2024, 9(4) e-ISSN: 2468-4376 https://www.jisem-journal.com/ ### **Research Article** # Soft Bipartite Graph: A New Bipartite Graph in the Horizon ### Supriya M D *1, P Usha 2 *1 Assistant Professor, Department of Mathematics, K S Institute of Technology, Bengaluru 2 Professor, Department of Mathematics, Siddaganga Institute of Technology, Tumakuru # Received: 18 Oct 2024 Revised: 10 Nov 2024 Accepted: 27 Dec 2024 Accepted: 27 Dec 2024 Revised: 27 Dec 2024 Revised: 30 Nov 2024 Accepted: 27 Dec 2024 Revised: 40 Nov 2024 Accepted: 50 Nov 2024 Accepted: 51 Nov 2024 Accepted: 52 Nov 2024 Accepted: 53 Nov 2024 Accepted: 54 Nov 2024 Accepted: 55 Nov 2024 Accepted: 56 Nov 2024 Accepted: 57 Ac ### 1. INTRODUCTION Many problems in engineering, medical science, economics and so forth, have various uncertainties. Molodtsov [5] introduced the concept of soft set theory as a mathematical tool for dealing with uncertainties. It has been shown that soft sets have potential applications in various fields. Graph theory was first introduced by the Swiss mathematician Leonhard Euler [2]. Since then, graph theory has become a most important part of combinatorial mathematics. A graph is used to create a relationship between a given set of elements. Each element can be represented by a vertex and the relationship between them can be represented by an edge. Graphs have been widely applied across various fields to model and solve real-world problems. The concept of soft graphs and their different operations can be seen in [7]. A number of generalizations of soft graphs are available in [1]. In this paper, we define a new graph valued function named as soft bipartite graph and some basic properties of this graph are investigated. Also, an application of this concept in the decision- making problem is presented. ### 2. Preliminaries In this section the basic ideas regarding graphs, soft sets and soft graphs are given. Definition 2.1 [6]: A graph G = (V, E) is a pair of sets, where V is a finite nonempty set called the vertex set and E is a set of unordered pairs of distinct vertices called the edge set. An edge of a graph that joins a vertex to itself is called a self-loop. More than one edge between a pair of vertices is called multigraph and these edges are called parallel edges. A graph is called a simple graph if it has no self-loops and multiple edges. Definition 2.2 [6]: A bipartite graph is a graph whose vertex set V can be partitioned into two sets V_1 and V_2 such that every edge connects a vertex in V_1 to one in V_2 . Definition 2.3 [4]: Let T be the set of parameters. A pair (K, T) is called a soft set over the set U of the universe, where $K: T \to P(U)$ is a set valued mapping and P(U) is the power set of U. Definition 2.4 [7]: A quadruple (G, λ, μ, T) is called a soft graph, where - i) G = (V, E) is a simple graph - ii) (λ, T) is a soft set over V - iii) (μ, T) is a soft set over E 2024, 9(4) e-ISSN: 2468-4376 https://www.jisem-journal.com/ ### **Research Article** $(\lambda(a), \mu(a))$ is a subgraph of G for all $a \in T$. Any undefined definition can be found in [3]. # 3. Soft bipartite graph In this section we introduce the concept of a Soft bipartite graph and its properties. **Definition:** Let $V = \{x_1, x_2, x_3, ..., x_k\}$ be a non-empty set (sample set). $V_1 = \{X_1, X_2, X_3, ..., X_n\}$ and $V_2 = \{Y_1, Y_2, Y_3, ..., Y_m\}$ be two partitions of V, which represents parameters, where $X_i \subseteq V$ and $Y_j \subseteq V$, $1 \le i \le n$, $1 \le j \le m$. The **soft bipartite graph** G_{sb} , is a bipartite graph with $V_1 \cup V_2$ as vertices and any two vertices $X_i \in V_1$ and $Y_j \in V_2$ are adjacent if and only if $X_i \cap Y_j \neq \emptyset$. **Note:** $X_i \cap Y_i$ gives the elements of V satisfying the parameters X_i and Y_i . # **Example:** Let $V = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7\}$ such that $V_1 = \{\{x_1, x_2, x_6\}, \{x_3, x_4\}, \{x_5, x_7\}\} = \{X_1, X_2, X_3\}$ and $V_2 = \{\{x_1\}, \{x_2\}, \{x_3, x_4\}, \{x_5, x_6\}, x_7\}\} = \{Y_1, Y_2, Y_3, Y_4\}.$ Then G_{sb} is: **Theorem 3.1:** G_{sb} has no isolated vertex. # Proof: Suppose G_{sb} has an isolated vertex $X_k \in V_1, 1 \le k \le n$ or $Y_k \in V_2, 1 \le k \le m$. Then $X_k \cap Y_j = \emptyset$, $\forall j$ or $X_i \cap Y_k = \emptyset$, $\forall i$ which is a contradiction to the fact that $V = X_1 \cup X_2 \cup \ldots \cup X_n = Y_1 \cup Y_2 \cup \ldots \cup Y_m$. **Theorem 3.2:** For any $v \in V(G_{sb})$, deg(v) = k if and only if $v \subseteq X_1 \cup X_2 \cup ... \cup X_k$ and $v \cap \{X_i\}_{i=k+1}^n = \emptyset$ Or $v \subseteq Y_1 \cup Y_2 \cup ... \cup Y_k$ and $v \cap \{Y_i\}_{i=k+1}^m = \emptyset$. ### **Proof:** By definition of G_{sb} , deg(v) = k if and only if the elements of v are distributed to $k'X_i$, say, $X_1, X_2, X_3, \ldots, X_k$ or $k'Y_j$, say, $Y_1, Y_2, Y_3, \ldots, Y_k$. Then $v \cap \{X_i\}_{i=1}^k \neq \emptyset$ and $v \cap \{X_i\}_{i=k+1}^n = \emptyset$. Therefore, $v \subseteq X_1 \cup X_2 \cup \ldots \cup X_k$ and $v \cap \{X_i\}_{i=k+1}^n = \emptyset$. If the elements of v are distributed to $k'Y_j$, then $v \cap \{Y_j\}_{j=1}^k \neq \emptyset$ and $v \cap \{Y_j\}_{j=k+1}^m = \emptyset$, that is, $v \subseteq Y_1 \cup Y_2 \cup \ldots \cup Y_k$ and $v \cap \{Y_j\}_{j=k+1}^m = \emptyset$. **Theorem 3.3:** For any $v \in V(G_{sh})$, deg(v) = 1 if and only if $X_i \cap Y_i = X_i(or Y_i)$ for some $X_i \in V_1, Y_i \in V_2$. # Proof: 2024, 9(4) e-ISSN: 2468-4376 https://www.jisem-journal.com/ ### **Research Article** Suppose deg(v) = 1, then $N(v = X_i(or Y_j)) = Y_j(or X_i)$ for some $X_i \in V_1$ and $Y_j \in V_2$, that is, $X_i \subseteq Y_j$ or $Y_j \subseteq X_i$. Hence $X_i \cap Y_j = X_i(or Y_j)$. Conversely, for any $v \in V(G_{sb})$, then $v = X_i(or Y_j)$. Suppose, $X_i \cap Y_j = X_i$ then $X_i \subseteq Y_j$ which implies $N(X_i) = Y_j$. So $deg(X_i) = 1$. Suppose, $X_i \cap Y_j = Y_j$ then $Y_j \subseteq