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Soil moisture estimation is crucial for various applications, including precision agriculture, 

hydrology, and climate studies. Synthetic Aperture Radar (SAR) data has proven to be highly 

effective for soil moisture prediction due to its capability to provide high-resolution, all-weather 

observations. This study explores the potential of two machine learning techniques, first Support 

Vector Regression (SVR) and second one Random Forest Regression (RF), for soil moisture 

prediction using SAR-derived features. This research utilizes the Sentinel-1 SAR imagery, 

validated soil moisture data products given by NASA Soil Moisture Active Passive (SMAP) 

Mission which is a NASA satellite observatory focused on measuring and mapping soil moisture, 

and used the auxiliary data derived from Google earth engine. Feature selection techniques are 

applied to enhance model performance, and hyperparameter tuning is conducted to optimize 

predictive accuracy. The performance of SVR and RF models is evaluated based on correlation 

(r), Root Mean Square Error (RMSE), and R² scores. Experimental results indicate that both 

SVR and RF models demonstrate strong predictive capabilities, but the RF model exhibits 

slightly superior performance in terms of generalization and resistance to overfitting. 

Keywords: Soil Moisture Prediction, Machine Learning, Synthetic Aperture Radar (SAR), 

Random Forest, Support Vector Regression, Sentinel-1. 

 

1. INTRODUCTION 

Soil moisture is important for environmental and agricultural applications such as precision agriculture, hydrological 

modelling, drought monitoring, and climate change assessment [1]. Traditional ground-based soil moisture 

measurements are accurate but are often spatially sparse and temporally inconsistent [2]. While remote sensing 

technologies like Synthetic Aperture Radar (SAR) can be used for large-scale soil moisture mapping due to their high 

spatial resolution and all-weather, day-night imaging capabilities. SAR systems, operating in the microwave 

spectrum, are sensitive to soil moisture content because of the contrast in dielectric properties between dry soil and 

water [3]. This sensitivity enables the detection of variations in soil moisture through backscatter coefficients [4]. 

Studies have demonstrated that increases in soil moisture result in significant increases in radar backscatter, making 

SAR a potent tool for soil moisture monitoring [5]. 

This study investigates the application of advanced machine learning algorithms, specifically Support Vector 

Regression (SVR) and Random Forest Regression (RF), to estimate surface soil moisture using backscattering 

coefficient (σ0) which is derived from Sentinel-1 SAR data. Sentinel-1, operated by the European Space Agency (ESA), 

provides dual-polarized (VV and VH) C-band SAR imagery that is sensitive to surface roughness and dielectric 

properties, both affected by soil moisture [6]. The study selected is Beed district located in Maharashtra, India. 

To build predictive models, the SAR-derived inputs are combined with validated reference soil moisture data 

obtained from the NASA Soil Moisture Active Passive (SMAP) mission. SMAP provides global soil moisture estimates 

at a coarse resolution, which are resampled and spatially matched with the SAR data [7]. Additional auxiliary 

variables, such as MODIS Temperature, Soil Moisture (from SMAP), DEM, RVI and Soil Dielectric Constant using 

simplified Dubois model, are used to improve model accuracy. Furthermore, the feature selection method like 
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correlation analysis, is used to identify the most relevant input variables [8]. Then hyperparameter tuning is 

conducted using grid search and cross-validation techniques to optimize each model’s performance [9]. The models 

are trained and tested across multiple geographical locations to evaluate their robustness. Finally, Model evaluation 

is carried out using statistical metrics including the Pearson correlation coefficient (r) which measures the linear 

relation between two continuous variables, root mean square error (RMSE) which gives the average magnitude of the 

error between predicted and observed values also RMSE is very sensitive to large errors, and the coefficient of 

determination (R²) which shows how well model’s predictions match the actual soil moisture values [10]. 

