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1. INTRODUCTION

Many problems in engineering, medical science, economics and so forth, have various uncertainties. Molodtsov [5] 

introduced the concept of soft set theory as a mathematical tool for dealing with uncertainties. It has been shown 

that soft sets have potential applications in various fields. Graph theory was first introduced by the Swiss 

mathematician Leonhard Euler [2]. Since then, graph theory has become a most important part of combinatorial 

mathematics. A graph is used to create a relationship between a given set of elements. Each element can be 

represented by a vertex and the relationship between them can be represented by an edge. Graphs have been widely 

applied across various fields to model and solve real-world problems. The concept of soft graphs and their different 

operations can be seen in [7]. A number of generalizations of soft graphs are available in [1]. In this paper, we define 

a new graph valued function named as soft bipartite graph and some basic properties of this graph are investigated. 

Also, an application of this concept in the decision- making problem is presented. 

2. Preliminaries 

In this section the basic ideas regarding graphs, soft sets and soft graphs are given. 

Definition 2.1 [6]: A graph 𝐺 =  (𝑉, 𝐸) is a pair of sets, where 𝑉 is a finite nonempty set called the vertex set and E is 

a set of unordered pairs of distinct vertices called the edge set. An edge of a graph that joins a vertex to itself is called 

a self-loop. More than one edge between a pair of vertices is called multigraph and these edges are called parallel 

edges. A graph is called a simple graph if it has no self-loops and multiple edges. 

Definition 2.2 [6]: A bipartite graph is a graph whose vertex set 𝑉 can be partitioned into two sets 𝑉1 and 𝑉2 such that 

every edge connects a vertex in 𝑉1 to one in 𝑉2. 

Definition 2.3 [4]: Let 𝑇 be the set of parameters. A pair (𝐾, 𝑇) is called a soft set over the set 𝑈 of the universe, where 

𝐾 ∶  𝑇 →  𝑃(𝑈) is a set valued mapping and 𝑃(𝑈) is the power set of 𝑈. 

Definition 2.4 [7]: A quadruple (𝐺, 𝜆, µ, 𝑇) is called a soft graph, where 

i) 𝐺 =  (𝑉, 𝐸) is a simple graph  

ii) (𝜆, 𝑇) is a soft set over 𝑉  

iii) (µ, 𝑇) is a soft set over 𝐸  
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In order to discuss uncertainty in soft graphs, a new graph valued function called the Soft Bipartite 

graph is introduced in this paper. Let 𝑉 = {𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑘} be a non-empty set, 𝑉1 =

{𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑛} and 𝑉2 = {𝑌1, 𝑌2, 𝑌3, . . . , 𝑌𝑚} be two partitions of 𝑉, where 𝑋𝑖 ⊆ 𝑉(𝑖 = 1,2, . . . , 𝑛) 

and 𝑌𝑗 ⊆ 𝑉(𝑗 = 1,2, . . . , 𝑚). The Soft bipartite graph, 𝐺𝑠𝑏 is a bipartite graph with 𝑉(𝐺𝑠𝑏}) = 𝑉1 ∪ 𝑉2 

and any two vertices 𝑋𝑖 ∈ 𝑉1and 𝑌𝑗 ∈ 𝑉2 are adjacent if and only if 𝑋𝑖 ∩ 𝑌𝑗 ≠ ∅. Several basic properties 

of this newly defined graph are investigated. We also present an application of this concept in the 

decision-making problem. 
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(𝜆(𝑎), µ(𝑎)) is a subgraph of 𝐺 for all 𝑎 ∈  𝑇. 

Any undefined definition can be found in [3]. 

3. Soft bipartite graph  

In this section we introduce the concept of a Soft bipartite graph and its properties. 

Definition: Let 𝑉 = {𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑘} be a non-empty set (sample set).  𝑉1 = {𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑛} and 𝑉2 =

{𝑌1, 𝑌2, 𝑌3, . . . , 𝑌𝑚} be two partitions of 𝑉, which represents parameters, where 𝑋𝑖 ⊆ 𝑉and 𝑌𝑗 ⊆ 𝑉, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚. 

The soft bipartite graph 𝑮𝒔𝒃, is a bipartite graph with 𝑉1 ∪ 𝑉2 as vertices and any two vertices 𝑋𝑖 ∈ 𝑉1and 𝑌𝑗 ∈ 𝑉2 

are adjacent if and only if 𝑋𝑖 ∩ 𝑌𝑗 ≠ ∅.  

Note: 𝑋𝑖 ∩ 𝑌𝑗 gives the elements of 𝑉 satisfying the parameters 𝑋𝑖 and 𝑌𝑗.  

Example:  

Let 𝑉 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7 } such that 𝑉1 = {{𝑥1, 𝑥2, 𝑥6}, {𝑥3, 𝑥4}, {𝑥5, 𝑥7}} = {𝑋1, 𝑋2, 𝑋3} and 𝑉2 =

{{𝑥1}, {𝑥2}, {𝑥3, 𝑥4}, {𝑥5, 𝑥6, 𝑥7}} = {𝑌1, 𝑌2, 𝑌3, 𝑌4}.  

Then 𝐺𝑠𝑏 is: 

 

Theorem 3.1: 𝐺𝑠𝑏 has no isolated vertex.  

