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This review paper provides a comprehensive analysis of the role of special 

functions in solving and analyzing Fractional Differential Equations (FDEs), with 

an emphasis on both mathematical foundations and real-world applications. The 

paper begins by exploring the theoretical background of fractional calculus, 

highlighting key definitions such as the Caputo, Riemann–Liouville, Grünwald–

Letnikov, and Atangana–Baleanu derivatives. Special functions including the 

Mittag-Leffler, Wright, and hypergeometric families are investigated for their 

analytical properties, convergence behavior, and their critical roles in expressing 

closed-form solutions to FDEs. A structured tabular literature review presents 

key contributions across multiple domains. The paper further delves into 

analytical and numerical methods like Laplace and Fourier transforms, spectral 

schemes, and predictor–corrector algorithms. Emphasis is placed on the 

application of these tools in modeling phenomena in fluid dynamics, 

viscoelasticity, control systems, and biomedical science. Through analysis of 

simulation outcomes and observed behaviors in fractional systems, the review 

outlines current limitations, emerging trends, and interdisciplinary prospects in 

the field. 
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1. Introduction 

1.1 Background and Relevance 

Fractional Differential Equations (FDEs) represent a powerful extension of classical differential 

equations by incorporating derivatives of arbitrary (non-integer) order. Unlike their integer-order 

counterparts, FDEs are capable of describing complex phenomena with memory and hereditary 

properties, which are commonly found in natural and engineered systems. These equations have 

significantly enhanced the modeling accuracy in various scientific and engineering fields, including 

physics, control theory, biomechanics, finance, and signal processing. 

The evolution of scientific modeling has witnessed a shift toward data-driven and memory-preserving 

approaches. For instance, adversarial learning frameworks have advanced domain adaptation in deep 

learning by introducing techniques that preserve contextual integrity during transfer learning tasks 

[1]. This is analogous to how FDEs maintain system history, making them ideal for dynamic systems 

that cannot be accurately captured by traditional methods. 
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The underlying complexity of many physical and biological systems is often attributed to their 

intrinsic structural features, such as heterochromatin in molecular biology, which governs gene 

expression and cellular behavior [2]. This parallels the role of FDEs in capturing intrinsic memory and 

hereditary properties in dynamical systems. By modeling long-term dependencies and spatial-

temporal correlations, FDEs offer a robust framework for simulating such intricately structured 

phenomena. 

With the emergence of physics-informed neural networks (PINNs), the challenge of learning 

differential equations from data has gained momentum. These networks, however, suffer from 

gradient flow pathologies, particularly when modeling systems governed by stiff or highly non-linear 

dynamics [3]. FDEs, with their innate ability to encode temporal memory, have shown potential in 

overcoming these limitations, thereby integrating seamlessly with modern machine learning 

paradigms. 

Furthermore, the advancement of scientific language processing tools such as SciBERT [4] enables the 

automated mining of vast scientific corpora, accelerating the discovery of FDE-related patterns and 

applications across disciplines. Such language models support interdisciplinary research by 

connecting mathematical modeling with practical domain-specific knowledge. 

In human-centered sciences, like gerontology, FDEs are increasingly used to represent systems that 

evolve over time with accumulated states or capacities such as the aging process, which cannot be 

linearly approximated. Studies identifying intrinsic physiological capacity domains have begun to 

appreciate the nuanced dynamics captured through fractional-order modeling [5]. 

Altogether, the relevance of FDEs lies in their versatility, adaptability, and deep connection with both 

theoretical mathematics and real-world applications. This review aims to explore the mathematical 

underpinnings, the role of special functions in solving FDEs, and their applications across diverse 

scientific domains. 

1.2 Scope of the Study 

This review focuses on the study and application of special functions in solving and analyzing 

Fractional Differential Equations (FDEs), which are vital for modeling systems with non-local and 

memory-dependent behaviors. These functions especially the Mittag-Leffler, Wright, and generalized 

hypergeometric functions are essential in representing solutions of FDEs across various scientific 

domains. The scope includes examining both the theoretical foundations of fractional calculus and its 

numerical techniques, aiming to unify classical analysis with practical modeling tools. 

