

Copyright © 2021 by Author/s and Licensed by Veritas Publications Ltd., UK. This is an open access article distributed under the Creative Commons Attribution License which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Information Systems Engineering and Management
2021, 6(3), em0142
e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

A Comparative Study on the Performance of the IB+ Tree and the
I2B+ Tree

Edgar Carneiro 1,2, Alexandre Valle de Carvalho 1,2*, Marco Amaro Oliveira 1

1 INESCTEC, Campus da FEUP, R. Dr. Roberto Frias, 4200-465 Porto, PORTUGAL
2 FEUP, R. Dr. Roberto Frias, 4200-465 Porto, PORTUGAL
*Corresponding Author: alexandre.carvalho@inesctec.pt

Citation: Carneiro, E., de Carvalho, A. V. and Oliveira, M. A. (2021). A Comparative Study on the Performance of the IB+ Tree and the I2B+ Tree.
Journal of Information Systems Engineering and Management, 6(3), em0142. https://doi.org/10.21601/jisem/11006

ARTICLE INFO ABSTRACT

Received: 17 Sep. 2020

Accepted: 4 Mar. 2021

 Index structures were often used to optimise fetch operations to external storage devices (secondary memory).
Nowadays, this also holds for increasingly large amounts of data residing in main-memory (primary memory).
Within this scope, this work focuses on index structures that efficiently insert, query and delete valid-time data
from very large datasets. This work performs a comparative study on the performance of the Interval B+ tree (IB+
tree) and the Improved Interval B+ tree (I2B+ tree): a variant that improves the time-efficiency of the deletion
operation by reducing the number of traversed nodes to access siblings. We performed an extensive analysis of
the performance of two operations: insertions and deletions, on both index structures, using multiple datasets
with growing volumes of data, distinct temporal distributions and tree parameters (time-split alpha and node
order). Results confirm that the I2B+ tree globally outperforms the IB+ tree, since, on average, deletion operations
are 7% faster, despite insertions requiring 2% more time. Furthermore, results also allowed to determine the key
factors that augment the performance difference on deletions between both trees.

Keywords: data structure, indexing, B+ tree, time intervals, temporal data, performance analysis

INTRODUCTION

The classic performance analysis of index structures had its
focus on disk access optimisation. Therefore, the evaluated
parameters were often related to the primary goal of
minimising the number of disk access operations (Cudre-
Mauroux et al., 2010; Mahmood et al., 2018). Nowadays, index
structures are required by new and distinct application
domains, usually involving large datasets, where high-speed
access to information is mandatory. Hence, in these new
circumstances, evaluating disk access optimisation might no
longer make sense, while the study of the performance of index
structures as a function of the volume of data appears as a
more adequate analysis.

The cost of both primary and secondary memory storage
space has been consistently decreasing, thus allowing larger
amounts of data to be captured and stored (Liu & Yuan, 2019).
As a consequence, applications are required to deal with these
larger amounts of data, making the space overhead related to
the data structure less of a concern, with the time-efficiency
gathering a more prominent role. Hence, access to data from
ever-growing datasets should be as time-efficient as possible.

When considering temporal data, the Interval B+ tree (IB+
tree) is a fast data access method for the efficient handling of

interval-based valid-time information (Bozkaya and
Ozsoyoglu, 1998). From the performed literature review, where
we examined several index structures capable of indexing
valid-time information, the IB+ tree emerged as the most
promising one. However, from the more recent work
employing this index structure (Guo et al., 2014; Lock and
Booss, 2010; Vutukuri, 2018), only Carneiro et al. (2020)
provided an analysis of the IB+ tree with a focus on
performance on growing volumes of data. In their work,
Carneiro et al. introduce the Improved Interval B+ tree (I2B+
tree), a time-efficiency focused variant of the IB+ tree. This
variant differs from the original index structure by reducing
the number of nodes traversed in the deletion of a stored
object.

Hence, in this work, we extend the work of Carneiro et al.
(2020) by conducting a comparative study on the performance
of the IB+ tree and the I2B+ tree. We start by analysing the main
differences between both index structures and examine how
those differences can impact the performances of each tree.
Afterwards, we benchmark both index structures, with a focus
on insertions and deletions (including single deletions and
range deletions), in a multitude of scenarios and
configurations. The goal is to understand if the conceptual
improvement of the I2B+ tree corresponds to a de facto
significant performance increase.

https://www.jisem-journal.com/
mailto:alexandre.carvalho@inesctec.pt
https://doi.org/10.21601/jisem/11006

2 / 10 Carneiro et al. / J INFORM SYSTEMS ENG, 6(3), em0142

Tested TypeScript open-source implementations of both
the I2B+ tree and the IB+ tree are provided with the purpose of
using them in the experiments and making them available for
client-side applications. This choice also took into
consideration the current trend of platform-independent,
browser-based applications and its increased access through
mobile devices.

