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ARTICLE INFO  ABSTRACT 

Published: 30 Jul. 2020  The road infrastructure is considered to be a key prerequisite of social and economic development of any country 

and therefore solutions that assist in the management and maintenance of this key infrastructure are important. 

This paper presents the application of Machine Learning algorithms, such as Multilayer Perceptron Neural 

Network and K-means for estimating the level of services required for highway conservation in Brazil. The data 
used is from the Federal District highways, recorded in the form of Service Orders in the Road Administration 

System, as well as the road solutions catalog elaborated from the price table of the Federal District Roads 

Department. A database was created containing data for routine maintenance history, road solutions catalog and 

price lists. The machine learning algorithms were applied and evaluated, and it was concluded that the K-means 

algorithm had the best performance for estimating the maintenance costs of Brazilian highways. 
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INTRODUCTION 

According to Ivanova and Masarova (2013), since the importance of the road network transcends national boundaries, the 

expansion and upgrade of the road network is vital to increase economic performance. Hence, poor road infrastructure poses a 

hindrance to investments in countries depending on them in terms of their economic performance and competitiveness 

enhancement. Infrastructure investments impact a country’s economy through direct channels, such as expanding supply 

capacity or production outlets; and indirect channels, such as the improvement of total factor productivity, providing for the 

nation’s economic and social development. With regard to transport infrastructure, in Brazil, the main focus of investments is the 

highways. Figure 1 presents Brazil’s traffic flow of highways from Jan 1999 to Jun 2019, according to CEICDATA (2020), and Figure 

2 presents Brazil’s traffic flow of highways considering only heavy vehicles from Jan 1999 to Jun 2019, according to CEICDATA 

(2020). 

According to Oladele, Adedimila and Egwurube (2011), it has been estimated that the trend in annual expenditure on road 

maintenance in developing countries had increased. Therefore, as resources are dwindling, the challenge of highway engineering 

infrastructure is an economic one, demanding increasing emphases on the optimum allocation and use of these scarce resources. 

The road infrastructure comprises all types of roads in a given area, including various other structures, that serves to transport 

passengers and goods. The road infrastructure includes all road categories, facilities, structures, signage and markings, electrical 

systems, and so on needed to provide for safe, trouble-free and efficient traffic (Ivanova and Masarova, 2013). 

Transport infrastructure is essential in determining a country’s per capita income level, as there is a direct relationship 

between paved road availability and human development (OECD, 2017). The Brazilian Institute for Applied Economic Research 

has shown results that public investment in the transportation sector has a positive and statistically significant effect on long-

term economic performance in Brazilian states, and potentially contributes to the reduction of income inequality among them 

(Wolff and Caldas, 2018). 

According to Amann et al (2016), millions of reais are invested annually in the maintenance and conservation of the Brazilian 

federal highways, which make up the National Road Plan, and of the state highways belonging to the States Road Systems. 
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 Mourougane and Pisu (2011) presented in their studies, showed that it is possible to achieve a 7.8% reduction in average fuel 

consumption and 18.7% reduction in truck maintenance expenses for vehicles that travel in areas with better conservation 

conditions. The operating costs of a truck can double in relation to the use of a highway in bad condition to another one in good 

condition (Amann et al., 2016). 

These researches presented results that serve as justification for the high direct and indirect costs that the deficiency of the 

national road network entails to the Brazilian economic system, and reinforce the need to direct a significant portion of resources 

for a broad program of road maintenance. 

Research with companies that have revenues considered significant in relation to the Brazilian Gross Domestic Product, have 

shown that 61% consider the recovery and expansion of highways as the most important work to be carried out by the public 

sector (Wolff and Caldas, 2018). Another relevant information is that 54% of companies that participated in a survey selected poor 

road conditions as among the biggest factors that could increase their logistics costs (Mourougane and Pisu, 2011). 

According to the Brazilian National Transport Confederation (Mourougane and Pisu, 2011), the National Road System of Brazil 

has a road network of around 1.7 million kilometers, including federal, state and municipal roads, representing the fourth largest 

road network in the world. However, only about 14% of existing roads are paved. This percentage is close to some Latin American 

countries, but considering the world scenario, it is very far from. For example, the United States, Japan, China, France and 

Germany (Ghisolfi et al., 2019). 

