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 Index structures were often used to optimise fetch operations to external storage devices (secondary memory). 
Nowadays, this also holds for increasingly large amounts of data residing in main-memory (primary memory). 
Within this scope, this work focuses on index structures that efficiently insert, query and delete valid-time data 
from very large datasets. This work performs a comparative study on the performance of the Interval B+ tree (IB+ 
tree) and the Improved Interval B+ tree (I2B+ tree): a variant that improves the time-efficiency of the deletion 
operation by reducing the number of traversed nodes to access siblings. We performed an extensive analysis of 
the performance of two operations: insertions and deletions, on both index structures, using multiple datasets 
with growing volumes of data, distinct temporal distributions and tree parameters (time-split alpha and node 
order). Results confirm that the I2B+ tree globally outperforms the IB+ tree, since, on average, deletion operations 
are 7% faster, despite insertions requiring 2% more time. Furthermore, results also allowed to determine the key 
factors that augment the performance difference on deletions between both trees. 
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INTRODUCTION 

The classic performance analysis of index structures had its 
focus on disk access optimisation. Therefore, the evaluated 
parameters were often related to the primary goal of 
minimising the number of disk access operations (Cudre-
Mauroux et al., 2010; Mahmood et al., 2018). Nowadays, index 
structures are required by new and distinct application 
domains, usually involving large datasets, where high-speed 
access to information is mandatory. Hence, in these new 
circumstances, evaluating disk access optimisation might no 
longer make sense, while the study of the performance of index 
structures as a function of the volume of data appears as a 
more adequate analysis. 

The cost of both primary and secondary memory storage 
space has been consistently decreasing, thus allowing larger 
amounts of data to be captured and stored (Liu & Yuan, 2019). 
As a consequence, applications are required to deal with these 
larger amounts of data, making the space overhead related to 
the data structure less of a concern, with the time-efficiency 
gathering a more prominent role. Hence, access to data from 
ever-growing datasets should be as time-efficient as possible. 

When considering temporal data, the Interval B+ tree (IB+ 
tree) is a fast data access method for the efficient handling of 

interval-based valid-time information (Bozkaya and 
Ozsoyoglu, 1998). From the performed literature review, where 
we examined several index structures capable of indexing 
valid-time information, the IB+ tree emerged as the most 
promising one. However, from the more recent work 
employing this index structure (Guo et al., 2014; Lock and 
Booss, 2010; Vutukuri, 2018), only Carneiro et al. (2020) 
provided an analysis of the IB+ tree with a focus on 
performance on growing volumes of data. In their work, 
Carneiro et al. introduce the Improved Interval B+ tree (I2B+ 
tree), a time-efficiency focused variant of the IB+ tree. This 
variant differs from the original index structure by reducing 
the number of nodes traversed in the deletion of a stored 
object. 

Hence, in this work, we extend the work of Carneiro et al. 
(2020) by conducting a comparative study on the performance 
of the IB+ tree and the I2B+ tree. We start by analysing the main 
differences between both index structures and examine how 
those differences can impact the performances of each tree. 
Afterwards, we benchmark both index structures, with a focus 
on insertions and deletions (including single deletions and 
range deletions), in a multitude of scenarios and 
configurations. The goal is to understand if the conceptual 
improvement of the I2B+ tree corresponds to a de facto 
significant performance increase. 
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Tested TypeScript open-source implementations of both 
the I2B+ tree and the IB+ tree are provided with the purpose of 
using them in the experiments and making them available for 
client-side applications. This choice also took into 
consideration the current trend of platform-independent, 
browser-based applications and its increased access through 
mobile devices. 

The paper is organized as follows. Section Related Work 
summarises different structures for indexing valid-time 
information and presents an analysis of the IB+ tree. Section 
I2B+ Tree & IB+ Tree presents the main differences between 
the I2B+ tree and the IB+ tree. Section Experiments, Results and 
Discussion describes the experiments performed, as well as 
examines the results obtained. Lastly, Section Conclusion 
provides conclusions and identifies future work. 

RELATED WORK 

In this section, we identify the main index structures that 
are presented as capable of handling time intervals (valid-time 
domain). From this set of index structures, we identified the 
IB+ tree as the most promising for obtaining improved time-
efficiency on growing volumes of data. Thus, details of this 
index structure are presented. 