The paper is organized as follows. Section Related Work
summarises different structures for indexing valid-time
information and presents an analysis of the IB+ tree. Section
I2B+ Tree & IB+ Tree presents the main differences between
the I2B+ tree and the IB+ tree. Section Experiments, Results and
Discussion describes the experiments performed, as well as
examines the results obtained. Lastly, Section Conclusion
provides conclusions and identifies future work.

RELATED WORK

In this section, we identify the main index structures that
are presented as capable of handling time intervals (valid-time
domain). From this set of index structures, we identified the
IB+ tree as the most promising for obtaining improved time-
efficiency on growing volumes of data. Thus, details of this
index structure are presented.

Valid-Time Index Structures

Through a systematic literature review on valid-time index
structures, four main categories can be identified: spatial
indexes storing bounding intervals in a single dimension; B+
tree variants; Interval tree augmentations; and others (e.g.,
MPB-tree (He et al., 2013)).

One way commonly used to represent unidimensional
spatial indexes of algorithms are one-dimensional R-trees.
Mahmood et al. (2018) and Valdés and Güting (2017) both use
a one-dimensional R-tree for handling temporal data in their
spatiotemporal frameworks. R-trees key idea consists of
grouping objects together using a bounding interval (in one-
dimensional data) and using that bounding interval to
represent the group in lower depth nodes (Guttman, 1984).

Regarding B+ trees, there are many variants for handling
temporal data. Among others, we can highlight Time Index
(Elmasri et al., 1990); IB+ tree (Bozkaya and Ozsoyoglu, 1998);
and MAP21 (Nascimento and Dunham, 1999). The Time Index
comprises an access structure for temporal data, based on a
versioning approach. The IB+ tree consists of augmenting the
B+ tree so that the tree nodes manage interval information
similarly to the Interval-tree. Moreover, Nascimento and
Dunham (Nascimento and Dunham, 1999), using the approach
MAP21, show how a B+ tree can be adapted to support the
indexing of intervals by mapping the two values constituting
the range into a single value.

Interval-tree (de Berg et al., 2008) augmentations
represent the adaptation of a balanced tree structure to
support intervals in the manner defined by the Interval tree.
Carvalho et al. (2014) work is an example of augmentation by
using a Red-Black Augment Interval Tree. Thus, the authors
made a red-black tree capable of handling valid-time intervals.
The IB+ tree, besides being a B+ tree variant, is also an example
of an Interval-tree augmentation.

In the above-mentioned others category, we include other
structures that do not belong in any of the previous categories.
The Multi-dimensional Parallel Binary Tree (He et al., 2013) is
an example of such. In this spatiotemporal index structure, the
temporal dimension is managed through a triangular binary
tree using a triangular decomposition strategy to handle the
representation of temporal intervals.

Mahmood et al. (Mahmood et al., 2019), demonstrates that,
for the majority of the structures, the temporal dimension is
handled using a B+ tree variant. Regarding the comparison of
some of the index structures presented above, Bozkaya and
Ozsoyoglu present the benefits regarding node accesses when
comparing the IB+ tree to the one-dimensional R-tree (Bozkaya
and Ozsoyoglu, 1998). Henceforth, we provide a more in-depth
analysis of the IB+ tree, since this index structure was brought
to our attention, in our literature review process, as the most
promising for handling valid-time intervals.

Interval B+ Tree

The IB+ tree consists of a time-efficient index structure
that merges the principles of both B+ trees (Comer, 1979) and
Interval-trees (de Berg et al., 2008). In more detail, it consists
of an augmentation of the B+ tree (an N-ary tree), where each
node contains the same kind of information as on Interval-
trees. In this structure, there are two types of nodes: internal
nodes, whose children are other nodes, and leaf nodes, whose
children are intervals. Each node stores three lists: one list
containing its children, another containing the ordered node
keys and the last containing the maximums. Within this
context, according to Bozkaya and Ozsoyoglu (1998), a key is
the smallest lower bound of the respective children of the first
list. Similarly, a maximum is the highest upper bound of the
respective children of the first list. The order imposed by the
keys sorts all lists.

Since the underlying structure is a B+ tree, each leaf node
will contain a pointer to the right sibling. Intermediate nodes
contain no pointers for any of the siblings. In the context of
the B+ tree, a key represents a literal. Furthermore, in B+ trees,
the insertion and deletion of nodes can lead to readjustments
on the overall structure of the tree.

In the case of insertions, if a node is accommodating a new
key, but the accommodation leads to the number of keys
exceeding the number of allowed keys per node, the node
splits. Splits are operations that consist of dividing the keys of
a node into two new nodes. Therefore, each new node is
expected to contain half the keys from the original node. After,
the tree proceeds with the insertion of the new key in the node
that should save it.