The Brazilian National Road Plan encompasses the federal highways under the circumscription of the National Department of 

Transport Infrastructure, which are built and maintained by the National Superintendencies and Local Units of the national 

agency, located in the state capitals and main municipalities, respectively. The States Road Systems, on the other hand, are the 

highways under the circumscription of the states and the Federal District. Also part of the States Road Systems are federal 

highways delegated to the states, through delegation agreements (Amann et al., 2016; Wolff and Caldas, 2018). 

Although the privatization and concession of highways is a trend in the Brazilian scenario, there is still a huge network under 

the jurisdiction of the public sector. Road concessions have great autonomy and resources available to make the necessary 

investments. These scenarios, quite opposite to those of public authorities which face severe budgetary constraints, must comply 

with the legal criteria for hiring specialized companies to perform the services of road maintenance and conservation (Gaussmann 

et al., 2020; Pivatto et al., 2017). 

 

Figure 1. Brazil’s flow of highways from Jan 1999 to Jun 2019 (CEICDATA, 2020) 

 

Figure 2. Brazil’s flow of highways considering only heavy vehicles from Jan 1999 to Jun 2019 (CEICDATA, 2020) 
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In order to regulate the legal criteria for public procurement in Brazil, Law 8,666 was sanctioned in 1993, which establishes 

that the procurement and acquisition of goods and services in the public sector must be carried out through the elaboration of a 

detailed budget of the desired object, and based on the reference price table adopted by the agency, the overall value of the 

acquisition or contracting is obtained (Pivatto et al., 2017). 

Within this context, the Department of Highways of the Brazilian Federal District implemented in 2016 a computer system 

called Road Maintenance and Conservation Management System to control and plan the maintenance and conservation activities 

of highways (Gaussmann et al., 2020). 

The Road Maintenance and Conservation Management System aims to maintain an updated register of road elements, to 

qualify the state of conservation of each road segment and its elements, to provide subsidies for the quantification of services and 

resource needs for conservation and budget proposals; the system provides planning and management of services and ensures 

the control of services performed (Martin, 2018). To estimate road maintenance costs the Road Maintenance and Conservation 

Management System uses “effort-based calculation” to answer how much conservation should be performed (Gaussmann et al., 

2020). 

It is intuitive that the higher the level of effort, the greater the amount of conservation and the higher the cost. Thus, for 

example, for manual weeding of an unpaved shoulder, an effort level of 0.5, 1.0, or 2.0 could be defined for each square meter of 

unpaved shoulder, which is equivalent to weeding once every two years, once a year or twice a year respectively by applying the 

three exemplified rates. It is also evident, on the other hand, that the higher the level of effort applied, the higher the level of 

quality achieved (Gaussmann et al., 2020). 

The example presented is intended to explain what is meant by level of effort, as a formal definition would not be very clear. 

We can say what level of effort is the amount of conservation service (in the case of the example weeding) to be performed per 

unit of generator element (m2 of unpaved shoulder) per year to produce or reach a certain level of quality. Thus, the assumption 

of a certain level of quality, a subjective quantity is implicit in the value attributed to the level of effort. 

The subjective aspect of this analysis generates many biases and distorted analyzes. Consequently, it leads to damage to the 

public coffers. 

In this sense, some studies have presented the use of Machine Learning algorithms to assist in the design, cost analysis and 

maintenance of the roads, such as the studies presented in (Alfakis, Alatawi and Abushandi, 2014; Cao, 2019; Huseynov, Ribera 

and Palma, 2018; Piryonisi and El-Diraby, 2017). In the next section, we review other related work that illustrate the use of machine 

learning algorithms. 

Machine Learning Applications 

Wilmot and Mei (2005) presented the development of a procedure that estimates the escalation of highway construction costs 

over time, using an artificial neural network model which relates overall highway construction costs, described in terms of a 

highway construction cost index, to the cost of construction material, labor, and equipment, the characteristics of the contract 

and the contracting environment prevailing at the time the contract was let. Results demonstrate that the model is able to 

replicate past highway construction trends in Louisiana with reasonable accuracy. 

