code file (header files are not counted for this 
matter). 

Since there are several known flaws, we have conducted a previous study with 10 popular Free Software 
projects4 from different domains to find the most recurrent flaws and select them to perform the analyses for this 
work. Since this paper proposes to find one model per flaw analyzed, we selected the two most frequent flaws 
found in those projects: NULL pointer dereference and use of uninitialized variable. Both are cataloged by 
MITRE and as Common Weakness Enumerations, the former as CWE476 and the latter as CWE457.  

                                                      
2 git.kernel.org 
3 cppcheck.sourceforge.net 
4 Bash, Blender, FFmpeg, Firefox, Gstreamer, Inetutils, OpenSSH, OpenSSL, Python2.7, and Ruby-2.1 

 
Figure 1. CWE 476 dereferences evolution 
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As we can see in Figures 1 and 2, in the course of Linux evolution, the total number of flaws dereferences 
does not always increase. It increases until a certain point and then there is a tendency towards stabilization, which 
is, most likely, the result of the Linux development process evolution. To understand the behavior of the data we 
performed some analyses, such as correlation matrix between the flaws and the number of modules, using the 
Pearson correlation coefficient (Rossman, 1996). 

Also, to confirm that the data can not be represented by a linear function, we used the 4-plot technique 
developed by NIST5. This technique facilitates the understanding of the data distribution and its randomness. For 
this study, identifying these characteristics was necessary to obtain information for the definition of a model which 
satisfies the studied data set, or that could, at least, eliminate unwanted options. For Linux, the data does not follow 
a normal distribution, but a long-tailed distribution, so that it is not constant and varies widely, as we can see in 
Figures 3 and 4. Both analyses showed that the flaw rates were not strongly correlated and they did not fit a 
normal distribution, which corroborates with the fact that exponential and weibull distributions can model the 
behavior of defect occurrence in a wide range of software (Penta, 2002; Jones, 1991; Li et al., 2004; Wood, 1996). 
With this in mind we discarded the possibility of using a linear model. 

Since our proposal is based on low complexity models and linear functions do not fit the data set, we 
investigated polynomial models. Initially, an identification of outliers (Hawkins, 1980) work was done for the 
definition of the polynomial models through a technique presented by Tukey (1977), using a box plot. The outliers 
found were removed to improve the candidate model accuracy. After that, parametric and non-parametric models 

                                                      
5 itl.nist.gov/div898/handbook/eda/section3/eda3332.htm 

 
Figure 2. CWE 457 dereferences evolution 

 
Figure 3. 4-Plot for CWE 476 – Number of NULL pointer 
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were built. The non-parametric model is a black box method from which it is not possible to obtain a mathematical 
function. In this study, it is used as a base for the definition of a parametric model. As a result, we have a function 
that receives the total number of modules in the project as input and returns the flaw rate as output. 

We also have used the Locally Weighted Regression (LOESS) non-parametric method to provide a smooth 
surface using a non-parametric regression (Cleveland and Devlin, 1988). In short, the LOESS method applies 
several minor regressions to the data set as well as it can guide the definition of a possible parametric model. 
Therefore, we have applied polynomial regressions to obtain the parametric models definition for this 
study.Posteriorly, to validate the obtained models, we used the K-Fold cross-validation technique, which consists 
in dividing the data set in K groups, where one of these groups is used to test the model and the other groups are 
used to train the model (Picard and Cook, 1984). With this kind of cross-validation, we can test the model with 
values from different versions of the kernel, obtaining the model prediction error. We use the mean squared error, 
which guarantees the model reliability, given that this error has a low value. After the validation, the model errors 
were compared and we could chose the best model, getting to low complexity (polynomial) functions capable of 
predicting the Linux source code flaw rates proposed in this paper. 

Finally, we have tested the candidate models collecting new data from recent Linux versions (such as 4.0, 4.5, 
and 4.9) and comparing them to the predicted values from our low complexity polynomial functions 

LOW COMPLEXITY MODELS DEFINITION 

To achieve a lower error, we could use a polynomial function with a higher degree. However, to build a suitable 
model, we need to avoid overfitting, the extreme adjustment of the model to our data set, which would disturb the 
extrapolation for future inputs. Our approach based on a non-parametric model as reference helps avoiding a 
possible overfitting of the built model, providing a more flexible model. 