Reversely, the removal of a node can also trigger a
rebalance of the tree. When a key is removed from a node, if
the number of keys stored in the node is not bigger than half
of the maximum number of keys it can store, then the tree
must readjust. First, the node tries to borrow a key from one
of its siblings. The borrowing happens if either one of the
siblings contains more than half of the maximum number of
keys it can store. Otherwise, the borrowing would lead to one
of the siblings being unable to satisfy the minimum of stored
keys condition. In such cases, where no borrowing is possible,
the nodes are merged with one of its siblings, creating a new
node that contains the keys from the merged nodes. These are

 Carneiro et al. / Journal of Information Systems Engineering and Management, 6(3), em0142 3 / 10

called borrow and merge operations. Consequently, other
kinds of tree readjustments can occur, but we do not describe
them since they do not add value to the current work. Comer’s
work (Comer, 1979) presents a more in-depth analysis of the
entirety of these cases.

The augmentation of the Interval-tree (de Berg et al., 2008)
follows some basic principles: 1) each node stores an interval,
where the interval lower bound represents the key of the node
- consequently, by travelling the tree in its in-order, we obtain
the set of intervals, sorted by the lower bound; 2) each node
also stores the maximum higher bound existent in its subtree.

Bozkaya and Ozsoyoglu (1998) also present an
enhancement that allows the IB+ tree a more time-efficient
performance. This enhancement is the time-split operations
of intervals. This time-split enhancement consists of finding
an optimum upper bound (the split point) from the intervals
managed by a leaf node and split the children intervals which
upper bound surpasses the split point, at that split point. For
instance, consider an interval [a, c] and a split point b, where a
< b < c. Then, interval [a, c] would split and generate intervals
[a, b] and [b, c], with [b, c] being reinserted in the structure. The
motive behind time-splits is to avoid long intervals that
negatively impact structure performance.

The IB+ tree has two user-definable parameters: the nodes’
order and the time-split alpha. The order parameter defines
the maximum number of children that a node can have. The
alpha parameter is an empirical factor (0 < alpha < 1) that
influences the choice of the split point for the children
intervals of a leaf node. This parameter adjusts the
space/query-time trade-off. Higher alpha values lead to higher
split point values and, consequently, fewer time-splits occur,
thus leading to less storage and decreased query-efficiency.
Conversely, smaller alpha values lead to smaller split point
values and, therefore, to the occurrence of more time-splits
and an increase in both storage and query-efficiency. Bozkaya
and Ozsoyoglu (1998) present a more detailed explanation of
the time-split algorithm and the impact of the alpha factor.

I2B+ Tree & IB+ Tree

In this section, we compare the differences between the
Improved Interval B+ tree (I2B+ tree) and the original Interval
B+ tree (IB+ tree) and present the algorithms used for getting a
node’s sibling in each of the index structures. Moreover, we
also determine the various factors that determine the
performance differences on both index structures.

Main differences

As presented in the works of Carneiro et al. (2020), the I2B+
tree differs from the original IB+ tree by having every tree node
storing pointers to both of its siblings, independently of it
being a leaf node or an intermediary node. Figure 1 shows the
difference between both index structures by illustrating the
distinct tree configurations when storing the same example
dataset.

As seen in Section Related Work, the borrow and merge
operations, involved in node deletions, serve the purpose of
rebalancing the tree. Applying these operations in a node
requires finding one of the node’s siblings. However, in the
original IB+ tree, for a node to proceed with either of the
mentioned operations, the ancestor node that is the root of the
smallest sub-tree containing the node and its sibling must be
found. In the most extreme case, the ancestor of both nodes is
the tree root, and finding the node sibling implies travelling to
the root and back. By utilising pointers to both siblings,
Carneiro et al. focus on making the original index structure
more time-efficient, by discarding the need to find the
ancestor of a node and its sibling. Thus, this approach
optimises borrow and merge operations, which consequently
improves the deletion operation time-efficiency.

In the I2B+ tree, storing in every node pointers to the
node’s siblings implies an overhead on insertions of having to
set the object properties corresponding to the siblings.
Additionally, on deletions, to maintain this information, when
a given node disappears, the node siblings have to be updated
to point to each other, instead of pointing to the node that was
removed.