Sodikov (2005) presented a research that used an artificial neural network approach. The data were from ROCKS (Road Costs 

Knowledge System). This database contains road works cost data from 65 developing countries. Poland and Thailand have a 

relatively large number of projects. For this reason, they were chosen to investigate the relationship between project cost and 

other variables such as work activity, terrain type, road parameters, etc. The artificial neural network approach used was 

Multilayer Perceptron. Comparing artificial neural network with multiple regression model, the neural network used had a better 

accuracy. 

Chou (2009) showed that with the growth of transportation networks in developing countries, the cost-efficacy control of 

maintenance operations has become critical to the infrastructure asset management after highway construction. In this context, 

the efficient management of numerous annual projects with limited resources needs to accurately estimate costs and leave a trail 

of project information during the process of making maintenance project selection decision. So, a Case- Based Reasoning expert 

prototype was developed to compare historical data at the work item-level across the case library in order to determine 

preliminary project cost with readily available information rapidly based on previous experience of pavement maintenance 

related construction to assist decision makers in project screening and budget allocation. The analytical results demonstrate the 

ability of the system to estimate the item-level cost of pavement maintenance projects with the satisfactory precision during the 

conceptual project phase. 

Cao, Ashuri and Baek (2018) explained that resurfacing is one the most common highway projects in Georgia and constitutes 

a large portion of the state´s highway investment every year. The value of the unit price bid is one of the leading indicators to 

comprehensively reflect the cost to the Georgia Department of Transportation for these projects. The authors proposed a robust 

ensemble learning model to predict the value of unit price bids. The results are compared with those from a baseline Monte Carlo 

simulation and multiple linear regression model. Comparison shows that the proposed ensemble learning model performs much 

better than any single machine learning model and the baseline models. 

Barros, Marcy and Carvalho (2018), presented the development of an estimation technique for construction highway projects 

using artificial neural networks. Different architectures of the network with 10, 15 and 20 neurons were trained and tested with 

the backpropagation algorithm. Based on this, data from fourteen highway projects in Brazil were collected and analyzed. Eleven 

parameters that contribute the most of the construction final budget were found after trials and errors. For the best scenario, an 
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average cost estimation accuracy of 99% was achieved. This preliminary study showed the feasibility of the artificial neural 

network applied to projects in Brazil and may be used by public agencies in the future. 

In the next section we present concepts related to Machine Learning, Artificial Neural Networks, and K-means. 

Machine Learning, Artificial Neural Networks, and K-means Concepts 

Machine Learning (ML) is a form of Artificial Intelligence that enables a system to learn from data rather than through explicit 

programming (Hurwitz and Kirsch, 2018). ML uses a variety of algorithms that iteratively learn from data to improve, describe data, 

and predict outcomes. 

ML has a large overlap with statistics, as both areas study data analysis. However, unlike statistics, which focuses mainly on 

well-defined theoretical models and parameter adjustments to these models, ML has a more algorithmic focus, using more flexible 

and heuristic model representations to perform the search. For example, a statistical analysis may determine distributions, 

covariances, and correlations among the attributes that describe the facts, but it is not able to characterize these dependencies 

on an abstract and conceptual level as humans do; nor provide a causal explanation of why these dependencies exist (Hurwitz and 

Kirsch, 2018). 

While a statistical analysis of the data can determine the central trends and variances of certain factors, it cannot produce a 

qualitative description of the regularities, nor can it determine the dependencies on factors not explicitly provided with the data 

(Huseynov, Ribera and Palma, 2018). 

The flexibility of ML methods enables learning through data that has not been collected from a rigorous controlled 

experimental process but obtained from any process whose primary purpose is not the discovery of knowledge (Shalev-Shwartz 

and Ben-David, 2014). 

Considering the literature previously presented, artificial neural networks and k-means have been widely used in research on 

costs in highway design. Monte Carlo simulation was also used in some studies. In this context, for the research presented here, 

they will be used. 