By integrating advanced modeling techniques like SVR and RF with SAR observations, this study seeks to improve 

the accuracy of soil moisture predictions and develop a valuable tool for farmers and agricultural planners. The 

results will contribute to more efficient irrigation scheduling, better water resource management, and ultimately 

enhanced agricultural productivity [11]. Furthermore, this research emphasizes the potential of remote sensing in 

combined with ML to address challenges in precision agriculture which offers a scalable and cost-effective solution 

for soil moisture monitoring on a regional scale. This approach advances our understanding of soil moisture 

dynamics and leverages cutting-edge technology which helps to develop a sustainable agricultural practice. 

The study uses two machine learning models to predict soil moisture from the sentinel-1A SAR backscattering data. 

The models are Support Vector Regression (SVR) and Random Forest Regression (RFR) where both SVR and RFR 

offer unique strengths in modeling the complex relationship between SAR backscattering coefficients (σ⁰) and soil 

moisture [12, 13]. 

2. STUDY AREA AND DATASET 

2.1 Study Area: 

In this study, we focus on the Beed district, located in Maharashtra, India, which encompasses approximately 10,693 

square kilometers. The region experiences a semi-arid climate with annual rainfall ranging from 600 to 800 

millimeters, primarily during the southwest monsoon season. The predominant soil types include black soil, red soil, 

and alluvial soil, supporting the cultivation of crops such as cotton, pulses, sugarcane, and soybeans.  

 

Figure 1. Study Area 

2.2 Dataset: 

The following Sentinel SAR data is used for the study, dating from 1st January 2023 to 30th January 2023. 

S1A_IW_GRDH_1SDV_20230101T005459_20230101T005524_046583_059524_C538 
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S1A_IW_GRDH_1SDV_20230101T005524_20230101T005549_046583_059524_B5A4 

S1A_IW_GRDH_1SDV_20230108T004653_20230108T004718_046685_059889_2E9C 

S1A_IW_GRDH_1SDV_20230125T005458_20230125T005523_046933_05A0F3_A491 

S1A_IW_GRDH_1SDV_20230125T005523_20230125T005548_046933_05A0F3_52DF 

After mosaicking all these data sets, we have finally got the subset of our study area. 

For auxiliary data, we have used the Google Earth Engine (GEE). Using GEE, we have calculated MODIS 

Temperature, Soil Moisture (from SMAP), DEM, RVI and calculated the Soil Dielectric Constant using simplified 

Dubois model for which soil moisture from SMAP is used. 

3. METHODOLOGY 

The present study focuses on using Sentinel-1A observed data for soil moisture prediction. Sentinel 1A is a European 

Space Agency (ESA) satellite equipped with SAR sensor which uses C band, so it is used to acquire images [14]. Using 

these images backscattering coefficients (σ⁰) were calculated for σ0VV (vertical transmit and receive polarization), 

σ0VH (vertical transmit and horizontal receive polarization), σ0VV + σ0VH, and the Radar Vegetation Index (RVI) is 

also calculated [14]. RVI (Equation 1) serves as an alternative to NDVI and is important for monitoring vegetation 

health [15]. 

Backscattering values are used to calculate RVI because they are very sensitive towards soil moisture [16]. 

                                                            RVI= 
4×σ0VH

σ0VV + σ0VH,
                                                                     (1) 

 

3.1 SAR Data acquisition and processing: 

The Sentinel 1A SAR data was acquired from the Copernicus Data Platform for the study area over the area of interest 

(AOI). The pre-processing involved several essential steps, including radiometric correction, thermal noise removal, 

calibration, the orbit file, speckle filtering, geometric correction, and terrain correction [17]. Following these steps, 

the backscattering coefficients (σ0VV, σ0VH, and σ0VV + σ0VH) were extracted from the preprocessed Sentinel-1 

images of the study area. All pre-processing tasks were performed using the SNAP software [18]. The Radar 

Vegetation Index (RVI) is calculated using σ0VV and σ0VH, as previous research has demonstrated a strong 

correlation between RVI and soil moisture (SM). Sentinel-1 data, with its short temporal resolution, is good for land 

studies due to its short revisit time, this short revisit cycle makes Sentinel 1A highly suitable for monitoring dynamic 

surface processes like soil moisture [19]. 

These datasets are then used as inputs for machine learning models, namely support vector regression (SVR) and 

random forest (RF), to predict soil moisture. Then the data is split into training (80%) and testing (20%) sets [20]. 