Regarding our implementations of the I2B+ tree and the IB+
tree, these differ significantly in the implementation of the
findLeftSibling and findRightSibling methods. The
findRightSibling implementation differs on the tree internal
nodes. Below, and with the intent of better illustrating the
differences between both index structures, we present the
implementation of the method findLeftSbiling on the two index
structures. An example implementation of the IB+tree
findLeftSibling method consists of:

Similarly, an example implementation of the I2B+tree
findLeftSibling method consists of:

Figure 1. Structural differences between the IB+ tree (left) and the I2B+ tree (right), while indexing the same dataset

4 / 10 Carneiro et al. / J INFORM SYSTEMS ENG, 6(3), em0142

As shown in the algorithms above, the IB+ tree method

consists of a call to a recursive function that will repeat itself
2 ∗ (𝐷𝐷𝐴𝐴 − 𝐷𝐷𝑁𝑁), where 𝐷𝐷𝐴𝐴 − 𝐷𝐷𝑁𝑁 represents the number of depth
levels between the common ancestor node (𝐴𝐴) and the node
finding the sibling (𝑁𝑁). Conversely, the I2B+ tree method
consists of obtaining an object property.

Key factors impacting performance differences

Conceptually, the I2B+ tree significantly outperforms the
IB+ tree, since the overall process of finding the sibling node is
more time-consuming in the IB+ tree. For finding the sibling in
the IB+ tree, the function responsible for finding it might have
to repeat itself a considerable number of times. The higher the
number of tree depth levels, the higher the average number of
recursive calls the function may have to go through when
deleting an interval. Thus, it is expected that deeper trees lead
to more dissimilar performances when comparing both index
structures.

The depth of a tree is impacted by three factors: (1) the
number of intervals that the tree stores, (2) the node’s order
and (3) the time-split alpha. The last two factors are both tree
parameters presented in section II. Regarding the number of
intervals being inserted, a higher number of intervals requires
more nodes to store them, thus leading to trees with higher
depth. Regarding the node’s order, if this parameter is set to a
high value, every node becomes capable of storing more
elements, thus being necessary fewer nodes to store the
entirety of the inserted intervals, hence leading to a tree with
fewer depth levels. Moreover, high order values also lead to
nodes less frequently needing to borrow or merging with
siblings, as each node can store more keys. On the contrary, if
the node order is set to a small value, more nodes are necessary
to store the entirety of the inserted intervals, thus leading to a
tree with a higher number of depth levels. Smaller order values
also lead to nodes more frequently having less than half of the
order value (thus leading to borrows or merges), as each node
stores fewer keys. Regarding the time-split alpha, trees
employing time-splits (alpha > 0) store a higher number of
intervals since these can be time-split. Hence, as already

observed, by having a higher number of intervals stored, trees
will have higher depth. Considering the different values the
alpha parameter can assume, as introduced in Section Related
Work, smaller alpha values lead to smaller split points, thus
increasing time-split occurrences. Therefore, smaller alpha
values, greater than zero, lead to higher depth trees.

The number of levels necessary to manage any given
number of intervals can be obtained using 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄(𝐥𝐥𝐥𝐥𝐥𝐥𝒐𝒐 𝒌𝒌) where
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐() represents a function for ceiling a decimal number, 𝑜𝑜
represents the tree order and 𝑘𝑘 represents the number of
intervals to be inserted.

EXPERIMENTS, RESULTS AND
DISCUSSION

This section starts by describing the datasets used in the
experiments. Afterwards, it details the experiments performed
for comparing the I2B+ tree and IB+ tree performances. These
experiments focused on both insertions and deletions. Each
experiment includes a discussion section that interprets the
results achieved.

Synthetic Datasets

To compare the performances of the I2B+ tree and of the
IB+ tree, we proceeded with the generation of synthetic
datasets. To assure that the generated datasets constituted
viable test scenarios, we followed the recommendations
presented by Theodoridis et al. (1999), meaning that we make
use of mathematical data distributions for generating the
synthetic datasets. Each dataset stores a fixed number of
intervals. Each interval is created using two data distributions:
one for computing the starting timestamp of the interval and
the other for the interval duration. For creating the initial
timestamps, the synthetic generator makes use of a uniform
distribution, and for the duration, it uses a Poisson
distribution (Katti and Rao, 1968).

Two main scenarios, with different characteristics, were
created and subsequently analysed. In both scenarios, the
same uniform distribution was kept for the initial timestamps:
on average, at each time unit (an instant at which a time
interval might begin), 10 new intervals start. However,
regarding intervals duration, the two scenarios differ. In the
first scenario, intervals have an average duration of 7 time
units and a standard deviation of 2 time units. In the second
scenario, the average duration is 1095 time units, and the
standard deviation is 200 time units. By proceeding this way,
the goal is to obtain two different scenarios where the number
of concurrent (temporally overlapping) intervals differs
significantly. Hence, we generated a first scenario containing
sparse data and a second scenario containing dense data.
Given the respective characteristics of each scenario, we
named them accordingly: small intervals scenario in the first
case and big intervals scenario for the second one. Both the
nomenclature and the dataset generation methodology are
exactly the same as the ones employed by Carneiro et al.
(2020).