Artificial Neural Networks refer to a biologically inspired computational model consisting of simple processing elements 

(artificial neurons) that apply a certain mathematical function to the data (activation function) generating a single response, are 

layered and linked together, these connections being generally associated with coefficients called weights. The adjustment of 

these weights is performed by a process called training or learning, being responsible for the extraction of data characteristics and 

knowledge storage of networks (Mitchell, Carbonell and Michalski, 2016). 

K-means uses the data grouping algorithm by means. The goal is to find the best division of P given in k groups Ci, i = 1, …, k, 

so that the total distance between the data of a group and its center, summed by all groups, is minimized. According to Kelleher, 

MacNamee and D´Arcy (Bishop, 2016), k-means uses the values of the first n cases in a data file, with temporary estimates of k-

clusters averages, where k is the user-specified number of clusters. Thus, the center of the initial cluster id formed for each case 

around the nearest data and then compared to the most distant points and the other clusters formed. From there, within a process 

of continuous updating and interactive process are the centers of the final’s clusters (Kelleher, Namee and D´Arcy, 2015). 

In other words, the algorithm randomly assigns P points to k groups and averages the vectors of each group. Then each point 

is shifted to the group corresponding to the average vector to which it is closest. With this new rearrangement the points in k 

groups, new mean vectors are calculated. The process of relocating points to new groups whose average vectors are closest to 

them continues until a situation is reached where all points are already in the groups of their nearest average vectors (Bonaccorso, 

2017). 

Based on these two Machine Learning algorithms, we sought to estimate the road maintenance costs of the Federal District. 

The following section will be presented as calculating the estimate from the data collected and stored in the Road Maintenance 

and Conservation Management System database, and how was the calculation calculated using the Machine Learning algorithms. 

ESTIMATION OF SERVICES QUANTITIES USING ROAD MAINTENANCE AND CONSERVATION 

MANAGEMENT SYSTEM 

In accordance with Article 2nd from Brazilian Law 8.666 of June 21, 1993, “Public Administration works, services, including 

advertising, purchases, disposals, concessions, permits and leases, when contracted with third parties, will necessarily be 

preceded by bidding.” 

In order for public agencies, including those related to the highways, to have a reference price for the works, maintenance and 

conservation services of their highways, reference price tables are prepared by the agency itself, as well as auxiliary tables, such 

as the Referential Costs of Works System table prepared by the National Department of Transport Infrastructure, and the National 

Costs and Indexes Research System table, prepared by the state bank called Caixa Econômica Federal (Raschka, 2015). 

The System Costs and Budgets of Works, used by the Federal District Department of Roads (DER/DF), allows the registration of 

various price lists in force, they are differentiated by the nature of the work, such as construction of highways, among others. This 

system communicates with the Road Maintenance and Conservation Management System, which establishes which indicative 

price and service table will be used as the basis for its calculations. For this research we used the Road Maintenance and 

Conservation Management System Referential Table. Table 1 presents examples of some services used in the study. 
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The current methodology used by the DER/DF for the elaboration of quantitative maintenance and conservation services of 

the road network for estimating cost budgets, is called “Effort Levels”. The effort levels determine the amount of service according 

to the condition of the pavements and other road elements (vegetation, signaling, safety and drainage). 

For each type of road element, a grade relating to the conservation state is given, with grades between 1 and 5 (grade 1 refers 

to the worst case and grade 5 refers to the best condition of the feature). The levels of effort, condition, can be mapped as follows: 

1- terrible; 2 - bad; 3 - regular; 4 - good; 5 - great. 

The types of road elements defined as point or transverse, such as manholes and signposts, are assessed individually, for 

example, for such elements on the road a single grade is given. For the longitudinal elements, such as metal fenders, drainage 

ditches, and even the running tracks and hard shoulders, they are divided into segments with varying lengths, according to their 

conservation grade. It is noteworthy that such field surveys are performed annually by the engineers and technicians of the DER/DF 

highway districts. 

The definition of the effort levels is categorized for each type of road element, in each grade/situation, taking also into 

consideration the traffic classes of the highways. In the case of pavement services, the classification of the pavement type is also 

considered, as shown in Table 2. 