Model performance is evaluated by comparing predicted soil moisture values against reference data (SMAP) using 

the correlation coefficient (r), root mean square error (RMSE), and R-squared (R²) metrics [21, 22, 23].  
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Fig. 2. Flowchart depicting the ML-based soil moisture predictive modeling used in this study. 

3.2 Machine learning algorithms: 

The main objective of the machine learning models is to estimate soil moisture using the backscattering coefficient 

(σ⁰) which is obtained from Sentinel 1A SAR data, gives imformation about surface characteristics and soil properties 

like radar vegetation index (RVI) which separate the vegetation signal from the soil signal [24]. Also additional model 

input like MODIS-derived land surface temperature which shows how thermal environment can impact soil moisture 

[25], soil moisture information from the SMAP satellite which is used as a reference data for validation [26, 27], a 

digital elevation model (DEM) that gives topographic imformation [28] and the soil dielectric constant which is 

estimated using the simplified Dubois model are also used to train the models [29]. 

Supervised machine learning was chosen because it learns the relationship between input features and reference soil 

moisture values using training data. This is useful for remote sensing applications because in a remote sensing the 

development of machine learning model is based on pairing ground based soil moisture measurements (here SMAP 

data is used) with corresponding satellite and environmental observations. Once trained these machine learning 

models can predict soil moisture where direct observation is not possible which makes these model highly valuable 

for large scale soil moisture monitoring [30]. In the present study, two types of ML models support vector regression 

(SVR) and random forest regression (RFR) are used to estimate and predict the Soil Moisture over the study area. 

3.2.1 Support vector Regression (SVR): 

As given by vapnik V. (1998), the goal of SVR is to find a function 𝑓(𝑥) that approximates the relationship between 

input features (e.g., SAR backscatter coefficients, RVI, LST, DEM, Soil Dielectric) and the target variable (soil 

moisture). 

For dataset with inputs 𝑥𝑖 ∈ ℝ𝑛 (e.g. SAR features) and output 𝑦𝑖  (Soil moisture) the SVR tries to learn. So, the linear 

regression function is defined as [31], 

𝑓(𝑥) = ⟨w, x⟩  + 𝑏                                                                   (2) 

Where, x represents the feature vector (e.g., σ⁰ VV, σ⁰ VH, RVI, DEM, LST, Soil Dielectric), 𝑤 is the weight vector 

that defines the direction of the regression function, 𝑏 is the bias term and ⟨𝑤, 𝑥⟩ is the inner product. 

The model is trained such that predictions remain within an ε-insensitive margin, meaning deviations smaller than 

ε from the actual soil moisture are not penalized. 

The optimization problem for SVR is: 
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minw,b,ξ,ξ𝑖
∗  

1

2
 ‖w‖2 c ∑(ξi +  ξ i

∗) 

n

i=1

(3) 

Subject to, 

yi − ⟨w, 𝑥𝑖⟩ − b) ≤ ε + ξi
                                                          (4) 

⟨w, 𝑥𝑖⟩ + b − yi ≤ ε + ξi
∗                                                         (5) 

𝜉𝑖
 , 𝜉𝑖

∗ ≥ 0 for all i                                                               (6) 

Where, 𝐶 is the regularization parameter that balances model complexity and prediction error, 𝜖 defines the error 

tolerance margin and 𝜉𝑖
 , 𝜉𝑖

∗are slack variables that allow certain data points to fall outside the margin. 

Since soil moisture retrieval is nonlinear (due to mixed effects of vegetation and soil dielectric properties), SVR uses 

a kernel function 𝐾(𝑥𝑖 , 𝑥𝑗) to project the data into a higher-dimensional feature space [32]. 

The regression function is given as, 

𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑖 , 𝑥) + 𝑏𝑛

𝑖=1                                                (7) 

Where 𝑓(𝑥) is predicted soil moisture, 𝛼𝑖 , 𝛼𝑖
∗ shows weights (decide importance of each training point), 𝑥𝑖 istraining 

data point (features like σ⁰VV, σ⁰VH, RVI, etc.), 𝑥 is new input data for prediction, 𝐾(𝑥𝑖 , 𝑥) is kernel function 

(measures similarity between training data and input) and 𝑏 is bias term (adjusts the prediction up or down). 