X_i$ which implies $N(Y_j) = X_i$. So $deg(Y_j) = 1$. Hence for any $v \in V(G_{sb})$, deg(v) = 1. **Theorem 3.4:** G_{sb} is a complete bipartite graph if and only if $X_i \cap Y_i \neq \emptyset$, $\forall i, j$. ### Proof: G_{sb} is a complete bipartite graph if and only if $deg(X_i) = m$ for each $X_i \in V_1$ and $deg(Y_j) = n$ for $Y_j \in V_2$. Then by Theorem 3.2, $X_i \subseteq Y_1 \cup Y_2 \cup ... \cup Y_m$ and $Y_j \subseteq X_1 \cup X_2 \cup ... \cup X_n$, that is, $X_i \cap \{Y_j\}_{j=1}^m \neq \emptyset$ for each $1 \leq i \leq n$ and $Y_j \cap \{X_i\}_{i=1}^n \neq \emptyset$ for each $1 \leq j \leq m$. Hence $X_i \cap Y_i \neq \emptyset, \forall i, j$. **Corollary 3.4.1:** G_{sb} is a regular graph if and only if $|V_1| = |V_2|$ and $|V_1| \neq \emptyset$, $\forall i, j$. **Corollary 3.4.2:** G_{sb} is a biregular graph if and only if $|V_1| \neq |V_2|$ and $X_i \cap Y_j \neq \emptyset, \forall i, j$. **Theorem 3.5:** G_{sb} is a cycle if and only if $|V_1| = |V_2|$ and for any $v \in V(G_{sb})$, $v \subseteq (Y_1 \cup Y_2)$ or $(X_1 \cup X_2)$ and $v \cap [\{Y_j\}_{j=3}^m or\{X_i\}_{i=3}^n] = \emptyset$, where $X_i \in V_1$ and $Y_j \in V_2$, 1 ≤ $i \le n, 1 \le j \le m$. ### Proof: Any graph is a cycle graph if and only if deg(v)=2. Using Theorem 3.2, $v\subseteq \{X_1\cup X_2\}$ or $\{Y_1\cup Y_2\}$ and $v\cap [\{Y_j\}_{j=3}^m or\{X_i\}_{i=3}^n]=\emptyset$, for every $v\in V(G_{sb})$. Using Corollary 3.4.1, we get $|V_1|=|V_2|$. Hence the proof. **Theorem 3.6:** A graph G_{sb} is planar if and only if G_{sb} has no sub graph homeomorphic to $K_{3,3}$. ### Proof: Suppose G_{sb} is a planar graph. By Kuratowski's theorem, G_{sb} has no sub graph homeomorphic to either K_5 or $K_{3,3}$. Since G_{sb} is bipartite, it cannot have sub graph homeomorphic to K_5 . Hence the proof. **Theorem 3.7:** G_{sb} is disconnected if and only if $\{X_1 \cup X_2 \cup ... \cup X_i\} = \{Y_1 \cup Y_2 \cup ... \cup Y_j\}$ for i < n and j < m and $\{X_1 \cup X_2 \cup ... \cup X_i\} \cap \{Y_{i+1} \cup Y_{i+2} \cup ... \cup Y_m\} = \emptyset$ and/or $\{Y_1 \cup Y_2 \cup ... \cup Y_j\} \cap \{X_{i+1} \cup X_{i+2} \cup ... \cup X_n\} = \emptyset$. ### **Proof:** Suppose $\{X_1 \cup X_2 \cup ... \cup X_i\} = \{Y_1 \cup Y_2 \cup ... \cup Y_j\}$ for i < n and j < m and $\{X_1 \cup X_2 \cup ... \cup X_i\} \cap \{Y_{j+1} \cup Y_{j+2} \cup ... \cup Y_m\} = \emptyset$ and/or $\{Y_1 \cup Y_2 \cup ... \cup Y_j\} \cap \{X_{i+1} \cup X_{i+2} \cup ... \cup X_n\} = \emptyset$. Then, for any $i < n, X_i \subset \{Y_1 \cup Y_2 \cup ... \cup Y_j\}$ or for any $j < m, Y_j \subset \{X_1 \cup X_2 \cup ... \cup X_i\}$. So, each X_i is adjacent with Y_1 and/or Y_2 and/or Y_3 ...and/or Y_j . Similarly, Y_j is adjacent with X_1 and/or X_2 and/or X_3 ... and/or X_i . Therefore, $\{X_1, X_2, ..., X_i, Y_1, Y_2, ..., Y_j\}$ lies in one component of G_{sb} . Since $\{X_1 \cup X_2 \cup ... \cup X_i\} \cap \{Y_{j+1} \cup Y_{j+2} \cup ... \cup Y_m\} = \emptyset$, any