For each of these scenarios, we generated ten datasets of
sequential doubling size: we started at a dataset with 1k

 Carneiro et al. / Journal of Information Systems Engineering and Management, 6(3), em0142 5 / 10

intervals, then 2k, then 4k, and so on up until 512k intervals.
Figure 2 presents, as an example, a visual representation of
the distribution of the interval durations, for the dataset with
512k entries in the big intervals scenario. The horizontal axis
presents interval durations while the vertical axis presents the
number of items.

Experimentation

Experiments were conducted for the three basic
operations: insertions, queries and deletions. However, query
tests are not detailed as the two index structures perform
identically. This behaviour is expected seeing that the
differences between the I2B+ tree and the IB+ tree do not
interfere with queries. Moreover, the implementation of this
operation in both index structures is the same.

Regarding insertions, two different tests were performed.
The first insertion test, named tree insertion (T), consists of
evaluating the average time it takes to construct the totality of
the tree, given an input test dataset. The second insertion test
(I) consists of evaluating the average time it takes to insert 100
randomly chosen intervals of the same test dataset.

1 https://github.com/most-inesctec/kruonis
2 https://nodejs.org

Regarding deletions, three distinct tests were performed.
The first (D) consists of evaluating the average time it takes to
delete 100 randomly chosen intervals stored in a tree that has
been previously loaded with an entire test dataset. The second,
named ranged deletion (RD), consists of evaluating the
average time it takes to range delete 100 randomly chosen
intervals stored in a tree filled with the same previous test
dataset. In this context, a range deletion consists of deleting
all intervals that are fully contained by the provided interval.
The third deletion test, named delete half tree (DH), consists
of range deleting half of the intervals stored in the tree, by
utilising a single range deletion.

Considering the results obtained by Carneiro et al. (2020),
we extend on their evaluation by studying the index structures’
performance using trees with the order parameter set to 4, 10
and 20, and the time-split alpha parameter set to 0 and 0.2.
The order choices, namely 10 and 20, are based on Carneiro et
al. findings. The order value of 4 is chosen with the intent of
testing trees with more depth levels, following the rationale
presented in section III. The alpha choices allow us to test the
index structures both when allowing and not allowing time-
splits.

To be statistically significant, we used kruonis1. With this
open-source tool, each test ran between approximately 50 and
100 times (being non-deterministic as tests have a limited
amount of time to run). The experiments ran in a Node.js 2
environment and were done in a laptop running a macOS
distribution, powered by a 2.3 GHz Dual-Core Intel Core i5 and
8GB of RAM.

Insertion Comparison

In this experiment, we compare the performances of the
two index structures, in the tests concerning the insertion
operation (T and I). Figure 3 shows the results obtained, in the
small intervals scenario, using an alpha parameter of 0.2. We
show these results as they are representative (the identified
behaviours are similar) of the results obtained using the other
alpha parameter and the big intervals scenario. From the
analysis of Figure 3, we verify that trees with order set to 4

Figure 2. Example of a distribution of the durations of the
intervals

Figure 3. Tree construction test (left) and Insertion test (right), for the small intervals scenario, using an alpha parameter of 0.2

https://nodejs.org/

6 / 10 Carneiro et al. / J INFORM SYSTEMS ENG, 6(3), em0142

take more time to construct (approximately 1500ms for the
512k dataset), while trees with order set to 20 are the fastest to
construct (approximately 712ms for the 512k dataset). The
results obtained in the intervals insertion test (I) corroborate
the results obtained in the tree construction test (T), with the
trees with the order parameter set to 4 having the worst
performance (approximately 0.4ms for the 512k dataset) with
the remaining trees, with high order values, having improved
performance (average of 0.2ms for the 512k dataset).

Neither of the performed tests allowed us to conclude
regarding the comparison of the I2B+ tree with the IB+ tree. In
the tree construction test, the y-axis scale makes it
impracticable to infer about the performance difference of
both trees. In the Insertion test, there is not a prominent
pattern, when considering the performance difference.
Therefore, we opted for plotting the ratio between the I2B+ tree
performance and IB+ tree performance, in the tree
construction test. Moreover, we also computed and plotted a
trendline using the moving average (Goyal, 2009), with a
period of 4, to better understand the ratios tendency. For the
remaining of this work, we refer as ratio plots to plots
employing similar principles to the ones described. Figure 4
shows the ratio plots, for the different orders (the first row of
plots consists of order 4 results, the second row of order 10
results and the third row of order 20 results), in both scenarios

(the left column of plots consists of the small intervals scenario,
while the right column consists of the big intervals scenario),
for the tree construction test (T).