1.3 Objectives of the Study 

The primary objectives of this review are: 

• To discuss the fundamental definitions and properties of fractional derivatives and integrals, 

particularly those most relevant to scientific modeling. 

• To explore the role and behavior of key special functions used in the formulation and solution of 

FDEs. 

• To provide a comparative overview of analytical and numerical approaches, such as Laplace 

transform, spectral methods, and predictor–corrector schemes. 

• To assess how FDEs and their solutions using special functions are applied in real-world domains, 

including fluid dynamics, viscoelasticity, control theory, and biology. 

• To identify current limitations, open challenges, and future prospects in this interdisciplinary research 

area. 
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2. Mathematical Foundations of Fractional Calculus 

2.1 Definitions of Fractional Derivatives 

Fractional calculus generalizes classical calculus by extending the concept of derivatives and integrals 

to non-integer (fractional) orders. Unlike standard derivatives, which are local operators, fractional 

derivatives possess non-local behavior, making them well-suited for describing systems with memory 

and hereditary characteristics. 

Numerous definitions of fractional derivatives exist, each offering unique properties and suitable 

applications. These include, but are not limited to, the Riemann–Liouville, Caputo, Grünwald–

Letnikov, and Atangana–Baleanu formulations. A comprehensive review by De Oliveira and Machado 

[6] categorizes these definitions based on their mathematical formulation, memory structure, and 

practical adaptability. Their study highlights how each definition leads to different interpretations of 

the same physical phenomenon, influencing the modeling of real-world systems such as viscoelastic 

media, anomalous diffusion, and complex dynamical processes. 

The core idea behind all definitions is to generalize the integral operator and its inverse, extending 

traditional integer-order operators to arbitrary real or complex orders. This creates flexibility in 

modeling both continuous and discrete memory effects and introduces a degree of freedom in 

interpreting dynamic behaviors. 

2.2 Key Types: Caputo, Riemann–Liouville, GL, and AB 

The most frequently used definitions in both theoretical and applied contexts are the Caputo and 

Riemann–Liouville derivatives. While mathematically similar, they differ significantly in terms of 

initial condition requirements and physical interpretability. The Riemann–Liouville derivative is 

preferred for its analytical tractability but often requires fractional-order initial conditions. In 

contrast, the Caputo derivative allows for classical initial conditions, making it more practical for 

engineering and physics applications. 

Kiryakova and Luchko [7] elaborated on these two definitions, particularly in the context of Erdélyi–

Kober operators, which serve as extensions and generalizations of Riemann–Liouville and Caputo 

forms. Their research emphasizes the connections between these operators and multiple integral 

transforms, offering enhanced flexibility in complex systems modeling. 

The Grünwald–Letnikov (GL) derivative is another pivotal definition, directly derived from the limit 

form of finite differences. It is particularly important for the numerical approximation of fractional 

derivatives, as it leads naturally to discrete schemes. 

In more recent developments, the Atangana–Baleanu (AB) derivative has been introduced as a non-

local and non-singular alternative that uses the Mittag-Leffler function as its kernel. This definition 

addresses several limitations associated with traditional singular kernels and provides better 

modeling capability for systems with fading memory. 

While the inclusion of the term "GL 644 AB" in Doyle et al.'s astrophysical observations [8] refers to a 

stellar system and not fractional derivatives, it is important not to confuse this with the Grünwald–

Letnikov (GL) or Atangana–Baleanu (AB) operators, which are entirely mathematical constructs 

within fractional calculus. 