of $X_1, X_2, ..., X_i$'s are not adjacent with any of $Y_{j+1}, Y_{j+2}, ..., Y_m$. Therefore G_{sb} is disconnected. Conversely, suppose G_{sb} is disconnected, then there exists $X_{i+1} \in V_1$ for $i+1 \le n$ such that $X_{i+1} \cap \{Y_1 \cup Y_2 \cup ... \cup Y_j\} = \emptyset$, j < m. Since G_{sb} has no isolates, there exists some Y_{j+1} such that $X_{i+1} \cap Y_{j+1} \neq \emptyset$ which implies that $\{X_{i+1}, Y_{j+1}\}$ lies in one component of G_{sb} . If there exists any other $X_{i+2} \in V_1$ such that $X_{i+2} \cap \{Y_1 \cup Y_2 \cup ... \cup Y_j\} = \emptyset$, then $X_{i+2} \cap Y_{j+1} \neq \emptyset$ and $X_{i+2} \cap Y_{j+2} \neq \emptyset$. So $\{X_{i+1}, X_{i+2}, Y_{j+1}, Y_{j+2}\}$ lies in same component of G_{sb} . 2024, 9(4) e-ISSN: 2468-4376 https://www.jisem-journal.com/ ### **Research Article** Therefore{ $X_{i+1} \cup X_{i+2}$ } \cap { $Y_1 \cup Y_2 \cup ... \cup Y_j$ } = \emptyset . If there exists some more vertices in V_1 which are not subsets of { $Y_1 \cup Y_2 \cup ... \cup Y_j$ }, then, { $Y_1 \cup Y_2 \cup ... \cup Y_j$ } \cap { $X_{i+1} \cup X_{i+2} \cup ... \cup X_n$ } = \emptyset .. Since the above intersection is empty, and G_{sb} has no isolates, { $Y_1, Y_2, ..., Y_j$ } \in V_2 must be adjacent with some { $X_1, X_2, ..., X_i$ } \in V_1 so that { $X_1 \cup X_2 \cup ... \cup X_i$ } = { $Y_1 \cup Y_2 \cup ... \cup Y_j$ } $\cup ... \cup Y_j$ } Similarly, we can prove that $\{X_1 \cup X_2 \cup ... \cup X_i\} \cap \{Y_{i+1} \cup Y_{i+2} \cup ... \cup Y_m\} = \emptyset$. **Theorem 3.8:** G_{sb} is a tree if and only if there is no $X_1 = \{a_1, a_2, a_3, ..., a_p\}$ and $X_2 = \{b_1, b_2, b_3, ..., b_q\}$, p, q < n such that $\{a_1, a_2, a_3, ..., a_i, b_1, b_2, b_3, ..., b_j\} \in Y_1$ and $\{a_{i+1}, a_{i+2}, ..., a_l, b_{j+1}, b_{j+2}, b_{j+3}, ..., b_k\} \in Y_2$ where $X_1, X_2 \in V_1$ and $Y_1, Y_2 \in V_2$, l, i < p and j, k < q. ### Proof: Suppose there exists $X_1 = \{a_1, a_2, a_3, \dots, a_p\} \in V_1, X_2 = \{b_1, b_2, b_3, \dots, b_q\} \in V_1, X_3 = \{c_1, c_2, c_3, \dots, c_r\} \in V_1, \dots$ such that $\{a_1, a_2, \dots, a_i, b_1, b_2, \dots, b_j, c_1, c_2, \dots, c_h\} \in Y_1,$ $\{a_{i+1}, a_{i+2}, \dots, a_l, b_{j+1}, b_{j+2}, \dots, b_k, c_{h+1}, c_{h+2}, \dots, c_g\} \in Y_2,$ $\{a_{l+1}, a_{l+2}, \dots, b_{k+1}, b_{k+2}, \dots, c_{g+1}, c_{g+2}, \dots, \} \in Y_3$ and so on. Then $X_1, Y_1, X_2, Y_2, \dots, X_1$ forms a cycle. Hence G_{sb} is not a tree. Conversely, suppose G_{sb} is not a tree which implies that G_{sb} has at least one cycle say $\{X_1, Y_1, X_2, Y_2, \dots, X_1\}$, where $X_i \in V_1$ and $Y_j \in V_2$ Then $a_1 \in X_1 \cap Y_1, a_2 \in X_1 \cap Y_2, b_1 \in X_2 \cap Y_1, b_2 \in X_2 \cap Y_2, \dots$ That is, $a_1, a_2 \in X_1, b_1, b_2 \in X_2, a_1, b_1 \in Y_1, a_2, b_2 \in Y_2$ and so on. In general, there exists $X_1 = \{a_1, a_2, a_3, \dots, a_p\}$ and $X_2 = \{b_1, b_2, b_3, \dots, b_q\}, p, q < n, \{a_1, a_2, a_3, \dots, a_i, b_1, b_2, b_3, \dots, b_j\} \in