Valid-Time Index Structures 

Through a systematic literature review on valid-time index 
structures, four main categories can be identified: spatial 
indexes storing bounding intervals in a single dimension; B+ 
tree variants; Interval tree augmentations; and others (e.g., 
MPB-tree (He et al., 2013)). 

One way commonly used to represent unidimensional 
spatial indexes of algorithms are one-dimensional R-trees. 
Mahmood et al. (2018) and Valdés and Güting (2017) both use 
a one-dimensional R-tree for handling temporal data in their 
spatiotemporal frameworks. R-trees key idea consists of 
grouping objects together using a bounding interval (in one-
dimensional data) and using that bounding interval to 
represent the group in lower depth nodes (Guttman, 1984). 

Regarding B+ trees, there are many variants for handling 
temporal data. Among others, we can highlight Time Index 
(Elmasri et al., 1990); IB+ tree (Bozkaya and Ozsoyoglu, 1998); 
and MAP21 (Nascimento and Dunham, 1999). The Time Index 
comprises an access structure for temporal data, based on a 
versioning approach. The IB+ tree consists of augmenting the 
B+ tree so that the tree nodes manage interval information 
similarly to the Interval-tree. Moreover, Nascimento and 
Dunham (Nascimento and Dunham, 1999), using the approach 
MAP21, show how a B+ tree can be adapted to support the 
indexing of intervals by mapping the two values constituting 
the range into a single value. 

Interval-tree (de Berg et al., 2008) augmentations 
represent the adaptation of a balanced tree structure to 
support intervals in the manner defined by the Interval tree. 
Carvalho et al. (2014) work is an example of augmentation by 
using a Red-Black Augment Interval Tree. Thus, the authors 
made a red-black tree capable of handling valid-time intervals. 
The IB+ tree, besides being a B+ tree variant, is also an example 
of an Interval-tree augmentation. 

In the above-mentioned others category, we include other 
structures that do not belong in any of the previous categories. 
The Multi-dimensional Parallel Binary Tree (He et al., 2013) is 
an example of such. In this spatiotemporal index structure, the 
temporal dimension is managed through a triangular binary 
tree using a triangular decomposition strategy to handle the 
representation of temporal intervals. 

Mahmood et al. (Mahmood et al., 2019), demonstrates that, 
for the majority of the structures, the temporal dimension is 
handled using a B+ tree variant. Regarding the comparison of 
some of the index structures presented above, Bozkaya and 
Ozsoyoglu present the benefits regarding node accesses when 
comparing the IB+ tree to the one-dimensional R-tree (Bozkaya 
and Ozsoyoglu, 1998). Henceforth, we provide a more in-depth 
analysis of the IB+ tree, since this index structure was brought 
to our attention, in our literature review process, as the most 
promising for handling valid-time intervals. 

Interval B+ Tree 

The IB+ tree consists of a time-efficient index structure 
that merges the principles of both B+ trees (Comer, 1979) and 
Interval-trees (de Berg et al., 2008). In more detail, it consists 
of an augmentation of the B+ tree (an N-ary tree), where each 
node contains the same kind of information as on Interval-
trees. In this structure, there are two types of nodes: internal 
nodes, whose children are other nodes, and leaf nodes, whose 
children are intervals. Each node stores three lists: one list 
containing its children, another containing the ordered node 
keys and the last containing the maximums. Within this 
context, according to Bozkaya and Ozsoyoglu (1998), a key is 
the smallest lower bound of the respective children of the first 
list. Similarly, a maximum is the highest upper bound of the 
respective children of the first list. The order imposed by the 
keys sorts all lists. 

Since the underlying structure is a B+ tree, each leaf node 
will contain a pointer to the right sibling. Intermediate nodes 
contain no pointers for any of the siblings. In the context of 
the B+ tree, a key represents a literal. Furthermore, in B+ trees, 
the insertion and deletion of nodes can lead to readjustments 
on the overall structure of the tree. 

In the case of insertions, if a node is accommodating a new 
key, but the accommodation leads to the number of keys 
exceeding the number of allowed keys per node, the node 
splits. Splits are operations that consist of dividing the keys of 
a node into two new nodes. Therefore, each new node is 
expected to contain half the keys from the original node. After, 
the tree proceeds with the insertion of the new key in the node 
that should save it.  