From the analysis of the plots displayed in Figure 4, we
verify that all moving average lines are above the red line
indicating a ratio of 1. Moreover, all moving average lines
revolve around the range of 1.01 to 1.03, with 1.02 being the
most common value. We also identify a tendency for high order
values to have lower ratios, while low order values appear to
have higher ratios (ratios on order 20 plots are approximately
1.01, on order 10 plots are approximately 1.02, and on order 4
plots are approximately 1.03).

Interpreting the results described in this experiment, trees
with low order values having worse insertion performance (I
and T) are justified by the necessary procedures to create a
higher number of internal nodes. Regarding the results
obtained in the ratio plots, we can conclude that the IB+ tree
outperforms the I2B+ tree on insertions. The results indicate
that, on average, the IB+ tree is 2% more time-efficient on
insertions than the I2B+ tree. The difference between ratio
values on trees with distinct order parameter values is justified
by higher-order trees having to manage more nodes, and,
consequently, of maintaining pointers to the sibling nodes.

Figure 4. Ratio plots of the tree construction test (T), for the different orders (4, 10 and 20), in both scenarios

 Carneiro et al. / Journal of Information Systems Engineering and Management, 6(3), em0142 7 / 10

Deletion Comparison

In this experiment, we compare the two index structures
regarding their performances on deletions (D, RD and DH
tests). Figure 5 shows the results obtained, in the big intervals
scenario, using an alpha parameter of 0 (zero), i.e., no time-
splits. Once more, we present these results as they are
representative of the results obtained using an alpha

parameter of 0.2 and the small intervals scenario. From Figure
5, we verify that the trees with the order parameter set to 20
are the fastest on all deletion tests, with an average (between
the I2B+ tree and IB+ tree results) of 1.0ms on D, 34ms on RD
and 508ms on DH, for the 512k dataset. On the contrary, the
trees with the order parameter set to 4 are the slowest on all
deletion tests, with an average of 2.9ms on D, 183ms on RD and
726ms on DH, also in the 512k dataset. Moreover, by observing

Figure 4 (Continued). Ratio plots of the tree construction test (T), for the different orders (4, 10 and 20), in both scenarios

Figure 5. Deletion tests (D, RD and DH), in the big intervals scenario, using an alpha of 0

8 / 10 Carneiro et al. / J INFORM SYSTEMS ENG, 6(3), em0142

the obtained results we can identify the I2B+ tree as being more
time-efficient than the IB+ tree.

However, to achieve more precise conclusions, a more
detailed analysis of the comparison of both index structures on
deletions is performed. Similarly, to the previous experience,
we once more employ ratio plots to analyse the results
obtained in the tests that consist of deleting half of the tree
(DH). Figure 6 shows the ratio plots, for the different orders

(the first row of plots consists of order 4 results, the second
row of order 10 results and the third row of order 20 results),
in both scenarios (the left column of plots consists of the small
intervals scenario, while the right column consists of the big
intervals scenario).

From the plots displayed in Figure 6, we verify that,
independently of the scenario, all moving average trend lines
are below the line indicating a ratio of 1 (red line). In the first

Figure 6. Ratio plots of the delete half tree test (DH), for the different orders (4, 10 and 20), in both scenarios

 Carneiro et al. / Journal of Information Systems Engineering and Management, 6(3), em0142 9 / 10

row of the ratio plots (Figure 6), on trees with the order
parameter set to 4, we verify that the ratio values mostly vary
between 0.92 and 0.94. On the second row of plots (order of
10), on the small intervals scenario, the ratio varies from 0.92 to
0.99, with 0.96 being the most common value. Conversely, on
the big intervals scenario, the ratio fluctuates between 0.86 and
0.95 and tends to 0.95. On the third row of plots (order of 20),
the ratio values range between 0.84 and 0.91 and stabilise on
0.90.

Interpreting the results described in this experiment, trees
with low order values having worse deletion performance on
all tests are justified by each node storing less information
(maximum of 4 keys). As a consequence, trees are deeper,
seeing that there is an increase in the number of nodes. Using
the formula presented in Section I2B+ Tree & IB+ Tree on the
512k dataset, the trees with order 4 need a total of 10 depth
levels, while trees with order 10 need 6 depth levels and trees
with order 20 need 5 depth levels. Consequently, the
disparities between the index structures are more prominent
on trees with order 4, since fewer keys on each node lead to
more borrow and merge operations, which in average take
more time to conclude as the tree is deeper. From the results
shown in Figure 6, we conclude that the I2B+ tree regularly
outperforms the IB+ tree on deletions. On average, for the
performed tests, the I2B+ tree takes 0.93 of the time it takes the
IB+ tree to perform the same deletion. Hence, we can infer that,
for the performed tests, the I2B+ tree is, on average, 7% more
efficient on deletions than the IB+ tree. Variations of the 0.93
ratio depend on the dataset characteristics and the tree order
parameter choice. Moreover, we also conclude that the usage
of time-splits has no perceptible impact in the ratios of the two
index structures, despite the usage of time-splits leading to an
increase of the number of stored intervals (as a consequence of
the storage of the CompoundIntervals presented by Carneiro et
al. (2020)).