For the models definition, we identified and removed the outliers in the data set, defined the non-parametric 
model with the LOESS method and, finally, defined two parametric models through polynomial regression: one 

 
Figure 4. 4-Plot for CWE 457 – Use of uninitialized variable 

 
Figure 5. CWE 476 data models prediction curve 
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quadratic polynomial and one cubic polynomial. In Figures 5 and 6, we present the “real” flaw rate values and 
flaws evolution curves (”cubic”, “quadratic” and “LOESS”) in the built models. 

Figure 5 shows that the built cubic model is the one with the best approximation for the reference model curve 
(LOESS model). It is especially good for data extrapolation on data sets higher or lower than the data interval used 
in this study. On the edges, the cubic model has a better approximation from the reference model, while the 
quadratic model tends to diverge from it. Still, although all the models presented in Figure 6 have a good 
approximation for the reference model curve, the cubic model fits the reference model better than the quadratic 
one, both in the minimum and maximum limits. 

Finally, to compare the models, we performed a cross-validation with the K-fold method to analyze the 
performance of both models in a data set that was not used for training those models. In short, we used a ten-fold 
cross-validation (K = 10) for this study, which means dividing the sample in ten groups for training and testing 
(Kohavi, 1995). Table 1 presents the mean squared error (MSE), associated to each of the models obtained through 
the cross-validation. For instance, the MSE measures the quality of a prediction model, so its values closer to zero 
are better, and they always are non-negatives. Therefore, the low error (MSE < 0.000001), obtained from the 
presented functions, guarantees the models reliability. 

For both CWEs, the cubic model stood out. The error associated with the quadratic model for CWE476 was 
approximately 11.14% higher than the cubic model in “real” analysis situations, while the error associated with the 
quadratic model for CWE457 was approximately 22.32% higher than the cubic model6. Therefore, in both cases, 
the cubic models are better for predicting the Linux flaw rate evolution, since they show a better approximation 
from the reference models when it comes to the extrapolation of the analyzed data boundaries. 

RESULTS 

For each CWE studied, two models were defined and one was selected. Thus, it is possible to use low 
complexity functions, with low error, to define a model to predict flaws in Linux, answering our research question. 
This is feasible when we can obtain a meaningful data set, as it was the case for Linux, where we used 391 different 
versions of the project. In short, comparing and selecting the models for each CWE, we have Equations 1 and 2 
representing the selected cubic models: 

tax_CWE476(modules) = (1.911224 ∗ 10 -15) ∗ modules 3  
       − (1.72028 ∗ 10 -19) ∗ modules 2 
       + (4.857479 ∗ 10 -6) ∗ modules 
                               − (0.03460173) 

(1) 

                                                      
6 These numbers can be verified by comparing the values in Table I, dividing the quadratic error values by the cubic ones 

 
Figure 6. CWE 457 data models prediction curve 

Table 1. Error Obtained Through cross-validation 
Model CWE Mean squared error 
Quadratic 476 0.000000958 
Cubic 476 0.000000862 
Quadratic 457 0.000000137 
Cubic 457 0.000000112 
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tax_CWE457(modules) = (−6.466983 ∗ 10 -16) ∗  modules 3 
      + (5.603787 ∗ 10 -11) ∗  modules 2 
      − (1.639652 ∗ 10 -16) ∗ modules  
                                     + (0.02287291) 

(2) 

It can be verified that the coefficients of the equations 1 and 2 are low values, since the flaw rates are also low. 
It is uncommon to find buggy functions in Linux (Ferreira et al., 2016). So, when this already low value is divided 
by the number of modules, which tends to increase over time, we get very low values for the flaw rates. 

Table 2 presents the defined models with the flaw rates in some known points, as first collected version 
(2.6.11), last analyzed version (3.9), the version with the higher flaw rates (2.6.39 for CWE476 and 3.16 for 
CWE457), as well as, recent Linux versions for prediction points (4.0, 4.5, and 4.9).  

In the one hand, the flaw rate for CWE476 (NULL pointer dereference) peaked in version 2.6.39 and then 
started to decrease, but as soon as the number of modules starts to increase, it tends to increase, reaching a new 
peak and finally starting to decrease again. In the other hand, the flaw rate for CWE457 (Uninitialized variables) 
tends to decrease, as shown in Table 2. We can observe that the flaws always oscillate with a few peaks, but the 
values tend to decrease. The values for CWE476 emphasize that fact, since the flaw rate on the second peak is 
lower than the previous one. 

After aplying the models to kernel versions later than 3.9, we compared the real flaw rate values and the values 
estimated by our model. We obtained the real values by dividing the number of occurrences of CWE476 and 
CWE457 by the number of modules of the respective kernel versions. The real values are shown in Tables 3 and 
4. 