Now The Radial Basis Function Kernel is given as, 

𝐾(𝑥𝑖 , 𝑥) = exp(−y‖xi − x‖2)                                                    (8) 

Where 𝐾(𝑥𝑖 , 𝑥) shows similarity score between training point 𝑥𝑖 and new input 𝑥, ‖xi − x‖2is a squared distance 

between the two points, y is the parameter that controls how far the influence of training point spreads. If two points 

are very close, 𝐾(𝑥𝑖 , 𝑥) ≈ 1 and if they are far apart, 𝐾(𝑥𝑖 , 𝑥) ≈ 0. 

This kernel captures complex nonlinear dependencies between SAR backscatter and soil moisture, making SVR 

well-suited for remote sensing applications [31, 32]. 

3.2.2 Random Forest Regression (RFR): 

Random Forest Regression (RFR), first introduced by Breiman (2001), was applied in this study to estimate soil 

moisture using a diverse set of remote sensing and environmental inputs. Unlike a single decision tree, which often 

suffers from overfitting, RFR constructs an ensemble of trees and averages their predictions, which substantially 

improves generalization performance. Each tree is trained on a bootstrap sample of the dataset, represented as, 

𝐷𝑖 = {(𝑥𝑖 , 𝑦𝑖), (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛)}                                                  (9) 

where 𝑥 represents the predictor variables (Sentinel-1 SAR backscatter coefficients, MODIS-derived land surface 

temperature, radar vegetation index, digital elevation model, and soil dielectric constant from the Dubois model), 

while 𝑦 denotes the reference soil moisture observations from SMAP. By using sampling with replacement, every tree 

receives a slightly different subset of the training data, which increases diversity and robustness in the forest. 

Within each tree, a subset of features is randomly selected at every split. The best split is chosen by minimizing the 

prediction error in terms of the residual sum of squares, expressed as 

𝑗∗, 𝑡∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑗,𝑡 [ ∑ (𝑦𝑖 − 𝑦̅𝑅1)2 + ∑ (𝑦𝑖 − 𝑦̅𝑅2)2

𝑥𝑖∈𝑅2(𝑗,𝑡)𝑥𝑖∈𝑅1(𝑗,𝑡)

]                         (10) 

Here, 𝑅1 and 𝑅2 are the partitions created by a candidate split, and 𝑦̅𝑅 is the average soil moisture in region 𝑅. The 

leaf node prediction for each tree is then computed as the mean value of all training samples that fall into that node, 
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ŷ𝑅 =
1

|𝑅|
∑ 𝑦𝑖

𝑥𝑖∈𝑅

                                                                          (11) 

Once all trees are built, the model combines their results by averaging the outputs, which reduces variance and 

stabilizes predictions. The aggregated prediction for an input 𝑥 is given by 

ŷ(𝑥) =
1

𝐵
𝑡𝑏(𝑥)                                                                           (12) 

where 𝐵 is the total number of trees, and 𝑡𝑏(𝑥) is the prediction of the 𝑏𝑡ℎ tree. 

Breiman (2001) further demonstrated that the generalization error of a random forest depends on two factors, the 

strength of individual trees (𝑠) and the correlation between them (𝜌). This relationship is expressed as 

𝐸 = ρ
1−𝑠2

𝑠2                                                                                (13)  

The equation highlights that RFR achieves better accuracy when the trees are strong predictors while remaining 

weakly correlated with one another. Beyond prediction, Random Forest provides valuable insights into variable 

importance [33]. 

The Random Forest Regression (RFR) regression model is developed to predict soil moisture by leveraging 

multisource remote sensing and environmental variables, including Sentinel-1 backscatter coefficients, MODIS 

derived temperature, digital elevation data, radar vegetation index (RVI) and dielectric constant based on the Dubois 

model. Finaly to optimize model performance, hyperparameters were tuned using a five-fold cross-validated grid 

search. The number of trees, maximum depth, and number of features considered at each split were carefully adjusted 

to strike a balance between bias and variance, thereby ensuring reliable and robust soil moisture predictions. 