Y_1$ and $\{a_{i+1}, a_{i+2}, \dots, a_l, b_{j+1}, b_{j+2}, b_{j+3}, \dots, b_k\} \in Y_2$ Hence the proof. **Theorem 3.9:** Any connected graph G_{sb} is Eulerian if and only if for each $X_i \in V_1$ and $Y_j \in V_2$, $1 \le i \le n$, $1 \le j \le m$, the elements of X_i and Y_j belong to an even number of Y_j 's and X_i 's respectively. # Proof: Suppose G_{sb} is a Eulerian graph. Then $deg(v_i) = 2k$ for each $v_i \in V(G_{sb})$. For any $v_i \in V_1$, by Theorem 3.2, $v_i \cap \{Y_i\}_{i=1}^{2k} \neq \emptyset$ and $v_i \cap \{Y_i\}_{i=2k+1}^m = \emptyset$, which implies that, for any $v_i \in V_1$, the elements of v_i belong to an even number of Y_j 's and similar is the situation for any $v_i \in V_2$, $v_i \cap \{X_i\}_{i=1}^{2k} \neq \emptyset$ and $v_i \cap \{X_i\}_{i=2k+1}^m = \emptyset$. Therefore for any $v_i \in V_2$, the elements of v_i belong to an even number of X_i 's. Hence the proof. **Theorem 3.10:** G_{sb} is a ladder graph if and only if G_{sb} is connected with $|V_1| = |V_2| = n$ and for any $v_i \in V(G_{sb})$, $v_i \subset \{Y_{i-1} \cup Y_i \cup Y_{i+1}\}$ or $\{X_{i-1} \cup X_i \cup X_{i+1}\}$ for i = 1, 2, ..., n. ### Proof: Let G_{sb} be a ladder graph. Then $|V_1| = |V_2| = n$ and for any $v_i \in V(G_{sb})$, $$deg(v_i) = \begin{cases} 2 & \text{for } i = 1 \text{ and } i = n \\ 3 & \text{for } 1 < i < n \end{cases}$$ Therefore, $N(v_i) \in \{Y_i \cup Y_{i+1}\}$ or $\{X_i \cup X_{i+1}\}$ for i = 1, $N(v_i) \in \subset \{Y_{i-1} \cup Y_i \cup Y_{i+1}\}$ or $\{X_{i-1} \cup X_i \cup X_{i+1}\}$ for 1 < i < n, $N(v_i) \in \{Y_{i-1} \cup Y_i\}$ or $\{X_{i-1} \cup X_i\}$ for i = n. Hence $v_i \subset \{Y_{i-1} \cup Y_i \cup Y_{i+1}\}\ or\ \{X_{i-1} \cup X_i \cup X_{i+1}\}.$ Conversely, suppose G_{sb} is a connected graph with $|V_1| = |V_2| = n$ and for any $v_i \in V(G_{sb})$, $v_i \subset \{Y_{i-1} \cup Y_i \cup Y_{i+1}\}$ or $\{X_{i-1} \cup X_i \cup X_{i+1}\}$. Then $deg(v_i) \leq 3$ for i = 1, 2, ..., n. 2024, 9(4) e-ISSN: 2468-4376 https://www.jisem-journal.com/ ### **Research Article** For $i = 1, v_1 \subset \{Y_0 \cup Y_1 \cup Y_2\}$ or $\{X_0 \cup X_1 \cup X_2\}$. Since X_0, Y_0 do not exist in G_{sb} , $v_1 \subset \{Y_1 \cup Y_2\}$ or $\{X_1 \cup X_2\}$. Then $deg(v_1) = 2$ which implies that $deg(X_1) = deg(Y_1) = 2$. For 1 < i < n, $v_i \subset \{Y_{i-1} \cup Y_i \cup Y_{i+1}\}$ or $\{X_{i-1} \cup X_i \cup X_{i+1}\}$. Then $deg(v_i) = 3$ which implies that $deg(X_i) = 3 = deg(Y_i)$ for 1 < i < n. For $i=n, v_n\subset \{Y_{n-1}\cup Y_n\cup Y_{n+1}\}$ or $\{X_{n-1}\cup X_n\cup X_{n+1}\}$. Since X_{n+1} and Y_{n+1} do not exist in $G_{sb}, v_n\subset \{Y_{n-1}\cup Y_n\}$ or $\{X_{n-1}\cup X_n\}$. So $deg(v_n)=2$. That is, $deg(X_n)=deg(Y_n)=2$. Hence G_{sb} is a ladder graph. **Theorem 3.11**: If G_{sb} is a connected n-regular graph (n > 2) with $X_i \cap Y_j = \emptyset$ for i = j and $X_i \cap Y_j \neq \emptyset$ for $i \neq j$, then G_{sb} is a crown graph. ### Proof: Let