The current methodology used by the DER/DF for the elaboration of quantitative maintenance and conservation services of 

the road network, consequently estimating these costs budgets, is called “Effort Levels” (Table 3). The effort levels determine the 

amount of service according to the condition of the pavements and other road elements (vegetation, signaling, safety and 

drainage). 

The application of the effort level methodology occurs in a routine of the Road Maintenance and Conservation Management 

System, performed in each stretch of the road network under the jurisdiction of the agency, in this case the DER/DF. 

This routine evaluates all existing elements on each stretch of highway, considering the grade/status of the element, the 

applicable services, the traffic class and the pavement class, if necessary. Through this information, the level of effort representing 

the element is identified, and the amount of service is calculated. 

The amount of service is the product of multiplying the element length, extension or area by the defined effort level. Quantities 

of services are performed annually at the beginning of the second half of the year, due to the need to include the financial resources 

required to perform the services in the next year’s budget plan. After calculating the service quantities, the unit costs of the services 

defined in the DER/DF price reference table are considered, and finally the annual budget is calculated. 

The execution of services is controlled in annual cycles, with periods beginning in January and ending in December. Monthly 

service schedules performed from the issuance of work orders. Each work order can contain several services to be performed on 

different road sections. 

Table 1. DER/DF Pricing Table Services - May 2018 

ID Description Unit Unit Cost R$ 

3 S 08 100 00 Hole Cover with hot machined bituminous concrete m3 282,37 

2 S 02 540 01 Supply hot machined bituminous concrete T 77,98 

3 S 08 400 00 Signpost Cleaning m2 7,09 

3 S 08 302 01 Manhole Cleaning m3 18,19 

3 S 08 300 01 Gutter Cleaning m 0,54 

3 S 08 302 01 #1 Gallery Cleaning m3 18,19 

3 S 08 901 01 Lawn mowing and cleaning m2 0,13 

4 S 06 200 02 #1 Signposting m2 439,30 

4 S 06 200 91 #1 Signpost removal m2 26,44 
 

Table 2. Pavement Type 

Class Description 

1 Porland Cement Concrete 

2 Superficial Treatment 

3 Primary Coating 

4 Bituminous Concrete 

5 Other Surfaces 

6 Coating Independent 
 

Table 3. Details of Effort Levels for the Hole Covering Service 

Level Element Type Pavement Class Traffic Effort Level Unit 

1 Rolling Track and Shoulder Bituminous Concrete 3001 to 5000 .840 m3/km 

2 Rolling Track and Shoulder Bituminous Concrete 3001 to 5000 .520 m3/km 

3 Rolling Track and Shoulder Bituminous Concrete 3001 to 5000 .240 m3/km 

4 Rolling Track and Shoulder Bituminous Concrete 3001 to 5000 .120 m3/km 

5 Rolling Track and Shoulder Bituminous Concrete 3001 to 5000 .00 m3/km 
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ESTIMATION OF SERVICES QUANTITIES USING MACHINE LEARNING 

In accordance with Article 2nd from Brazilian Law 8.666 of June 21, 1993, “Public Administration works, services, including 

advertising, purchases, disposals, concessions, permits and leases, when contracted with third parties, will necessarily be 

preceded by bidding.” 

To estimate the amount of services and annual maintenance and conservation budgets of the highways under the DER/DF 

jurisdiction, in a more effective way, reducing the subjectivity issues present in the approach described above, it was proposed 

the use of Machine Learning in order to establish the behavioral patterns of the requested services. As a feasibility study of the 

application of such an approach, it was established that the situation of the running lanes and the other road elements would be 

based. 

In this context, three tabular data sets were extracted from Road Maintenance and Conservation Management System. The 

first data set refers to the visual assessment carried out on the lane, third-lane and road shoulder pavements, including the 

situation of the pavements. The second data set contains the inventory of road elements deployed on the highways, whose 

function is to provide additional features to the highways, such as signaling and safety of their users, as well as to provide rainwater 

drainage. The third data set has the records of all maintenance and conservation services performed on the road network under 

the circumscription of the DER/DF. 

The Application of Machine Learning 

This work used two Machine Learning approaches. The first approach was based on Artificial Neural Networks with 

Backpropagation learning algorithm. Subsequently, the k-means clustering algorithm was used. 