4. RESULT AND DISCUSSION 

4.1 Analysis of the Auxiliary datasets and backscattering: 

The relationships between soil moisture (SM) and radar-derived parameters, including the Modis temperature, RVI, 

backscattering VV, backscattering VH, dielectric constant, and DEM are shown in the scatterplot matrix (Figure 3). 

In scatterplot the relationships between the variables and their corresponding correlation coefficients are displayed 

in each cell. 

This pair plot visualizes the relationships among seven geospatial and environmental variables: Backscatter VH, 

Backscatter VV, DEM (Digital Elevation Model), Dielectric Constant (Dubois Model), RVI (Radar Vegetation Index), 

Temperature, and Soil Moisture. On the diagonal, each variable's histogram shows its individual distribution. Below 

the diagonal, scatter plots with regression lines shows the pairwise relationships, while above the diagonal, the 

Pearson correlation coefficients (r) quantify the strength and direction of linear relationships. The strongest positive 

correlation is observed between dielectric constant and RVI (r = 0.89), indicating a high degree of association likely 

due to their mutual sensitivity to vegetation and moisture. Backscatter VV is strongly correlated with both dielectric 

constant (r = 0.76) and RVI (r = 0.75), demonstrating its effectiveness in measuring vegetation and moisture content. 

A moderate positive correlation exists between Backscatter VH and  
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Fig. 3. Relationship between SMAP Soil Moisture, SAR Backscatter, and Auxiliary Features 

Backscatter VV (r = 0.67), suggesting that both polarization channels capture related surface features. On the other 

hand, DEM exhibits a strong negative correlation with soil moisture (r = -0.66), indicating that higher elevations are 

generally associated with lower soil moisture levels. Similarly, temperature and soil moisture show a weak negative 

correlation (r = -0.25), reflecting drier conditions with increasing temperature. Other weaker correlations include 

Backscatter VH with Dielectric Constant (r = 0.43), RVI with Temperature (r = 0.17), and DEM with Temperature (r 

= 0.12). Several pairs show negligible correlation, such as Backscatter VH vs. DEM (r = -0.06), Backscatter VH vs. 

RVI (r = 0.14), Backscatter VV vs. DEM (r = -0.04), and Backscatter VH vs. Soil Moisture (r = 0.01). 

Overall, the plot reveals valuable insights for environmental modeling. Dielectric Constant, RVI, and Backscatter VV 

are closely interrelated and may serve as effective predictors of vegetation or moisture, while DEM and temperature 

influence soil moisture inversely. These relationships are essential for hydrological, ecological, and remote sensing 

analyses. 

4.2 Assessment of Machine Learning Model Performance: 

A Taylor diagram (Figure 4) visually summarizes how well a model’s predictions match observed data by combining 

three key statistics: the standard deviation (indicating variability), the correlation coefficient (measuring pattern 

similarity), and the centered root mean square difference (CRMSD) (representing the error in pattern shape). In this 

polar plot, models closer to the reference point with matching standard deviation and a small angle (high correlation) 

are considered more accurate. Taylor diagrams provide a concise and insightful evaluation of both accuracy and 

variability in a single view. 

Taylor diagrams illustrate the performance of Support Vector Regression (SVR) and Random Forest Regression 

(RFR) models for soil moisture prediction on both training and testing datasets. Each point represents a model’s 

standard deviation (SD), centered root mean square difference (CRMSD) and correlation coefficient relative to 
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observed soil moisture values. For the training data, RF achieved a correlation of 0.94, an SD of 0.0105, and a CRMSD 

of 0.0038, whereas SVR showed a correlation of 0.87, an SD of 0.0106, and a CRMSD of 0.0048. On the test data, 

RF maintained superior generalization with a correlation of 0.90.  

Standard Deviation of 0.0104 and CRMSD of 0.0055, compared to SVR’s correlation of 0.82, SD of 0.0095, and 

CRMSD of 0.0067. The reference point (black dot) denotes the observed data with SD values of 0.0123 (train) and 

0.0142 (test). These results indicate that RF gives more accurate and stable predictions across both datasets. 