Reversely, the removal of a node can also trigger a 
rebalance of the tree. When a key is removed from a node, if 
the number of keys stored in the node is not bigger than half 
of the maximum number of keys it can store, then the tree 
must readjust. First, the node tries to borrow a key from one 
of its siblings. The borrowing happens if either one of the 
siblings contains more than half of the maximum number of 
keys it can store. Otherwise, the borrowing would lead to one 
of the siblings being unable to satisfy the minimum of stored 
keys condition. In such cases, where no borrowing is possible, 
the nodes are merged with one of its siblings, creating a new 
node that contains the keys from the merged nodes. These are 
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called borrow and merge operations. Consequently, other 
kinds of tree readjustments can occur, but we do not describe 
them since they do not add value to the current work. Comer’s 
work (Comer, 1979) presents a more in-depth analysis of the 
entirety of these cases. 

The augmentation of the Interval-tree (de Berg et al., 2008) 
follows some basic principles: 1) each node stores an interval, 
where the interval lower bound represents the key of the node 
- consequently, by travelling the tree in its in-order, we obtain 
the set of intervals, sorted by the lower bound; 2) each node 
also stores the maximum higher bound existent in its subtree. 

Bozkaya and Ozsoyoglu (1998) also present an 
enhancement that allows the IB+ tree a more time-efficient 
performance. This enhancement is the time-split operations 
of intervals. This time-split enhancement consists of finding 
an optimum upper bound (the split point) from the intervals 
managed by a leaf node and split the children intervals which 
upper bound surpasses the split point, at that split point. For 
instance, consider an interval [a, c] and a split point b, where a 
< b < c. Then, interval [a, c] would split and generate intervals 
[a, b] and [b, c], with [b, c] being reinserted in the structure. The 
motive behind time-splits is to avoid long intervals that 
negatively impact structure performance. 

The IB+ tree has two user-definable parameters: the nodes’ 
order and the time-split alpha. The order parameter defines 
the maximum number of children that a node can have. The 
alpha parameter is an empirical factor (0 < alpha < 1) that 
influences the choice of the split point for the children 
intervals of a leaf node. This parameter adjusts the 
space/query-time trade-off. Higher alpha values lead to higher 
split point values and, consequently, fewer time-splits occur, 
thus leading to less storage and decreased query-efficiency. 
Conversely, smaller alpha values lead to smaller split point 
values and, therefore, to the occurrence of more time-splits 
and an increase in both storage and query-efficiency. Bozkaya 
and Ozsoyoglu (1998) present a more detailed explanation of 
the time-split algorithm and the impact of the alpha factor. 

I2B+ Tree & IB+ Tree 

In this section, we compare the differences between the 
Improved Interval B+ tree (I2B+ tree) and the original Interval 
B+ tree (IB+ tree) and present the algorithms used for getting a 
node’s sibling in each of the index structures. Moreover, we 
also determine the various factors that determine the 
performance differences on both index structures. 

Main differences 

As presented in the works of Carneiro et al. (2020), the I2B+ 
tree differs from the original IB+ tree by having every tree node 
storing pointers to both of its siblings, independently of it 
being a leaf node or an intermediary node. Figure 1 shows the 
difference between both index structures by illustrating the 
distinct tree configurations when storing the same example 
dataset. 

As seen in Section Related Work, the borrow and merge 
operations, involved in node deletions, serve the purpose of 
rebalancing the tree. Applying these operations in a node 
requires finding one of the node’s siblings. However, in the 
original IB+ tree, for a node to proceed with either of the 
mentioned operations, the ancestor node that is the root of the 
smallest sub-tree containing the node and its sibling must be 
found. In the most extreme case, the ancestor of both nodes is 
the tree root, and finding the node sibling implies travelling to 
the root and back. By utilising pointers to both siblings, 
Carneiro et al. focus on making the original index structure 
more time-efficient, by discarding the need to find the 
ancestor of a node and its sibling. Thus, this approach 
optimises borrow and merge operations, which consequently 
improves the deletion operation time-efficiency. 

In the I2B+ tree, storing in every node pointers to the 
node’s siblings implies an overhead on insertions of having to 
set the object properties corresponding to the siblings. 
Additionally, on deletions, to maintain this information, when 
a given node disappears, the node siblings have to be updated 
to point to each other, instead of pointing to the node that was 
removed. 