To create the Artificial Neural Network data set, data relating to the evaluation of pavements, road elements and services 

performed were grouped by road sections in spreadsheets. This way, each section obtained the average track grade and the 

information of the road elements in a single line of the spreadsheet. The costs of services performed in the road segments 

(stretches) were also considered, grouped into track services, vegetation services, safety and signaling services (linear elements), 

safety and signaling services (punctual) and drainage services. 

It is noteworthy that the prepared spreadsheet considered all 462 sections under the DER/DF jurisdiction. Relevant additional 

information was added to this spreadsheet, such as traffic on each stretch and year of construction/restoration of the highways. 

For the input data set of the Artificial Neural Network, the following variables were considered: length of stretch; traffic factor 

(high, medium or low); average track grade; number of bearing tracks; number of shoulders; vegetation area; extension of 

safety/signaling devices (linear); number of safety/signaling devices (punctual); and extension of drainage devices. 

For the output data set, the following variables were considered: cost of services applied to the runway; cost of services applied 

to vegetation; cost of services applied to security elements (linear); cost of services applied to security elements (punctual); and 

cost of services applied to drainage devices. 

These variables were chosen due to their quality. That is, these variables, when preprocessed, did not suffer significant losses. 

The configuration of the Artificial Neural Network used had nine neurons in the input layer and five neurons in the output layer. 

The intermediate layer was configured with forty neurons. 

For the training of the Artificial Neural Network, following what the literature of the area recommends, 70% of the records of 

the created spreadsheet were selected, and the other 30% were used for testing. It was found in the training and testing of the 

network that the learning rate was very low. Using this setup, it was necessary to do some tests without input variables, in order 

to understand the behavior of the network. Variables such as traffic factor, vegetation area and extent of drainage devices were 

eliminated. The eliminated variables were selected based on consultation with experts in the field, who are DER / DF engineers. 

None of the trials showed an improvement in the learning rate of the network. 

This situation required a more detailed analysis of the data provided by DER/DF, to explain the reason for the low learning rate 

of the Artificial Neural Network. We analyzed the three data sets regarding the track situation, road element inventory, and 

maintenance and conservation services that were performed. Five categories of inconsistency were identified, which are listed in 

Table 4. 

In addition to identifying problems in the registration of the road network inventory (inconsistency 1), it was also noted the 

existence of records of erroneous service execution, such as the mowing service of vegetation areas, which is measured in 

hectares. and the recorded values refer to square meters. 

These factors explained the low learning rate of the Artificial Neural Network and made the application of this algorithm 

unsuitable for the database under analysis. Thus, it became necessary to evaluate alternatives. 

Table 4. Inconsistencies identified in data provided by DER/DF 

Inconsistency ID Detailing 

1 Missing or incomplete track note survey information on some road sections. 

2 Some road elements have no conservation grade/status. 

3 Drainage service execution records in sections that do not have drainage devices in the cadastral inventory. 

4 Significant track service execution records on sections that have a regular, good or great track rating. 

5 Service release records with wrong units of measure. 
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As an alternative to the Artificial Neural Network, the k-means algorithm was chosen. For the application of this algorithm, the 

number of ten clusters was stipulated. The data evaluated were the same as those used by the artificial neural network. After data 

clustering, analysis of the defined groups was performed. These analyzes consisted of mathematical calculations of mean and 

standard deviation of each cluster for each of the service groups: runway, vegetation, safety/signaling (linear devices), 

safety/signaling (point devices) and drainage. 

From these calculations, comparative analyzes were performed of values of each of these service groups of each stretch and 

the respective average of their clusters, obtaining the number of standard deviations of the records. 

To compare the patterns found in the clustering of available data sets, we opted for Monte Carlo Simulation. Monte Carlo 

Simulation is a method that makes use of random, or pseudorandom, numbers to calculate not necessarily random quantities. 

According to Chen and Chen (2017), Monte Carlo Simulation consists of generating random values for each probability distribution 

within a model, with the objective of producing hundreds or thousands of scenarios. The distribution of calculated values (for each 

case) should reflect their probability of occurrence. 