G_{sb} be a connected n-regular graph with the given conditions. By corollary 3.4.1, $|V_1| = |V_2|$ and $X_i \in N(Y_j)$ or $Y_j \in N(X_i)$ for all $i \neq j$, which implies that any $X_i \in V_1$ is not adjacent with $Y_i \in V_2$ and X_i is adjacent with all other Y_i 's $(i \neq j)$ and vice versa. Therefore G_{sb} is a crown graph. **Theorem 3.12:** For any G_{sb} , $\gamma(G_{sb}) \leq Min\{|V_1|, |V_2|\}$. ### Proof: In G_{sb} , $V_1 = \{X_1 \cup X_2 \cup ... \cup X_i\}$ and $V_2 = \{Y_1 \cup Y_2 \cup ... \cup Y_i\}$ are dominating sets of G_{sb} . Thus, $\gamma(G_{sb}) \leq Min\{|V_1|, |V_2|\}$. # 4. Applications In this section, we present an application of the soft bipartite graph in a decision-making problem. The problem we consider is as given below. **4.1.** Suppose we are analyzing a dataset related to people undergoing tests for diabetes. Let there be eight people who have undergone investigation for diabetes, forming the universe: $$V = \{p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8\}.$$ Medical experts primarily consider parameters for identifying diabetes in people. These parameters include: $E = \{ Blood Sugar Levels, BMI (Body Mass Index) \} = \{V_1, V_2\}.$ Let C be the set of opinions regarding diabetes diagnosis, where $C = \{1 = Yes, 0 = No\}$. Here is the information collected from the investigation, which involves two primary medical parameters: | Patient | Blood Sugar Level | BMI | Diabetes Diagnosis | |---------|-------------------|------------|--------------------| | p_1 | Normal | Normal | No | | p_2 | Elevated | Overweight | Yes | | p_3 | Very High | Overweight | Yes | | p_4 | Normal | Normal | No | | p_5 | Elevated | Overweight | No | | p_6 | Very High | Overweight | Yes | | p_7 | Elevated | Overweight | Yes | | p_8 | Very High | Normal | No | By the above data, - 1. Blood Sugar Levels: $V_1 = \{normal, elevated, very \ high\} = \{\{p_1, p_4\}, \{p_2, p_5, p_7\}, \{p_3, p_6, p_8\}\} = \{X_1, X_2, X_3\}.$ - 2. BMI: $V_2 = \{normal, overweight\} = \{\{p_1, p_4, p_8\}, \{p_2, p_3, p_5, p_6, p_7\}\} = \{Y_1, Y_2\}.$ 2024, 9(4) e-ISSN: 2468-4376 https://www.jisem-journal.com/ ### **Research Article** 3. Diabetes Diagnosis: $C = \{1 = Yes, 0 = No\} = \{\{p_2, p_3, p_6, p_7\}, \{p_1, p_4, p_5, p_8\}\}.$ ### **Analysis** The set of patients forms the universe *V*, where the patients have been categorized based on their blood sugar levels and BMI. These parameters help in identifying whether a person has been diagnosed with diabetes or not. In the above graph, the edges are labeled 'o' and/or '1', which represent the opinion with respect to diabetes diagnosis based on the parameters. For instance, the edge between X_1 and Y_1 which represents people who have normal blood sugar level and normal BMI is labeled '0', since $X_1 \cap Y_1 = \{p_1, p_4\}$, has no diabetes as per the report/data. Therefore, the edge (X_1, Y_1) is labeled '0'. Similarly, $X_3 \cap Y_2 = \{p_3, p_6\}$ and $\{p_3, p_6\}$ has diabetes as per the report/data. Therefore, the edge (X_3, Y_2) is labeled as '1'. We have, $X_2 \cap Y_2 = \{p_2, p_5, p_7\} = \{1,0,1\}$. From the above graph, we observe that patients $\{p_2, p_5, p_7\}$ have same blood sugar level and BMI, report says p_2 and p_7 have diabetes and p_5 is has no diabetes which may not be correct. Therefore, the people p_2 , p_5 , p_7 have to undergo re-examination with respect to Diabetes. **4.2.