Regarding our implementations of the I2B+ tree and the IB+ 
tree, these differ significantly in the implementation of the 
findLeftSibling and findRightSibling methods. The 
findRightSibling implementation differs on the tree internal 
nodes. Below, and with the intent of better illustrating the 
differences between both index structures, we present the 
implementation of the method findLeftSbiling on the two index 
structures. An example implementation of the IB+tree 
findLeftSibling method consists of: 

Similarly, an example implementation of the I2B+tree 
findLeftSibling method consists of: 

 
Figure 1. Structural differences between the IB+ tree (left) and the I2B+ tree (right), while indexing the same dataset 
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As shown in the algorithms above, the IB+ tree method 

consists of a call to a recursive function that will repeat itself 
2 ∗ (𝐷𝐷𝐴𝐴 − 𝐷𝐷𝑁𝑁), where 𝐷𝐷𝐴𝐴 − 𝐷𝐷𝑁𝑁 represents the number of depth 
levels between the common ancestor node (𝐴𝐴) and the node 
finding the sibling (𝑁𝑁 ). Conversely, the I2B+ tree method 
consists of obtaining an object property. 

 

Key factors impacting performance differences 

Conceptually, the I2B+ tree significantly outperforms the 
IB+ tree, since the overall process of finding the sibling node is 
more time-consuming in the IB+ tree. For finding the sibling in 
the IB+ tree, the function responsible for finding it might have 
to repeat itself a considerable number of times. The higher the 
number of tree depth levels, the higher the average number of 
recursive calls the function may have to go through when 
deleting an interval. Thus, it is expected that deeper trees lead 
to more dissimilar performances when comparing both index 
structures. 

The depth of a tree is impacted by three factors: (1) the 
number of intervals that the tree stores, (2) the node’s order 
and (3) the time-split alpha. The last two factors are both tree 
parameters presented in section II. Regarding the number of 
intervals being inserted, a higher number of intervals requires 
more nodes to store them, thus leading to trees with higher 
depth. Regarding the node’s order, if this parameter is set to a 
high value, every node becomes capable of storing more 
elements, thus being necessary fewer nodes to store the 
entirety of the inserted intervals, hence leading to a tree with 
fewer depth levels. Moreover, high order values also lead to 
nodes less frequently needing to borrow or merging with 
siblings, as each node can store more keys. On the contrary, if 
the node order is set to a small value, more nodes are necessary 
to store the entirety of the inserted intervals, thus leading to a 
tree with a higher number of depth levels. Smaller order values 
also lead to nodes more frequently having less than half of the 
order value (thus leading to borrows or merges), as each node 
stores fewer keys. Regarding the time-split alpha, trees 
employing time-splits (alpha > 0) store a higher number of 
intervals since these can be time-split. Hence, as already 

observed, by having a higher number of intervals stored, trees 
will have higher depth. Considering the different values the 
alpha parameter can assume, as introduced in Section Related 
Work, smaller alpha values lead to smaller split points, thus 
increasing time-split occurrences. Therefore, smaller alpha 
values, greater than zero, lead to higher depth trees. 

The number of levels necessary to manage any given 
number of intervals can be obtained using 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄(𝐥𝐥𝐥𝐥𝐥𝐥𝒐𝒐 𝒌𝒌) where 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐() represents a function for ceiling a decimal number, 𝑜𝑜 
represents the tree order and 𝑘𝑘  represents the number of 
intervals to be inserted. 

EXPERIMENTS, RESULTS AND 
DISCUSSION 

This section starts by describing the datasets used in the 
experiments. Afterwards, it details the experiments performed 
for comparing the I2B+ tree and IB+ tree performances. These 
experiments focused on both insertions and deletions. Each 
experiment includes a discussion section that interprets the 
results achieved. 

Synthetic Datasets 

To compare the performances of the I2B+ tree and of the 
IB+ tree, we proceeded with the generation of synthetic 
datasets. To assure that the generated datasets constituted 
viable test scenarios, we followed the recommendations 
presented by Theodoridis et al. (1999), meaning that we make 
use of mathematical data distributions for generating the 
synthetic datasets. Each dataset stores a fixed number of 
intervals. Each interval is created using two data distributions: 
one for computing the starting timestamp of the interval and 
the other for the interval duration. For creating the initial 
timestamps, the synthetic generator makes use of a uniform 
distribution, and for the duration, it uses a Poisson 
distribution (Katti and Rao, 1968). 