In the case of the work in question, one hundred thousand repetitions of calculations were performed, in which samples were 

randomly selected from fifty records of different sections of the highway in each repetition. Each repetition performed calculations 

of differences between the individual costs of each road segment, for the services of the lane, vegetation, signaling/safety (linear 

and point devices) and drainage groups, and the average costs of each cluster. 

With this it was possible to calculate the percentages of errors between the costs of the sections and their clusters, for each of 

the service groups. 

Comparing the results of Monte Carlo Simulation, we can see that the error rate was greatly reduced, demonstrating the 

effectiveness of the method. Considering rolling track, the error decreased 30%. For vegetation, the error decreased 43%, for 

drainage, 58%. Security (linear) and Security (on point) had had the largest decrease in the error rate, 60%, and 65% respectively. 

Based on the Monte Carlo simulation, it was realized that the error regarding each variable can be considered acceptable, this 

gives a clear evidence that the application of k-means may yield a more satisfactory result. 

CONCLUSIONS 

Through the studies and research carried out, it is possible to highlight the importance of analyzing investment management 

methodologies and procedures, especially when they are performed by the government and that provide direct or indirect 

benefits to society, as these are significant sums of money and needs to be invested wisely in order to maximize results. Another 

point observed was the lack of consolidated information on data collected in the road network under the agency’s 

circumscription, as some segments do not have such data in whole or in part. 

The direct application of an artificial neural networks algorithm for the definition of data patterns for the proposed alternative 

to the curernt system of analysis used by Road Maintenance and Conservation Management System was found to be 

inappropriate. 

However, the use of a clustering algorithm for grouping similar information proved to be quite applicable to the case study, 

since the groupings of excerpts made it possible to obtain very assertive service execution patterns. This was confirmed by the 

histograms generated from the Monte Carlo Simulation, which showed the homogeneity of the analyzed and grouped data (Figure 

3). 

Within this context, it was proposed to the DER/DF the implementation of this new methodology to complement the one 

currently used, in order to cluster the road sections, to anticipate maintenance and conservation services needs in new road 

sections that may be incorporated into the road network of the Federal District. 

In parallel to this, it was proposed to the technical team of the agency that they evaluate the use of artificial neural networks 

for service estimates, considering that the inventory of road elements will be kept up to date and complete, and that the database 

of implementation of the services contain all the work done, and not only for short periods of time.  

In order for this to happen various measures have subsequently been taken by the management of the DER/DF. The first was 

the implementation of data validation routines expected in the registrations, entries and closings of the service orders issued, for 

the execution of the services on the highways. With this measure, the quantities of materials and tools used, working hours of 

machines and road implements, as well as the productive and unproductive hours of the employees of the teams involved started 

to be verified so that quantities above or below those expected are rejected by the system. This has started to provide greater 

reliability in the road inventory records to the agency. 

Another extremely important measure adopted was the development of a new module - called RoadMaps - integrated with 

the management software used. This new module was designed with two important features. The first, allows teams in the field 

to receive the data of the orders assigned to them, as well as record services performed and their numbers directly in a mobile 

application. Regarding the second functionality, it is also a mobile application for conducting road inventories, in which new 

elements can be registered, and the current elements that already appear in the inventory can be adjusted and their grade / 

situation reclassified. This module also has web functionality for monitoring and controlling updated inventory. 

And last, but not least, was the hiring of a company specialized in carrying out road registration and field survey services but 

using the new RoadMaps module developed for this purpose. 
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From the adoption of these measures, the DER/DF expects to obtain a mass of data that is very consistent both in terms of 

updated road inventory, as well as for accurate financial accounting for the control of public spending on the highway 

infrastructure of the Federal District. 

To date, the work of field surveys is in progress, and is expected to be completed in August 2020. After completion, this mass 

of updated data will be used for the application of back propagation algorithms to analyze the initial proposition in this case study, 

for the determination of behaviors and annual financial predictability. 

Until then, the grouping of road stretches using the “K-means” classification algorithms is being adopted as a way of 

comparing the results obtained for maintenance costing the stretches of highways under the responsibility of the DER/DF. 
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