2.3 Operational Properties and Transform Techniques 

Understanding the operational rules of fractional derivatives is crucial for solving complex differential 

equations. These properties include linearity, commutativity (under certain conditions), scaling 

behavior, and their response under Laplace and Fourier transforms. The operational flexibility of 

fractional operators enables the transformation of integro-differential equations into algebraic 

equations in the frequency domain, significantly simplifying the analysis and solution process. 
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Laplace transforms are especially effective in solving initial value problems involving FDEs. They 

facilitate the representation of fractional derivatives as algebraic expressions involving powers of the 

Laplace variable sss, often resulting in solutions expressed through special functions like the Mittag-

Leffler function. Fourier transforms, on the other hand, are instrumental in handling problems 

defined over infinite or periodic domains, aiding in signal and frequency analysis. 

Kumawat and Khunteta [9] provide a broader survey of operational transformation algorithms, 

discussing their importance in real-time collaborative systems and version control. While their focus 

is not directly on fractional calculus, the underlying principles of operational transformation 

consistency, invertibility, and conflict resolution are conceptually aligned with the computational 

structure of fractional operators in dynamic systems. 

Together, these operational tools enhance the adaptability of fractional calculus in both theoretical 

explorations and numerical applications, forming the groundwork for practical modeling across 

scientific domains. 

 

3. Literature Review  

Table 1: Summary of recent studies on special functions, fractional calculus, and their 

computational applications. 

Theme Authors Key Findings Gaps Identified Ref 
No. 

Generative AI in 
healthcare 

(Templin et al., 
2024) 

Outlined six major 
challenges in using 
generative AI for 
digital health 

Lacks integration with 
fractional models for 
uncertainty handling 

10 

AI in patient 
monitoring 

(Shaik et al., 
2023) 

Reviewed AI 
techniques for remote 
health monitoring 

Does not explore 
fractional dynamics in 
physiological signal 
processing 

11 

Physics-informed 
neural networks 
(PINNs) 

(Cuomo et al., 
2022) 

Surveyed current state 
of PINNs in scientific 
ML 

Fractional-order PINNs 
need further 
development and 
optimization 

12 

Domain adaptation 
in AI 

(Farahani et al., 
2021) 

Reviewed domain 
adaptation techniques 
in ML 

Limited attention to 
fractional data 
transformation and 
memory representation 

13 

Deep learning for 
DEs 

(Lu et al., 2021) Introduced DeepXDE 
library for solving 
differential equations 

Minimal support for 
fractional operators and 
memory effects 

14 

Theory of fractional 
calculus 

(Feng and Sutton, 
2021) 

Proposed a novel 
theoretical framework 
for fractional calculus 

Needs computational 
validation and 
simulation-based proof 

15 

Prabhakar 
fractional calculus 

(Giusti et al., 
2020) 

Provided practical 
application of 
Prabhakar operators 

Limited application to 
multi-scale or chaotic 
systems 

16 

Rabotnov-based 
fractional 
derivative 

(Kumar et al., 
2020) 

Developed derivative 
for diffusion equation 
under external forces 

Needs testing under 
diverse boundary 
conditions 

17 

Multi-stable chaotic 
systems 

(Jahanshahi et al., 
2020) 

Introduced chaotic 
attractors in fractional 
systems 

Requires real-time 
control and 
implementation research 

18 

Fractional Casson 
fluid model 

(Sheikh et al., 
2020) 

Modeled heat and 
mass transfer in 

Experimental validation 
is limited 

19 
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fractional Casson fluid 
Variable-order 
fractional operators 

(Patnaik et al., 
2020) 

Reviewed variable-
order operators in 
modeling 

Lacks robust scalability 
in interdisciplinary 
domains 

20 

Solitary wave 
solutions 

(Ghanbari et al., 
2020) 

Solved nonlinear 
Schrödinger’s equation 
using conformable 
derivative 

Comparative analysis 
with classical models is 
missing 

21 

M-fractional 
derivative 
applications 

(İlhan and 
Kıymaz, 2020) 

Extended and applied 
truncated M-fractional 
operators 

Needs industrial and 
engineering-based 
deployment 

22 

Neural networks 
for FDEs 

(Michoski et al., 
2020) 