Two main scenarios, with different characteristics, were 
created and subsequently analysed. In both scenarios, the 
same uniform distribution was kept for the initial timestamps: 
on average, at each time unit (an instant at which a time 
interval might begin), 10 new intervals start. However, 
regarding intervals duration, the two scenarios differ. In the 
first scenario, intervals have an average duration of 7 time 
units and a standard deviation of 2 time units. In the second 
scenario, the average duration is 1095 time units, and the 
standard deviation is 200 time units. By proceeding this way, 
the goal is to obtain two different scenarios where the number 
of concurrent (temporally overlapping) intervals differs 
significantly. Hence, we generated a first scenario containing 
sparse data and a second scenario containing dense data. 
Given the respective characteristics of each scenario, we 
named them accordingly: small intervals scenario in the first 
case and big intervals scenario for the second one. Both the 
nomenclature and the dataset generation methodology are 
exactly the same as the ones employed by Carneiro et al. 
(2020). 

For each of these scenarios, we generated ten datasets of 
sequential doubling size: we started at a dataset with 1k 
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intervals, then 2k, then 4k, and so on up until 512k intervals. 
Figure 2 presents, as an example, a visual representation of 
the distribution of the interval durations, for the dataset with 
512k entries in the big intervals scenario. The horizontal axis 
presents interval durations while the vertical axis presents the 
number of items. 

Experimentation 

Experiments were conducted for the three basic 
operations: insertions, queries and deletions. However, query 
tests are not detailed as the two index structures perform 
identically. This behaviour is expected seeing that the 
differences between the I2B+ tree and the IB+ tree do not 
interfere with queries. Moreover, the implementation of this 
operation in both index structures is the same. 

Regarding insertions, two different tests were performed. 
The first insertion test, named tree insertion (T), consists of 
evaluating the average time it takes to construct the totality of 
the tree, given an input test dataset. The second insertion test 
(I) consists of evaluating the average time it takes to insert 100 
randomly chosen intervals of the same test dataset. 

 
1 https://github.com/most-inesctec/kruonis 
2 https://nodejs.org 

Regarding deletions, three distinct tests were performed. 
The first (D) consists of evaluating the average time it takes to 
delete 100 randomly chosen intervals stored in a tree that has 
been previously loaded with an entire test dataset. The second, 
named ranged deletion (RD), consists of evaluating the 
average time it takes to range delete 100 randomly chosen 
intervals stored in a tree filled with the same previous test 
dataset. In this context, a range deletion consists of deleting 
all intervals that are fully contained by the provided interval. 
The third deletion test, named delete half tree (DH), consists 
of range deleting half of the intervals stored in the tree, by 
utilising a single range deletion. 

Considering the results obtained by Carneiro et al. (2020), 
we extend on their evaluation by studying the index structures’ 
performance using trees with the order parameter set to 4, 10 
and 20, and the time-split alpha parameter set to 0 and 0.2. 
The order choices, namely 10 and 20, are based on Carneiro et 
al. findings. The order value of 4 is chosen with the intent of 
testing trees with more depth levels, following the rationale 
presented in section III. The alpha choices allow us to test the 
index structures both when allowing and not allowing time-
splits. 

To be statistically significant, we used kruonis1. With this 
open-source tool, each test ran between approximately 50 and 
100 times (being non-deterministic as tests have a limited 
amount of time to run). The experiments ran in a Node.js 2 
environment and were done in a laptop running a macOS 
distribution, powered by a 2.3 GHz Dual-Core Intel Core i5 and 
8GB of RAM. 

Insertion Comparison 

In this experiment, we compare the performances of the 
two index structures, in the tests concerning the insertion 
operation (T and I). Figure 3 shows the results obtained, in the 
small intervals scenario, using an alpha parameter of 0.2. We 
show these results as they are representative (the identified 
behaviours are similar) of the results obtained using the other 
alpha parameter and the big intervals scenario. From the 
analysis of Figure 3, we verify that trees with order set to 4 

 
Figure 2. Example of a distribution of the durations of the 
intervals 

 
Figure 3. Tree construction test (left) and Insertion test (right), for the small intervals scenario, using an alpha parameter of 0.2 

https://nodejs.org/
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take more time to construct (approximately 1500ms for the 
512k dataset), while trees with order set to 20 are the fastest to 
construct (approximately 712ms for the 512k dataset). The 
results obtained in the intervals insertion test (I) corroborate 
the results obtained in the tree construction test (T), with the 
trees with the order parameter set to 4 having the worst 
performance (approximately 0.4ms for the 512k dataset) with 
the remaining trees, with high order values, having improved 
performance (average of 0.2ms for the 512k dataset). 

