

Copyright © 2018 by Author/s and Licensed by Lectito BV, Netherlands. This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Information Systems Engineering
& Management, 2018, 3(3), 19
ISSN: 2468-4376

Malware Detection and Mitigation Techniques: Lessons Learned from Mirai DDOS
Attack

Luis Eduardo Suástegui Jaramillo 1*

1 Universidad Católica Santiago de Guayaquil, Facultad de Educación Técnica para el Desarrollo, Guayaquil,
ECUADOR

*Corresponding Author: edunashi@gmail.com

Citation: Jaramillo, L. E. S. (2018). Malware Detection and Mitigation Techniques: Lessons Learned from
Mirai DDOS Attack. Journal of Information Systems Engineering & Management, 3(3), 19.
https://doi.org/10.20897/jisem/2655

Published: July 16, 2018

ABSTRACT
In August 2016 an attack of DDoS was performed by a botnet composed of more than 24,000 computers
located in over 30 countries. Its objective was against at least five Russian banks. This paper is created in
order to utilize the Free and Open Source Software (FOSS) available online to identify, classify and remove
malware from a compromised system. Presenting an in-depth security analysis of Mirai botnet, a malware
that affected the availability of banking systems and put in evidence a new form of DDoS attack that works
with IoT devices compromised by malware. The methods presented are generic and can be used to mitigate
any malware of the same nature.

Keywords: botnet, IoT malware, FOSS, incident handling

INTRODUCTION

FOSS is open sources software that is free to be used by anyone. That is, users have the freedom to run, copy,
distribute, study, change and improve the software. The benefits of using FOSS can include decreased software
costs, improve the security and interoperability.

Computer software that serve malicious purposes are usually called malware, from malicious software. There
are variety of forms of intrusive software, trojans, rootkits, spywares, worms, etc. The most destructive is the type
of malware that spreads automatically over the network from machine to machine by exploiting known or
unknown vulnerabilities. That kind of malware is not only a constant threat to the integrity and confidentiality of
individual computers on the internet. For example, compromised machines that an attacker can manipulate from
a botnet (collection of bots in a command and control (C&C) server controlled by an attacker) are called bots.
Malicious use of bots is the coordination and operation of automated attack by a botnet that can bring down
almost any server through Distributed Denial of Service (DDoS) attack.

According with the National Institute of Standards and Technology (NIST), malwares are the most common
external threat to most hosts, that causing widespread damage and disruption and necessitating extensive recovery
efforts within most organizations. (Souppaya and Scarfone, 2013)

The process of collecting malware and analyzed it, is not easy. Nowadays, most of the malware´s example
available online for educational purpose, are obtained by detailed forensic examinations of infected machines.

With the increase of new types of malwares, this can only be done for a small proportion of system comprises.
Also, sophisticated worms and viruses spread so fast in the network that the collection of they without special
devices and a highly qualified staff is almost impossible. In both cases, it is necessary a very high degree of
automation to handle these issues. (Provos and Holz, 2008)

mailto:edunashi@gmail.com
https://doi.org/10.20897/jisem/2655
http://www.lectitopublishing.nl/
http://www.lectitopublishing.nl/journal-for-information-systems-engineering-management

Jaramillo / Detecting Malware Capabilities with FOSS: Lessons Learned through a Real-Life Incident

2 / 6 © 2018 by Author/s

One of the big problems in the information security industry today, is having the ability to identify malware
either as it attempts to get on the network or subsequent to the malware already being present. Several factors
make this identification particularly difficult:

1) Vast amount of malware: Exists and is created on a daily basis, often results in the uselessness of intrusion
detection systems (IDS) based on signature.

2) Malware integrated: Malware is often integrated in otherwise-trusted applications and sent over protocols
that are traditionally allowed through firewalls and access lists.

3) Restricted amount of resources: Organizations have narrow range of resources (both human and
technology) to effective control the massive amounts of traffic that pass through the network. The quantity
of data traffic, both good and bad, has become so large that it is almost too much for any one organization
to keep up.

4) Use of encryption: The increasing use of encryption has added another challenge for organizations trying
to gain visibility into malicious traffic residing on the network.