With the outcomes obtained from the analysis of both the
insertion comparison experiment (Section Insertion
comparison) and the deletion comparison experiment (Section
Deletion comparison), we can conclude that the I2B+ tree
globally outperforms the IB+ tree when considering time-
efficiency: despite the IB+ tree being, on average, 2% more
efficient on insertions, the I2B+ tree is, on average, 7% more
efficient on deletions. Thus, in usage scenarios where a
considerable amount of insertions, queries and deletions
occur, we show that the performance improvements provided
by the I2B+tree overcome the ones granted by the IB+ tree.

CONCLUSION

In this work, we studied the fundamental differences
between the IB+ tree and the I2B + tree. Furthermore, we
determined how different order parameter values can impact
and accentuate the performance difference between both
trees. To analyse the index structures performance
differences, we carried out a comparison study, using multiple
datasets with growing volumes of data, in two distinct
scenarios (one depicting sparse data and the other dense data),
with various tree parameters configurations (the time-split
alpha parameter was set to 0 and 0.2, while the order

parameter was set to 4, 10 and 20). Results showed that, on
insertions, the IB+ tree is, on average, 2% more time-efficient
than the I2B+ tree. However, on deletions, we verified that the
I2B+ tree is, on average, 7% more time-efficient. Hence, when
the concern is the index structure time-efficiency, the I2B+ tree
appears as the best alternative, from the ones studied. An
open-source implementation of the I2B+ tree is available at
https://github.com/most-inesctec/I2Bplus-tree, while the IB+ tree
is available at https://github.com/most-inesctec/IBplus-tree.
Future work includes (1) benchmarking the I2B+ tree with
other valid-time index structures, as a function of the volume
of data, and (2) the study of how the I2B+ tree fares in the
spatiotemporal context, coupled with a spatial structure.

Author contributions: All co-authors have involved in all stages
of this study while preparing the final version. They all agree with
the results and conclusions.
Funding: This work is financed by the ERDF – European Regional
Development Fund through the Operational Programme for
Competitiveness and Internationalisation - COMPETE 2020
Programme and by National Funds through the Portuguese
funding agency, FCT - Fundação para a Ciência e a Tecnologia
within project PTDC/CCI-INF/32636/2017 (POCI-01-0145-
FEDER-032636).
Declaration of interest: The authors declare that they have no
competing interests.
Ethics approval and consent to participate: Not applicable.
Availability of data and materials: All data generated or
analyzed during this study are available for sharing when
appropriate request is directed to corresponding author.

REFERENCES

Bozkaya, T. and Ozsoyoglu, Z. M. (1998). Indexing valid time
intervals. In G. Quirchmayr, E. Schweighofer, & T. J.
Bench-Capon (Eds.), Database and expert system
applications (pp. 541-550). DEXA 1998. Lecture Notes in
Computer Science, vol 1460. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/BFb0054512

Carneiro, E., Carvalho, A. V. d. and Oliveira, M. A. (2020).
I2B+tree: Interval B+ tree variant towards fast indexing of
time-dependent data. 2020 15th Iberian Conference on
Information Systems and Technologies (CISTI), Sevilla,
Spain, 2020, pp. 1-7. https://doi.org/10.23919/
CISTI49556.2020.9140897

Carvalho, A. V. d., Oliveira, M. A. and Rocha, A. (2014).
Improvements to efficient retrieval of very large temporal
datasets with the TravelLight method. s.l., 9th Iberian
Conference on Information Systems and Technologies
(CISTI). https://doi.org/10.1109/CISTI.2014.6876986

Comer, D. E. (1979). Ubiquitous B-Tree. ACM Computing
Surveys, 11(2), 121-137. https://doi.org/10.1145/356770.
356776

Cudre-Mauroux, P., Wu, E. and Madden, S., 2010. Trajstore: An
adaptive storage system for very large trajectory data sets.
2010 IEEE 26th International Conference on Data Engineering
(ICDE 2010), March, pp. 109-120. https://doi.org/10.1109/
ICDE.2010.5447829

https://github.com/most-inesctec/I2Bplus-tree
https://github.com/most-inesctec/IBplus-tree
https://doi.org/10.1007/BFb0054512
https://doi.org/10.23919/CISTI49556.2020.9140897
https://doi.org/10.23919/CISTI49556.2020.9140897
https://doi.org/10.1109/CISTI.2014.6876986
https://doi.org/10.1145/356770.356776
https://doi.org/10.1145/356770.356776
https://doi.org/10.1109/ICDE.2010.5447829
https://doi.org/10.1109/ICDE.2010.5447829