Neither of the performed tests allowed us to conclude 
regarding the comparison of the I2B+ tree with the IB+ tree. In 
the tree construction test, the y-axis scale makes it 
impracticable to infer about the performance difference of 
both trees. In the Insertion test, there is not a prominent 
pattern, when considering the performance difference. 
Therefore, we opted for plotting the ratio between the I2B+ tree 
performance and IB+ tree performance, in the tree 
construction test. Moreover, we also computed and plotted a 
trendline using the moving average (Goyal, 2009), with a 
period of 4, to better understand the ratios tendency. For the 
remaining of this work, we refer as ratio plots to plots 
employing similar principles to the ones described. Figure 4 
shows the ratio plots, for the different orders (the first row of 
plots consists of order 4 results, the second row of order 10 
results and the third row of order 20 results), in both scenarios 

(the left column of plots consists of the small intervals scenario, 
while the right column consists of the big intervals scenario), 
for the tree construction test (T). 

From the analysis of the plots displayed in Figure 4, we 
verify that all moving average lines are above the red line 
indicating a ratio of 1. Moreover, all moving average lines 
revolve around the range of 1.01 to 1.03, with 1.02 being the 
most common value. We also identify a tendency for high order 
values to have lower ratios, while low order values appear to 
have higher ratios (ratios on order 20 plots are approximately 
1.01, on order 10 plots are approximately 1.02, and on order 4 
plots are approximately 1.03). 

Interpreting the results described in this experiment, trees 
with low order values having worse insertion performance (I 
and T) are justified by the necessary procedures to create a 
higher number of internal nodes. Regarding the results 
obtained in the ratio plots, we can conclude that the IB+ tree 
outperforms the I2B+ tree on insertions. The results indicate 
that, on average, the IB+ tree is 2% more time-efficient on 
insertions than the I2B+ tree. The difference between ratio 
values on trees with distinct order parameter values is justified 
by higher-order trees having to manage more nodes, and, 
consequently, of maintaining pointers to the sibling nodes. 

 
Figure 4. Ratio plots of the tree construction test (T), for the different orders (4, 10 and 20), in both scenarios 
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Deletion Comparison 

In this experiment, we compare the two index structures 
regarding their performances on deletions (D, RD and DH 
tests). Figure 5 shows the results obtained, in the big intervals 
scenario, using an alpha parameter of 0 (zero), i.e., no time-
splits. Once more, we present these results as they are 
representative of the results obtained using an alpha 

parameter of 0.2 and the small intervals scenario. From Figure 
5, we verify that the trees with the order parameter set to 20 
are the fastest on all deletion tests, with an average (between 
the I2B+ tree and IB+ tree results) of 1.0ms on D, 34ms on RD 
and 508ms on DH, for the 512k dataset. On the contrary, the 
trees with the order parameter set to 4 are the slowest on all 
deletion tests, with an average of 2.9ms on D, 183ms on RD and 
726ms on DH, also in the 512k dataset. Moreover, by observing 

 
Figure 4 (Continued). Ratio plots of the tree construction test (T), for the different orders (4, 10 and 20), in both scenarios 

 

 
Figure 5. Deletion tests (D, RD and DH), in the big intervals scenario, using an alpha of 0 
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the obtained results we can identify the I2B+ tree as being more 
time-efficient than the IB+ tree. 

However, to achieve more precise conclusions, a more 
detailed analysis of the comparison of both index structures on 
deletions is performed. Similarly, to the previous experience, 
we once more employ ratio plots to analyse the results 
obtained in the tests that consist of deleting half of the tree 
(DH). Figure 6 shows the ratio plots, for the different orders 

(the first row of plots consists of order 4 results, the second 
row of order 10 results and the third row of order 20 results), 
in both scenarios (the left column of plots consists of the small 
intervals scenario, while the right column consists of the big 
intervals scenario). 