As defined in NIST SP 800-61, Computer Security Incident Handling Guide, the incident response process has
four major phases: preparation, detection and analysis, treat, and post-incident activity. Figure 1 from NIST SP
800-61 displays this incident response life cycle.

This process is going to be used in the rest of the paper as the framework.

LINUX/MIRAI BOTNET- OVERVIEW

So far, we have talked about how difficult it can become to collect and manage malware. Botnet is a network
of compromised machines under the influence of malware (bot) code (L. W. Gu Guofei,Perdisci Roberto, 2008).
This kind of networks can cause much harm in today’s Internet. From August 4th 2016 several sysadmins were
helping the cyber security community by uploading Mirai malware files and sharing their experiences through
forums and specialized pages. This threat is made by a new ELF (Executable and Linkable Format) trojan which
have been used to create large-scale botnets—networks of devices infected with self-propagating malware—that
can execute crippling distributed denial-of-service (DDoS) attacks., the name of the binary is "mirai.*" and is having
telnet attacks as main functionality to IoT devices.(US-CERT, 2016)

Mirai is a linux malware written in C language, the main but not exclusive objective of this malware is the
infection of routers and IP cameras by continuously scanning ports 22, 23, 5747, etc. Uses a brute force technique
for guessing passwords through a dictionary attacks. Once connected to an IoT, attempts to login, gain access, and
infect the device. The infected device then scans other networks looking for more IoT devices and launches DDoS
attacks (DAC, 2012). The botnet control structure usually uses HTTP or IRC for the remote command channel,
sometimes proprietary communication protocols can be used, even social networks like twitter can be employed
to perform control over a bot. To avoid a single point of failure some botmasters (bot administrator, could be a
person or system) use peer-to-peer (P2P) communication mechanisms. A command and control (C&C) server lets
an attacker manipulate infected machines. Usually, two types of commands are implemented in the server, updates
and DDoS attacks. DDoS attacks include SYN and UDP flooding (Provos and Holz, 2008).

According with Imperva Incapsula security team investigation since the source code was published, 49.657
unique IPs hosted Mirai-infected devices. These were primarily surveillance systems and routers with default
settings. On the whole, IP addresses of Mirai-infected devices were spotted in 164 countries (Herzberg and
Bekerman, 2016).

Table 1 from Imperva’s DDoS attacks report, shows the top countries of origin of Mirai DDoS attacks.
At this time Mirai malware is having a low antivirus detection ratio, even in the architecture of x86.
With the free software avsubmit.py create by Michael Ligh is possible to analyses a file using the VirusTotal

engine from the command line. Figure 2 shows part of the output generated by the program.

Figure 1. Incident Response Life Cycle

Journal of Information Systems Engineering & Management, 3(3), 19

© 2018 by Author/s 3 / 6

From the 58-online antivirus that VirusTotal use to analyze a file, just 14 of then identify the malware as a
possible threat.

PREPARATION – CREATING A GAME PLAN

One of the most common tasks malware analysts perform is classification of content. This content can be
something well known or completely new. The classification process starts with the simple, as detecting the file
type and then move to the more complex, as detecting similarities with other files of the same nature and
determining patterns of comportment.

ClamAV is a cross-platform open source (GPL) anti-virus engine owned by Sourcefire. It provides a fast and
flexible framework for detecting malicious code and artifacts (DAC, 2012). For our purpose, we are going to use
ClamAV to establish a baseline to confirm or deny a false positive of Mirai malware or any kind of malware that
is based on this code. To do that we are going to create a custom binary signature based on the source code of the
original malware and create our own data base. For example, consider the following disassembly of shellcode from
Mirai malware Table 2.

Is possible to use the byte code value to create a binary signature (1). Staring with ClamAV version 0.96, the
basic signature format is deprecated in favor of an extended signature format. We are going to use the extended
signature format (2), which consist of the following four fields separated by colons.

Any_name:0:*: 4889c6bf01000000e86b060000 (1)
SigName; Target;Offset; Byte_Codes (2)
The SigName is a unique descriptive name for the signature, target parameter can be any value from 0 to 9

where each number has a different propose. For example, 0 is for any file type and 9 for Mach-O binaries (Database
et al., 2007).