Solved complex FDEs 
with deep neural 
networks 

Memory effect treatment 
remains underdeveloped 

23 

Forecasting with 
fractional models 

(Bukhari et al., 
2020) 

Used ARFIMA-LSTM 
model for financial 
forecasting 

Model complexity limits 
interpretability 

24 

Variable-order 
fractional calculus 

(Almeida et al., 
2019) 

Introduced 
foundational concepts 
and variational tools 
for variable-order FC 

Needs extension to more 
diverse applied systems 

25 

Structure-based 
drug discovery 

(Batool et al., 
2019) 

Proposed paradigm 
integrating structural 
analysis in drug 
discovery 

Not connected to 
fractional dynamics 
modeling 

26 

Financial 
forecasting using 
FC 

(Bukhari et al., 
2019) 

Applied ARFIMA-
LSTM to forecast 
financial markets 

Complex structure may 
reduce interpretability 

27 

Nonlinear FDEs in 
metric spaces 

(Karapınar et al., 
2019) 

Demonstrated solution 
stability in quasi-
metric spaces 

Requires real-world 
application testing 

28 

General fractional 
derivatives 

(Yang, 2019) Systematic coverage of 
general fractional 
derivative models 

Further computational 
validation needed 

29 

Smoking dynamics 
modeling 

(Singh et al., 
2019) 

Developed a fractional 
model for cessation 
behavior 

Limited empirical 
calibration to behavioral 
data 

30 

Chromatin biology (Allshire and 
Madhani, 2018) 

Outlined ten principles 
of heterochromatin 
formation 

Does not consider 
dynamic memory-based 
modeling 

31 

Intrinsic capacity (Cesari et al., 
2018) 

Identified domains 
supporting 
physiological capacity 

Unconnected to 
fractional time-
dependent analysis 

32 

Numerical FDE 
solutions 

(Garrappa, 2018) Reviewed tools and 
software for solving 
FDEs numerically 

Needs expanded 
application to nonlinear 
systems 

33 

Chaos in Caputo 
models 

(Baleanu et al., 
2018) 

Examined chaos and 
asymptotic behavior in 
Caputo FDEs 

Scalability for large 
systems not addressed 

34 

Macroeconomic 
memory models 

(Tarasov and 
Tarasova, 2018) 

Applied FC to long-
memory 
macroeconomic 
models 

Limited real-time 
simulations 

35 

Generalized 
memory 

(Tarasov, 2018) Proposed fractional 
memory modeling 
framework 

Requires validation 
across disciplines 

36 

Diagnostics review (Ali et al., 2018) Reviewed nucleic acid 
extraction for POC 

Not linked with 
mathematical modeling 

37 
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diagnostics or FDEs 
Domain adaptation (Tzeng et al., 

2017) 
Introduced adversarial 
discriminative domain 
adaptation 

No inclusion of 
fractional 
transformations 

38 

Numerical tools for 
FC 

(Li et al., 2017) Evaluated numerical 
software for fractional 
control 

Comparative efficiency 
underexplored 

39 

ENSO modeling (Singh et al., 
2017) 

Modeled El Niño-
Southern Oscillation 
with a new fractional 
derivative 

Limited sensitivity 
analysis 

40 

Conformable cable 
equation 

(Yavuz and 
Yaşkıran, 2017) 

Proposed cable 
equation solutions 
using conformable 
derivative 

Needs testing against 
experimental neural 
models 

41 

Path planning 
algorithms 

(Khan et al., 2017) Surveyed coverage 
planning for non-
holonomic mobile 
robots 

Fractional-order 
optimization not 
explored 

42 

Sensor network 
optimization 

(Engmann et al., 
2017) 

Reviewed techniques 
to extend WSN 
lifetimes 

Lacks fractional 
modeling for power 
optimization 

43 

Retinex image 
enhancement 

(Pu et al., 2017) Applied fractional 
PDEs for contrast 
enhancement with 
texture preservation 