From the plots displayed in Figure 6, we verify that, 
independently of the scenario, all moving average trend lines 
are below the line indicating a ratio of 1 (red line). In the first 

 
 

 
Figure 6. Ratio plots of the delete half tree test (DH), for the different orders (4, 10 and 20), in both scenarios 



 Carneiro et al. / Journal of Information Systems Engineering and Management, 6(3), em0142 9 / 10 

row of the ratio plots (Figure 6), on trees with the order 
parameter set to 4, we verify that the ratio values mostly vary 
between 0.92 and 0.94. On the second row of plots (order of 
10), on the small intervals scenario, the ratio varies from 0.92 to 
0.99, with 0.96 being the most common value. Conversely, on 
the big intervals scenario, the ratio fluctuates between 0.86 and 
0.95 and tends to 0.95. On the third row of plots (order of 20), 
the ratio values range between 0.84 and 0.91 and stabilise on 
0.90. 

Interpreting the results described in this experiment, trees 
with low order values having worse deletion performance on 
all tests are justified by each node storing less information 
(maximum of 4 keys). As a consequence, trees are deeper, 
seeing that there is an increase in the number of nodes. Using 
the formula presented in Section I2B+ Tree & IB+ Tree on the 
512k dataset, the trees with order 4 need a total of 10 depth 
levels, while trees with order 10 need 6 depth levels and trees 
with order 20 need 5 depth levels. Consequently, the 
disparities between the index structures are more prominent 
on trees with order 4, since fewer keys on each node lead to 
more borrow and merge operations, which in average take 
more time to conclude as the tree is deeper. From the results 
shown in Figure 6, we conclude that the I2B+ tree regularly 
outperforms the IB+ tree on deletions. On average, for the 
performed tests, the I2B+ tree takes 0.93 of the time it takes the 
IB+ tree to perform the same deletion. Hence, we can infer that, 
for the performed tests, the I2B+ tree is, on average, 7% more 
efficient on deletions than the IB+ tree. Variations of the 0.93 
ratio depend on the dataset characteristics and the tree order 
parameter choice. Moreover, we also conclude that the usage 
of time-splits has no perceptible impact in the ratios of the two 
index structures, despite the usage of time-splits leading to an 
increase of the number of stored intervals (as a consequence of 
the storage of the CompoundIntervals presented by Carneiro et 
al. (2020)). 

With the outcomes obtained from the analysis of both the 
insertion comparison experiment (Section Insertion 
comparison) and the deletion comparison experiment (Section 
Deletion comparison), we can conclude that the I2B+ tree 
globally outperforms the IB+ tree when considering time-
efficiency: despite the IB+ tree being, on average, 2% more 
efficient on insertions, the I2B+ tree is, on average, 7% more 
efficient on deletions. Thus, in usage scenarios where a 
considerable amount of insertions, queries and deletions 
occur, we show that the performance improvements provided 
by the I2B+tree overcome the ones granted by the IB+ tree. 

CONCLUSION 

In this work, we studied the fundamental differences 
between the IB+ tree and the I2B + tree. Furthermore, we 
determined how different order parameter values can impact 
and accentuate the performance difference between both 
trees. To analyse the index structures performance 
differences, we carried out a comparison study, using multiple 
datasets with growing volumes of data, in two distinct 
scenarios (one depicting sparse data and the other dense data), 
with various tree parameters configurations (the time-split 
alpha parameter was set to 0 and 0.2, while the order 

parameter was set to 4, 10 and 20). Results showed that, on 
insertions, the IB+ tree is, on average, 2% more time-efficient 
than the I2B+ tree. However, on deletions, we verified that the 
I2B+ tree is, on average, 7% more time-efficient. Hence, when 
the concern is the index structure time-efficiency, the I2B+ tree 
appears as the best alternative, from the ones studied. An 
open-source implementation of the I2B+ tree is available at 
https://github.com/most-inesctec/I2Bplus-tree, while the IB+ tree 
is available at https://github.com/most-inesctec/IBplus-tree. 
Future work includes (1) benchmarking the I2B+ tree with 
other valid-time index structures, as a function of the volume 
of data, and (2) the study of how the I2B+ tree fares in the 
spatiotemporal context, coupled with a spatial structure. 
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