By analyzing the real values and the values proposed by the models for Linux versions greater than 3.9, we can 
see that the further the latest version used to train the model is from the version analyzed, the greater the error on 
its predictions. This leads to the need of updating the model for a certain interval of new Linux releases, making it 
possible to reduce the error, improving the precision of the statistical model predictions. An interesting means to 
achieve such updates is by performing continuous static analysis on software repositories (the kernel repository in 
this specific context) and automate the model updating tasks. In the next Section we discuss our final remarks and 
our plans for future work, including the development of a platform to perform continuous static analysis on 
software repositories and make the analyses available. 

FINAL REMARKS 

By identifying frequent flaws in source code, such as NULL pointer dereferences and uses of uninitialized 
variables (CWE476 and CWE457, respectively), a series of exploratory analyses were carried out and we defined 
low complexity models to predict the mentioned flaws. We observed, from Cppcheck reports, that source code 
flaws are not easily detected in Linux, which gave us a small number of flaws per module in the performed analysis. 

To test the defined models, we also analyzed Linux versions that were more recent than the ones analyzed to 
define the selected functions, using the presented models to predict the flaw rates, and comparing the obtained 
values with the results of static analysis. The results showed that it is possible to predict the number of flaws 

Table 2. Some flaw rates and predictions 
Version tax_CWE476 tax CWE457 Modules 
linux-v2.6.11 0.005735325 0.008992424 14123 
linux-v2.6.39 0.008927095 - 30245 
linux-v3.16-rc3 - 0.006577706 37095 
linux-v3.9-rc8 0.006460368 0.005663884 33899 
linux-v4.0.0 0.006435337 0.006036167 37793 
linux-v4.5.0 0.006829370 0.005503281 40209 
linux-v4.9.0 0.007679160 0.004861321 42234 
 

Table 3. Comparison between model and real value CWE 476 
Version model_tax_CWE476 real_ tax_CWE476 
linux-v4.0 0.006435337 0.006085783 
linux-v4.5 0.006829370 0.005968813 
linux-v4.9 0.007679160 0.005729981 
 

Table 4. Comparison between model and real value CWE 457 
Version model_tax_CWE457 real_ tax_CWE457 
linux-v4.0 0.006036167 0.006562062 
linux-v4.5 0.005503281 0.006615434 
linux-v4.9 0.004861321 0.006179855 
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triggered by the static analyzer for a given version of the kernel, as long as the revisions used for training the model 
are not distant from the version we want to generate predictions for. It is important to say that this may not be 
true for other software, since it depends on how much is changed between versions. But the opposite also holds: 
the model may work better for software with smaller deltas between versions and this should be investigated in 
future work. 

In this study, we did not consider the possibility of the used static analyzer to report false alarms (Landi, 1992) 
(false positives), increasing the flaw rate of this work with fake data (not real flaws), or false negatives, omitting 
flaws from our research, which would decrease our flaw rates. Even with this limitation, since the used sample is 
large, statistically, the proposed models are valid. They could also be applied with other sources for the flaws, like 
manually mining repositories for bug fixes or searching mailing lists for confirmed bug reports, cases where most 
flaws, if not all of them, are positives. We did not follow this approach because we intend to scale this research 
using an automated approach. 

In our analysis, we could observe that the presented rates of flaws per module have peaks during the evolution 
of Linux's source code, that represent phases of source code's growth, where flaws were added, and refactoring 
phases, where flaws were fixed. Thus, a next step for this research would be applying the analysis of other factors 
that influence the variation of source code flaws, such as the number of developers who are working with quality 
assurance. This would make it possible to define multivariate models to aid software engineers on making decisions 
around the software development cycle.Moreover, from the defined low complexity models analyses, we want to 
identify some aspects of the development process as a next step, besides studying the flaws history in the course 
of different releases. For instance, the models could be used to analyze the development cycle in specific moments, 
such as new features development (increase in number of flaws) and moments of stabilization, refactoring, and 
bug fixing (decrease in number of flaws) through Linux development. The reason to build less complex models is 
the fact that they will require less effort to perform future analysis. In the future, we want to automate all these 
analyses and perform continuous monitoring of flaws in source code. 

In fact, our next step involves developing a platform to perform static analysis on different software repositories 
with different static analyzers. This will provide the data needed to perform studies like the present research and 
take decisions to improve the software development cycle and the software quality itself. We also intend to open 
the collected data, which might be useful for other researchers and software developers. 
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