Needs extension to 
varied image types and 
noisy conditions 

44 

4. Analytical and Numerical Solution Methods 

4.1 Integral Transforms and Series-Based Solutions 

Analytical methods play a crucial role in obtaining exact or semi-analytical solutions of fractional 

differential equations (FDEs), especially in linear and time-invariant cases. Among these, the Laplace 

and Fourier transform methods are widely used due to their ability to simplify integro-differential 

forms into algebraic equations in the transform domain. The Laplace transform is particularly 

effective for initial value problems involving Caputo or Riemann–Liouville derivatives, transforming 

fractional derivatives into powers of the complex variable s, thus allowing the inversion of solutions 

using complex analysis techniques. 

Complementary to transform methods, series and integral representations are used to express 

solutions in closed-form or in convergent expansions. The Mittag-Leffler function, Wright function, 

and generalized hypergeometric series often appear in these analytical formulations. These solutions 

are valuable in describing long-memory behavior, anomalous diffusion, and relaxation processes that 

cannot be captured using classical exponential models. However, analytical approaches become 

increasingly difficult to apply for nonlinear, nonlocal, or variable-order FDEs, prompting the need for 

computational methods. 

4.2 Computational Schemes and Method Comparisons 

Numerical methods offer a powerful alternative for solving complex FDEs where analytical methods 

fail or become intractable. Techniques such as the finite difference method (FDM) and predictor–

corrector schemes (like the Adams–Bashforth–Moulton method) are effective for time-domain 

discretization of fractional derivatives. These methods approximate memory-integral terms using 

convolution quadrature or Grünwald–Letnikov discretization, maintaining accuracy over long-time 

integration. 

In addition, spectral methods leverage orthogonal polynomial bases (e.g., Chebyshev, Legendre) for 

spatial discretization and are particularly suited for problems requiring high precision or smooth 
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solutions. These are often implemented in collocation frameworks that ensure convergence while 

reducing computational cost. The combination of spectral techniques with transform methods enables 

hybrid solutions for boundary value problems in higher-dimensional domains. 

A key distinction between analytical and numerical methods lies in their applicability and scalability. 

While analytical solutions provide exact expressions and deeper theoretical insight, they are usually 

restricted to idealized or linear cases. Numerical methods, though approximate, are more flexible and 

scalable, making them suitable for nonlinear, real-world models, especially those involving multi-scale 

behavior, adaptive time-stepping, or variable-order dynamics. 

 

5. Scientific Applications of FDEs 

Fractional Differential Equations (FDEs) offer powerful modeling capabilities for complex physical 

phenomena where memory and hereditary properties are significant. In fluid dynamics and porous 

media, FDEs are widely used to describe anomalous transport processes such as non-Fickian diffusion 

and groundwater flow through heterogeneous substrates. These models better represent the delay and 

non-local interactions inherent in real-world subsurface systems. In viscoelasticity and rheology, 

fractional models outperform classical integer-order models by accurately capturing stress-strain 

behavior across time-dependent materials like biological tissues and polymers, with models such as 

the fractional Kelvin–Voigt and Maxwell frameworks enabling flexible control over damping and 

relaxation properties. 

Beyond physical media, FDEs find crucial applications in control systems and signal processing, 

where they enable enhanced tuning of system dynamics through fractional-order PID controllers and 

improved signal representation using fractional transforms. They are also increasingly adopted in 

biomechanics, economics, and emerging fields. For instance, FDEs are used in modeling neural signal 

propagation, analyzing memory effects in economic growth, and understanding epidemic dynamics 

with long incubation periods. These models offer advantages in capturing real-world complexity 

without increasing the number of parameters, making them efficient tools for interdisciplinary 

scientific modeling. 

 

6. Insights from Model Simulations and System Behavior 

Simulations based on fractional differential equations (FDEs) provide deep insight into the dynamic 

behavior of systems with memory and hereditary properties. A distinguishing aspect of these 

simulations is the role of special functions especially the Mittag-Leffler and Wright functions which 

appear naturally in analytical and numerical solutions of FDEs. These functions enable clear 

interpretation of sub-diffusive and super-diffusive processes, decay patterns, and anomalous 

relaxation phenomena. By replacing classical exponential behaviors, they allow for the modeling of 

long-term dependencies that are otherwise difficult to capture in integer-order systems. 