** Let us consider the Loan approval for a bank's customers based on certain financial parameters. Assume there are eight customers who have applied for a loan at a bank. The universe of customers is: $V = \{c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8\}$. Bank experts primarily consider two parameters to assess loan eligibility: $E = \{\text{Credit Score}, \text{Annual Income}\} = \{V_1, V_2\}.$ Let C be the set of opinions regarding loan approval, where $C = \{1 = Approved, 0 = Rejected\}$. Here is the information collected from the loan application investigation, including the two key financial parameters: | Customer | Credit Score | Annual Income | Loan Approval | |----------|--------------|---------------|---------------| | c_1 | High | High | Approved | | c_2 | Medium | High | Approved | | c_3 | Low | Low | Rejected | | c_4 | High | Medium | Approved | | c_5 | Low | High | Rejected | | c_6 | Medium | Medium | Rejected | | c_7 | High | Low | Approved | | c_8 | Low | High | Approved | 2024, 9(4) e-ISSN: 2468-4376 https://www.jisem-journal.com/ ### **Research Article** By the above data, - 1. Credit Score: $V_1 = \{low, medium, high\} = \{\{c_3, c_5, c_8\}, \{c_2, c_6\}, \{c_1, c_4, c_7\}\} = \{X_1, X_2, X_3\}.$ - 2. Annual Income: $V_2 = \{low, medium, high\} = \{\{c_3, c_7\}, \{c_4, c_6\}, \{c_1, c_2, c_5, c_8\}\} = \{Y_1, Y_2, Y_3\}.$ - 3. Loan Approval: $C = \{1 = Approved, 0 = Rejected\} = \{\{c_1, c_2, c_4, c_7, c_8\}, \{c_3, c_5, c_6\}\}.$ ### **Analysis** The set of customers forms the universe *V*, where the customers have been categorized based on their credit scores and annual incomes. These financial parameters are used to assess whether a customer is eligible for loan approval. By the above data, - 1. Credit Score: $V_1 = \{low, medium, high\} = \{\{c_3, c_5, c_8\}, \{c_2, c_6\}, \{c_1, c_4, c_7\}\} = \{X_1, X_2, X_3\}.$ - 2. Annual Income: $V_2 = \{low, medium, high\} = \{\{c_3, c_7\}, \{c_4, c_6\}, \{c_1, c_2, c_5, c_8\}\} = \{Y_1, Y_2, Y_3\}.$ - 3. Loan Approval: $C = \{1 = Approved, 0 = Rejected\} = \{\{c_1, c_2, c_4, c_7, c_8\}, \{c_3, c_5, c_6\}\}.