DETECTION & ANALYSIS- CLASSIFICATION OF UNKNOWN

Once we have our costume database is time to take the next step and classify our malware. Yara is an open-
source and multi-platform tool (it works with most hosts running Windows, Linux, or Mac operating systems)

Table 1. Top countries of origin of Mirai DDoS attacks
Country % of Mirai botnet IPs
Vietnam 12.8%

Brazil 11.8%
United States 10.9%

China 8.8%
Mexico 8.4%

South Korea 6.2%
Taiwan 4.9%

Figure 2. Output generated by avsubmit.py

Table 2. Mirai shellcode example
Offset Instruction Byte codes

1f mov %rax,%rsi 48 89 c6
22 mov $0x1,%edi bf 01 00 00 00
27 Callq 6ab e8 6b 06 00 00

Jaramillo / Detecting Malware Capabilities with FOSS: Lessons Learned through a Real-Life Incident

4 / 6 © 2018 by Author/s

aimed at (but not limited to) helping malware researchers to identify and classify malware samples (“yara 3.6.0
documentation”, 2017). Using Yara we can create rules that detect strings, instruction sequences, regular
expressions, byte patterns, and so on. Today there are various IDS, IPS (intrusion prevention system) and antivirus
solutions that use Yara rules to detect or prevent malwares, its popularity comes from its simple and efficient way
of writing rules. Table 3 shows a simple example of how a Yara rule syntaxes looks like (Suastegui, 2018).

Packers is a code obfuscation technique/software used by software developers for legitimate purposes, some
of which include file reduction or as an attempt to stop illegal software copying. Sometime malware developers
use packers to evade antivirus or tools like Yara. Protecting it with technique/software like packers to prevent
anybody from viewing the malware’s code until it is placed in memory. While this is true, the number of malware
than can be detected using well done signatures and Yara’s engine are considerably bigger than those malware that
because their nature can evade this tool. The National Cybersecurity and Communications Integration Center from
USA use custom Yara’s signatures to disseminate the intelligence needed by asset owners to defend their networks.
The signature files support the documentation of both byte-sequences and string matches that occur in the
malware, as well as logic operators that support very robust and precise conditions to reduce the incidence of
receiving false positives (National Cybersecurity and Communications Integration Center, 2015).

Converting ClamAV signature to Yara format is possible and can be done in an automatic way, with a script
written in python by Matthew Richard, changing from our costume database to and signature that can be
understand by Yara. This approach work for certain types of malware but for those who change over time or
autodelete, another way of treatment it is necessary and demand a little more research work. First at all is necessary
understand the malware, know what exactly it does and if a modification is made (most of the time they need to
do). Then knowing what file was modified create a hash for that file before it has been altered and then create a
Yara signature base in that modification. For example, during the execution of Mirai, the malware will try to open
the /dev/watchdog or /etc/watchdog file (depends where is watchdog) in read-write state to disable it. Watchdog
is a demon or a piece of hardware that restart the system without needing any administrator intervention. Also, if
any other malware of the same nature is in the system like Zollard or Qbot, Mirai will kill that process. Then it will
hide his process name and open the UDP/53 port to access Google DNS server in 8.8.8.8 and established a
connection. The malware will detect the outbound interface and opens a random TCP/port to the C&C (command
and control server) IP address. At this point is performing several decoding for strings, which will be resulted in
the targeted malware. The /dev/watchdog execution make sure the malicious opened backdoor port is up and
used because if the system restarts for any reason the entire process will not work. Upon execution, the malware
will be self-deleted to avoid the trace, but the process is still running(“MalwareMustDie! - Malware Research
Group”, 2016).

Knowing that certain modifications were made to watchdog demon, it is already possible to create our new
rule. Table 4 shows the results of the previous research about the malware’s behavior.