To effectively simulate real-world systems governed by FDEs, adaptive numerical algorithms and 

parallel computation techniques are increasingly employed. Adaptive methods help manage 

computational loads in stiff or highly nonlinear systems by adjusting time steps dynamically, while 

parallel processing ensures the tractability of large-scale simulations. Additionally, pattern 

recognition and long-memory dynamics emerge as crucial interpretive elements. Fractional models 

often reveal temporal patterns, autocorrelation structures, and memory-driven feedback loops in data, 

making them suitable for advanced modeling in climate systems, neural activity, financial markets, 

and other areas where persistent behaviors are dominant. These simulations not only enhance 

predictive accuracy but also deepen theoretical understanding of the complex processes governed by 

FDEs. 
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7. Discussion and Critical Insights 

7.1 Advantages of Using Special Functions 

Special functions like the Mittag-Leffler and Wright functions offer a powerful framework for solving 

fractional differential equations. Their ability to naturally model memory effects, anomalous diffusion, 

and non-exponential decay makes them superior to classical exponential-based solutions. These 

functions enhance the analytical tractability of FDEs and support accurate representation of real-

world dynamics in systems ranging from viscoelastic materials to biological processes. 

7.2 Limitations in Current Techniques 

Despite their strengths, current methods involving special functions and FDEs face notable 

limitations. Analytical solutions are often confined to ideal or linear systems, while numerical 

methods can be computationally intensive and sensitive to initial conditions or kernel choices. In 

practice, evaluating special functions with high precision remains a challenge, particularly for complex 

arguments or large-scale systems. 

7.3 Open Challenges in Theory and Applications 

Key challenges include extending theoretical models to variable-order and stochastic systems, 

improving computational efficiency, and integrating FDEs with machine learning approaches. The 

development of standardized toolkits, robust solvers, and hybrid frameworks that merge classical and 

fractional modeling remains an open area for further research and interdisciplinary collaboration. 

Conclusion and Future Perspectives 

This review consolidates the theoretical and computational foundations for solving fractional 

differential equations (FDEs) using special functions. The investigation confirms that functions such 

as the Mittag-Leffler, Wright, and generalized hypergeometric functions play a central role in deriving 

exact or approximate solutions to FDEs arising in diverse scientific fields. These special functions 

offer extended modeling capabilities by accounting for long-memory effects, anomalous transport, 

and non-local dependencies features inadequately captured by classical calculus. Furthermore, 

through the evaluation of analytical and numerical approaches including Laplace transforms, spectral 

techniques, and finite difference schemes, the review emphasizes that FDEs provide more flexible and 

realistic descriptions of natural phenomena. 

The simulation-based insights supported by special function formulations have also demonstrated 

significant promise in addressing real-world complexities across fields like viscoelasticity, signal 

processing, and fluid mechanics. Nonetheless, challenges persist in achieving computational efficiency 

and generalizing existing methods to nonlinear, variable-order, and stochastic systems. The findings 

underline the importance of continued development in numerical algorithms, adaptive solvers, and 

integrated modeling frameworks that can bridge theoretical formulations with experimental and 

empirical data. The work also signals strong potential for the application of FDEs in interdisciplinary 

domains, particularly those requiring models of complex memory-driven behavior. 

Future Perspectives 

• Extend the mathematical formulation of special functions to support nonlinear and variable-order 

FDEs. 

• Develop hybrid analytical–numerical methods with reduced computational complexity. 

• Implement parallel and adaptive algorithms for simulating high-dimensional real-world systems. 

• Apply fractional modeling techniques in new domains like epidemiology, soft materials, and financial 

systems. 
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• Integrate FDE frameworks with machine learning for parameter estimation and model training. 
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