$ In the above graph, the edges are labeled '0' and/or '1', which represent the opinion with respect to loan approval based on the parameters. For instance, the edge between X_1 and Y_1 which represents customers who have low credit score and low annual income is labeled '0', since $X_1 \cap Y_1 = \{c_3\}$, application for loan is rejected as per the report/data. Therefore, the edge (X_1, Y_1) is labeled '0'. Similarly, $X_2 \cap Y_3 = \{c_2\}$ and c_2 application for loan is approved. Therefore, the edge (X_2, Y_3) is labeled as '1'. We have, $X_1 \cap Y_3 = \{c_5, c_8\} = \{0,1\}$. From the above graph, we observe that patients c_5, c_8 have same financial parameters of low credit score with high income, report says loan application of c_5 is rejected and loan application of c_8 is approved, which may not be correct. Therefore, the bank customers c_5, c_8 loan applications have to undergo reexamination with respect to loan approval. Hence, in a graph whenever an edge has more than one label one can easily conclude that those elements must be reexamined in order to avoid making wrong decision. ### 5. Conclusion Graph theory is an extremely useful mathematical tool to solve complicated problems in different fields. In the 2024, 9(4) e-ISSN: 2468-4376 https://www.jisem-journal.com/ ### **Research Article** decision-making problem, whenever huge collection of data is available, graph representation makes it easy to take a decision. We have illustrated through this example the application of a soft bipartite graph in the decision-making problem. Also, a case study has been taken to exhibit the technique. ### **REFRENCES** - [1] Akram M, Nawaz S., 2015. Operations on soft graphs. Fuzzy Information and Engineering 7, 423 449. doi:10.1016/j.fiae.2015.11.003. - [2] Euler L., 1741. The solution of a problem relating to the geometry of position. Commentarii academiae scientiarum Petropolitanae 8, 128-140. - [3] Harary F., 1969. Graph Theory, Addison-Wesley Publishing Company. - [4] Maji P.K, Roy A.R, Biswas R., 2002. An application of soft sets in a decision-making problem. Computers & Mathematics with Applications 44, 1077 1083. doi:10.1016/S0898-1221(02)00216-X. - [5] Molodtsov D., 1999. Soft Set Theory-First results. Computers & Mathematics with Applications 37, 19-31. doi:10.1016/S0898-1221(99)00056-5. - [6] West D.B., 1996. Introduction to graph theory. Prentice Hall Upper Saddle River NJ USA. - [7] Zhang H, Zhan J., 2017. Rough soft lattice implication algebras and corresponding decision making methods. International Journal of Machine Learning and Cybernetics 8, 13011308. doi:10.1007/s13042-016-0502-6. - [8] P.K. Maji, R. Biswas, A.R. Roy, Soft set theory, Computers & Mathematics with Applications, Volume 45, Issues 4-5, 2003, Pages 555-562, ISSN 0898-1221 - [9] Degang Chen, E.C.C. Tsang, Daniel S. Yeung, Xizhao Wang, The parameterization reduction of soft sets and its applications, Computers & Mathematics with Applications, Volume 49, Issues 5–6, 2005, Pages 757-763. - [10] Jinta Jose, Bobin George, and Rajesh K Thumbakara, Soft Graphs: A Comprehensive Survey, New Mathematics and Natural Computation, 2024, doi: 10.1142/S1793005725500474. - [11] Jyoti Dharmendra Thenge-Mashale, B.Surendranath Reddy and Rupali Shikharchand Jain, Comparative study of two Soft Graph Concepts, Global Journal of Pure and Applied Mathematics. Volume 19, Number 2 (2023), pp. 241-251.