10 / 10 Carneiro et al. / J INFORM SYSTEMS ENG, 6(3), em0142

de Berg, M., van Kreveld, M., Overmars, M. and Schwarzkopf,
O. (2008). Computational Geometry: Algorithms and
Applications. Springer-Verlag. https://doi.org/10.1007/
978-3-540-77974-2

Elmasri, R., Wuu, G. T. J. and Kim, Y.-J. (1990). The time index:
An access structure for temporal data. Brisbane,
Queensland, Australia, 16th International Conference on
Very Large Data Bases.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1994).
Design patterns: Elements of reusable object-oriented
software. s.l.: Addison-Wesley Professional Computing
Series, Pearson Education.

Goyal, M. (2009). Numerical Methods and Statistical Techniques
Using ‘C’. s.l., Laxmi Publications.

Guo, T., Papaioannou, T. G. and Aberer, K. (2014). Efficient
indexing and query processing of model-view sensor data
in the cloud. Big Data Research, 1, 52-65.
https://doi.org/10.1016/j.bdr.2014.07.005

Guttman, A. (1984). R trees: A dynamic index structure for
spatial searching. ACM SIGMOD Record, 14.
https://doi.org/10.1145/971697.602266

He, Z., Kraak, M.-J., Huisman, O., Ma. and Xiao, J. (2013).
Parallel indexing technique for spatio-temporal data.
International Journal of Photogrammetry and Remote
Sensing, 78, 116-128. https://doi.org/10.1016/j.isprsjprs.
2013.01.014

Katti, S. K. and Rao, A. V. (1968). Handbook of the poisson
distribution. Technometrics, 10(2), 412-412.
https://doi.org/10.1080/00401706.1968.10490580

Liu, Q. and Yuan, H., 2019. A high performance memory key-
value database based on redis. Journal of Computers, 14,
170-183. https://doi.org/10.17706/jcp.14.3.170-183

Lock, H. C. and Booss, D. (2010). Indexing stored data. US,
Patent No. 7,761,474.

Mahmood, A. R., Aly, A. M., Kuznetsova, T., Basalamah, S. and
Aref, W. G. (2018). Disk-Based Indexing of Recent
Trajectories. ACM Transactions on Spatial Algorithms and
Systems, 4(3), 7. https://doi.org/10.1145/3234941

Mahmood, A. R., Punni, S. and Aref, W. G. (2019). Spatio-
temporal access methods: a survey (2010 - 2017).
Geoinformatica, 23(1), 1-36. https://doi.org/10.1007/
s10707-018-0329-2

Nascimento, M. A. and Dunham, M. (1999). Indexing valid time
databases via B/sup +/-trees. IEEE Transactions on
Knowledge and Data Engineering, 11(6), 929-947.
https://doi.org/10.1109/69.824609

Reinsel, D., Gantz, J. and Rydning, J. (2018). The digitization of
the World – From edge to core, s.l.: Seagate, IDC Information
and Data.

Theodoridis, Y., Silva, J. R. and Nascimento, M. A. (1999). On
the generation of spatiotemporal datasets. Lecture Notes in
Computer Science (including subseries Lecture Notes in
Artificial Intelligence and LectureNotes in Bioinformatics),
1651, 147-164. https://doi.org/10.1007/3-540-48482-5_11

Valdés, F. and Güting, R. (2017). Index-supported pattern
matching on tuples of time-dependent values.
GeoInformatica, 21. https://doi.org/10.1007/s10707-016-
0286-6

Vutukuri, T. R. (2018). Q+ IB+ tree: Indexing technique for
moving regions (PhD thesis), Southern Illinois University.

https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1016/j.bdr.2014.07.005
https://doi.org/10.1145/971697.602266
https://doi.org/10.1016/j.isprsjprs.2013.01.014
https://doi.org/10.1016/j.isprsjprs.2013.01.014
https://doi.org/10.1080/00401706.1968.10490580
https://doi.org/10.17706/jcp.14.3.170-183
https://doi.org/10.1145/3234941
https://doi.org/10.1007/s10707-018-0329-2
https://doi.org/10.1007/s10707-018-0329-2
https://doi.org/10.1109/69.824609
https://doi.org/10.1007/3-540-48482-5_11
https://doi.org/10.1007/s10707-016-0286-6
https://doi.org/10.1007/s10707-016-0286-6

	INTRODUCTION
	RELATED WORK
	Valid-Time Index Structures
	Interval B+ Tree
	I2B+ Tree & IB+ Tree
	Main differences
	Key factors impacting performance differences

	EXPERIMENTS, RESULTS AND DISCUSSION
	Synthetic Datasets
	Experimentation
	Insertion Comparison
	Deletion Comparison

	CONCLUSION
	REFERENCES