CONTAINMENT ERADICATION & RECOVERY

Eradicate Mirai malware is simple, is necessary just disconnect the device from the network and perform a
reboot. Mirai malware exists in dynamic memory, rebooting the device clears the malware (US-CERT, 2016). Then
is necessary to change the default password with something good like as defined in NIST 800-118. At this point is
important remember that all of this happened because the IoT device was not configure in a proper way leaving
the default password. Mirai takes advantage of this vulnerability and through a dictionary attack gain access. Only
to emphasize the importance of device hardening, performing a quick investigation with shodan’s search engine

Table 3. Yara rule syntaxes

rule silent_banker : banker{
meta:
description = "This is just an example"
thread_level = 3
in_the_wild = true }

strings:
$a = {6A 40 68 00 30 00 00 6A 14 8D 91}
$b = {8D 4D B0 2B C1 83 C0 27 99 6A 4E 59 F7 F9}
condition:
$a or $b
}

Journal of Information Systems Engineering & Management, 3(3), 19

© 2018 by Author/s 5 / 6

with “default password” as the parameter revealed that 65,983 devices around the worls were left by their default
values.

Because the purpose of this paper is to mitigate any malware of any nature, it is important to say that from
Nessus 6.8, file system scanning functionality based on Yara signatures was introduced that could look for specific
file hashes of files on disk (Tenable, 2016). Although Nessus is not a FOSS tool it has a community edition which
has no price. Is a good alternative to perform multiple device scanning with a custom signature without the need
to install Yara. Once the malware is located on a device, using ClamAV we perform the elimination. Using YARA
rules with ClamAV 0.99 is simple - just is necessary to place YARA rule files into the ClamAV virus database
location and run the antivirus.

POST INCIDENT ACTIVITY- FINAL STEP

Learning and improving is one of the most omitted tasks. It can make the different between a successful
incident treatment or a vulnerability that remains persistent. As part of the ISMS (information security management
system) after developing our risk treatment plan, for us the Yara custom signature, it is extremely necessary to
monitor and improve the network looking for anomalies because, the threat may have changed its behavior and
therefore the signature must be changed too (ISO, 2011). This monitoring can be done by a Raspberry Pi with
Honeyd installed.

Honeyd is a low-Interaction honeypot framework that instrument thousands of Internet addresses with virtual
honeypots and corresponding network services. Supports the IP protocol suites (Provos and Holz, 2008) and
responds to network requests for its virtual honeypot according to the services that are configured for each virtual
honeypot. It is available as an open source software released under the GNU Public License. Because a honeypot
has no production value, any attempt to contact it is suspicious and saved in a database. That’s why, forensic
analysis of data collected from honeypots is less likely to lead to false positives than data collected by networks
detection systems (NIDS). Honeypots can run any operation system and any number of service (SANS, 2016).
The configured services determine the vectors available to an adversary for compromising or probing the system.
Table 5 shows a simple example of honeyd configuration.

In this example three different devices are emulated. The interesting part is that one of each has different ports
enable with a script that emulate a service. For example, Cisco C870 has a port emulation that from the point of
view of a malware is port 23 (Telnet) and is enable. The raspberry is waiting for someone try to connect, if a request
is performed is a symptom that a new malware is on the network and attempts to escalate privileges. At this point
is necessary capture the malware with a high-interaction honeypot like T-Pot (DTAG, 2015) or HoneyDrive
(BruteForce, 2012) and then performance all the incident life cycle one more time.

CONCLUSIONS

In this paper, we have presented the NIST incident Response Life Cycle and how with open source software
identify, classify and remove malware in a compromised system. The cornerstone of this approach is the versatility
that FOSS tools can give us to mitigate new types of malware attacks that, even modern anti-malware solutions

Table 4. Custom Yara rule for Mirai malware

Table 5. Honeyd configuration
#Cisco C870 router (IOS 12.4)
create routerone
set routerone personality "Cisco C870 router (IOS 12.4)"
set routerone ethernet "Cisco Systems"
set routerone default tcp action reset
add routerone tcp port 23 "scripts/embedded/router-telnet.py"
dhcp routerone on eth0

#Cisco C870 router (IOS 12.4)
create routerone
set routerone personality "Cisco C870 router (IOS 12.4)"
set routerone ethernet "Cisco Systems"
set routerone default tcp action reset
add routerone tcp port 23 "scripts/embedded/router-telnet.py"
dhcp routerone on

rule Mirai_Botnet {meta: hash2 = "05c78c3052b390435e53a87e3d31e9fb17f7c76b00df2814313bca24735ce81c"
 hash3 = "20683007a5fec1237fc09224af40be029b9548c62c693844624089af568c89d4" strings:

$x2 = "/dev/misc/watchdog" fullword ascii
$x3 = "/dev/watchdog" ascii
condition:
uint16(0) == 0x457f and filesize < 175KB and ((1 of ($x*) and 1 of ($s*)) or 4 of ($s*)) }

Jaramillo / Detecting Malware Capabilities with FOSS: Lessons Learned through a Real-Life Incident

6 / 6 © 2018 by Author/s

available today can't solve. This is because every day many new possible types of malware are discover and many
antivirus companies are simply unable to cope with the demand. Resulting in sending security updates to users
once they are already infected, sometimes even it can take days before this happens. We evaluate some FOSS tools
in order to mitigate Mirai malware, but, this approach will also work to remove any other type of threat of the
same nature not contemplated in this paper. Finally, the main message of this paper is that is not necessary to have
expensive computer security equipment to identify, classify and remove malware from a compromised system.

ACKNOWLEDGMENTS

I would like to show my gratitude to Rayner Durango and Vladimir Sanchez Padilla for sharing their pearls of
wisdom with me during the course of this paper.

REFERENCES

BruteForce. (2012). HoneyDrive honeypot bundle distro. Available at: https://bruteforcelab.com
DAC, U. (2012). Clam AntiVirus User manual, 0–57. Available at:

https://doi.org/10.1007/SpringerReference_28001
Database, C. V., Ok, C. V. and Clamav, T. (2007). Creating signatures for ClamAV, 1–20.
DTAG. (2015). T-Pot: A Multi-Honeypot Platform. Available at: https://dtag-dev-sec.github.io/
ISO. (2011). ISO 27005:2011 - Information security risk management. Iso 27005:2011, 2011.
Guofei, L. W. G., Perdisci Roberto, Z. J. (2008). BotMiner: Clustering Analysis of Network Traffic for Protocol-

and Structure-Independent Botnet Detection. Available at:
http://static.usenix.org/events/sec08/tech/full_papers/gu/gu_html/

Herzberg, B., Bekerman, D. and Zeifman, I. (2016). Breaking Down Mirai: An IoT DDoS Botnet Analysis.
Available at: https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html

MalwareMustDie! - Malware Research Group. (2016).
National Cybersecurity and Communications Integration Center. (2015). Using yara for malware detection, (June),

2015.
Provos, N. and Holz, T. (2008). Virtual Honeypots. Boston: Pearson Education.
SANS. (2016). SANS - Information Security Resources - Information. Available at:

https://www.sans.org/security-resources/idfaq/what-is-a-honeypot/1/9
Souppaya, M. and Scarfone, K. (2013). Guide to Malware Incident Prevention and Handling for Desktops and

Laptops. https://doi.org/10.6028/NIST.SP.800-83r1
Suastegui, L. (2018). Detecting malware capabilities with FOSS: lessons learned through a real-life incident. In

Information Systems and Technologies (CISTI), 2018 13th Iberian Conference on (pp. 1-5). IEEE.
Tenable. (2016). Threat Hunting with YARA and Nessus. Available at: https://www.tenable.com/blog/threat-

hunting-with-yara-and-nessus
US-CERT. (2016). Heightened DDoS Threat Posed by Mirai and Other Botnets.
yara 3.6.0 documentation. (2017). Available at: https://yara.readthedocs.io/en/v3.6.0/

https://bruteforcelab.com/
https://doi.org/10.1007/SpringerReference_28001
https://dtag-dev-sec.github.io/
http://static.usenix.org/events/sec08/tech/full_papers/gu/gu_html/
https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html
https://www.sans.org/security-resources/idfaq/what-is-a-honeypot/1/9
https://doi.org/10.6028/NIST.SP.800-83r1
https://www.tenable.com/blog/threat-hunting-with-yara-and-nessus
https://www.tenable.com/blog/threat-hunting-with-yara-and-nessus
https://yara.readthedocs.io/en/v3.6.0/

	INTRODUCTION
	LINUX/MIRAI BOTNET- OVERVIEW
	PREPARATION – CREATING A GAME PLAN
	DETECTION & ANALYSIS- CLASSIFICATION OF UNKNOWN
	CONTAINMENT ERADICATION & RECOVERY
	POST INCIDENT ACTIVITY- FINAL STEP
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