 

Fig. 4. Visualization of ML Model Performance via Taylor Diagrams 

4.3 Evaluation of Machine Learning Models Using Statistical Metrics: 

Table 1. Statistical Evaluation of the ML Models Implemented in This Study. 

ML 

Models 

used 

Training Results Validation Results 

r RMES (%) R-squared Bias (%) r RMES (%) R-squared Bias (%) 

SVR 0.85 3.41 0.72 0.29 0.75 4.93 0.55 0.55 

RF 0.95 2.17 0.89 -0.001 0.72 4.97 0.52 -0.09 

 

As shown in Table 1, Support Vector Regression (SVR) and Random Forest Regression (RFR) were evaluated to 

predict soil moisture based on backscatter and ancillary environmental features. For the training dataset, the SVR 

model achieved a correlation coefficient (r) of 0.85, RMSE of 3.41%, R² of 0.72, and a bias of 0.29%. During 

validation, its performance slightly decreased, with r = 0.75, RMSE = 4.93%, R² = 0.55, and bias = 0.55%. In contrast, 

the RF model demonstrated superior performance during training, with r = 0.95, RMSE = 2.17%, R² = 0.89, and a 

negligible bias of -0.001%. For validation, the RF model maintained competitive accuracy, recording r = 0.72, RMSE 

= 4.97%, R² = 0.52, and a bias of -0.09%. Overall, although both models showed strong performance, the Random 

Forest model demonstrated slightly superior training accuracy and generalization capability compared to SVR. 

4.4 Assessment of the ML models: 

Figure 5 illustrates the comparison between predicted and observed soil moisture (SM%) values for the two machine 

learning models, Support Vector Regression (SVR) and Random Forest Regression (RFR), across both training and 

testing datasets. The solid black one-to-one line represents ideal prediction accuracy, where predicted values 

perfectly match observed values. In the training data plot, both models demonstrate reasonably good performance, 

with RF outperforming SVR (RMSE = 0.004, R² = 0.887 vs. RMSE = 0.007, R² = 0.716), as evidenced by a tighter 
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clustering of RF predictions around the one-to-one line. This suggests that RF effectively captured underlying 

patterns in the training set. In the testing dataset, the plots show a wider dispersion of points for both models, 

reflecting a decrease in prediction accuracy on unseen data. The performance drop is notable for both models (RF: 

R² = 0.523, SVR: R² = 0.552), highlighting potential generalization challenges. These discrepancies underscore the 

need for model tuning or additional validation approaches to ensure reliability in practical applications, especially 

where accurate soil moisture prediction is critical for environmental monitoring and agricultural planning. 

 

Fig. 5. Combined ML performance of training and testing 

5. CONCLUSION 

This study explored the predictive capability of radar backscatter and auxiliary environmental datasets for soil 

moisture estimation using machine learning techniques. The analysis of input variables revealed meaningful 

relationships, particularly the strong positive correlations among dielectric constant, radar vegetation index (RVI), 

and VV backscatter, underscoring their importance in moisture and vegetation modeling. Conversely, the Digital 

Elevation Model (DEM) and temperature exhibited inverse relationships with soil moisture, aligning with expected 

hydrological patterns in higher and warmer regions. 

Evaluation through Taylor diagrams and statistical measures showed that RFR achieved superior performance 

compared to SVR in both training and testing phases. With improved correlation, reduced error, and lower bias, RFR 

proved more accurate and reliable in handling nonlinear relationships compared to SVR. However, both models 

exhibited performance declines during validation, emphasizing the need for further tuning and possibly 

incorporating additional features or ensemble strategies to enhance generalization. 

Visual assessments of predicted versus observed values show RF's superior pattern capture in training data, though 

testing accuracy highlighted some generalization limitations. This study shows that the fusion of radar derived data 

and environmental variables enhances the accuracy of machine learning based soil moisture estimation. The findings 

support the broader application of RF-based approaches in environmental monitoring and precision agriculture 

while also suggesting the need for repeated refinement to ensure robust model deployment under varied conditions. 
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