Proof:  

Suppose 𝐺𝑠𝑏 has an isolated vertex 𝑋𝑘 ∈ 𝑉1,1 ≤  𝑘 ≤  𝑛 or 𝑌𝑘 ∈ 𝑉2,1 ≤  𝑘 ≤  𝑚. Then 𝑋𝑘 ∩ 𝑌𝑗 =  ∅, ∀𝑗 or 𝑋𝑖 ∩ 𝑌𝑘  =  ∅, 

∀𝑖 which is a contradiction to the fact that 𝑉 =  𝑋1 ∪ 𝑋2 ∪. . .∪ 𝑋𝑛 = 𝑌1 ∪ 𝑌2 ∪. . .∪ 𝑌𝑚  . 

Theorem 3.2: For any 𝑣 ∈ 𝑉(𝐺𝑠𝑏), 𝑑𝑒𝑔(𝑣)  =  𝑘 if and only if 𝑣 ⊆  𝑋1 ∪ 𝑋2 ∪. . .∪ 𝑋𝑘 and 𝑣 ∩ {𝑋𝑖}𝑖=𝑘+1
𝑛  =  ∅ Or 𝑣 ⊆

 𝑌1 ∪ 𝑌2 ∪. . .∪ 𝑌𝑘 and 𝑣 ∩ {𝑌𝑗}𝑗=𝑘+1
𝑚  =  ∅.  

Proof:  

By definition of 𝐺𝑠𝑏, 𝑑𝑒𝑔(𝑣)  =  𝑘 if and only if the elements of 𝑣 are distributed to ′𝑘′𝑋𝑖′𝑠, say, 𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑘 or 

′𝑘′ 𝑌𝑗 ’𝑠, say, 𝑌1, 𝑌2, 𝑌3, . . . , 𝑌𝑘.Then 𝑣 ∩ {𝑋𝑖}𝑖=1
𝑘 ≠  ∅ and 𝑣 ∩ {𝑋𝑖}𝑖=𝑘+1

𝑛 = ∅. Therefore, 𝑣 ⊆  𝑋1 ∪ 𝑋2 ∪. . .∪ 𝑋𝑘  and 𝑣 ∩

{𝑋𝑖}𝑖=𝑘+1
𝑛 = ∅. If the elements of 𝑣 are distributed to ′𝑘′ 𝑌𝑗 ’𝑠, then 𝑣 ∩ {𝑌𝑗}𝑗=1

𝑘 ≠  ∅ and 𝑣 ∩ {𝑌𝑗}𝑗=𝑘+1
𝑚  =  ∅, that is, 𝑣 ⊆

 𝑌1 ∪ 𝑌2 ∪. . .∪ 𝑌𝑘 and 𝑣 ∩ {𝑌𝑗}𝑗=𝑘+1
𝑚  =  ∅. 

Theorem 3.3: For any 𝑣 ∈ 𝑉(𝐺𝑠𝑏), 𝑑𝑒𝑔(𝑣) =  1 if and only if 𝑋𝑖 ∩ 𝑌𝑗  =  𝑋𝑖(𝑜𝑟 𝑌𝑗  ) for some 𝑋𝑖 ∈ 𝑉1, 𝑌𝑗 ∈ 𝑉2.  

Proof:  

𝑉1: 
 

𝑉2: 
 

𝑋1 = {𝑥1, 𝑥2, 𝑥6} 
 

𝑋2 = {𝑥3, 𝑥4} 𝑋3 = {𝑥5, 𝑥7} 

𝑌1 = {𝑥1} 𝑌2 = {𝑥2} 𝑌3 = {𝑥3, 𝑥4} 𝑌4 = {𝑥5, 𝑥6, 𝑥7} 
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Suppose 𝑑𝑒𝑔(𝑣) =  1, then 𝑁 (𝑣 = 𝑋𝑖(𝑜𝑟 𝑌𝑗)) =  𝑌𝑗(𝑜𝑟 𝑋𝑖) for some 𝑋𝑖 ∈ 𝑉1 and 𝑌𝑗 ∈ 𝑉2, that is, 𝑋𝑖 ⊆  𝑌𝑗 or 𝑌𝑗 ⊆  𝑋𝑖. 

Hence 𝑋𝑖 ∩ 𝑌𝑗 =  𝑋𝑖(𝑜𝑟 𝑌𝑗  ).  

Conversely, for any 𝑣 ∈  𝑉 (𝐺𝑠𝑏), then 𝑣 =  𝑋𝑖(𝑜𝑟 𝑌𝑗). Suppose, 𝑋𝑖 ∩ 𝑌𝑗  =  𝑋𝑖 then 𝑋𝑖  ⊆  𝑌𝑗 which implies 𝑁(𝑋𝑖)  =   𝑌𝑗. 

So 𝑑𝑒𝑔(𝑋𝑖) =  1. Suppose, 𝑋𝑖 ∩ 𝑌𝑗  =   𝑌𝑗 then 𝑌𝑗 ⊆  𝑋𝑖 which implies 𝑁( 𝑌𝑗)  =  𝑋𝑖. So 𝑑𝑒𝑔( 𝑌𝑗) =  1. Hence for any 𝑣 ∈

𝑉(𝐺𝑠𝑏), 𝑑𝑒𝑔(𝑣)  =  1. 

Theorem 3.4: 𝐺𝑠𝑏 is a complete bipartite graph if and only if 𝑋𝑖 ∩ 𝑌𝑗 ≠  ∅, ∀𝑖, 𝑗.  

Proof:  

𝐺𝑠𝑏is a complete bipartite graph if and only if 𝑑𝑒𝑔(𝑋𝑖)  =  𝑚 for each 𝑋𝑖 ∈ 𝑉1 and 𝑑𝑒𝑔(𝑌𝑗)  =  𝑛 for 𝑌𝑗 ∈ 𝑉2. Then by 

Theorem 3.2, 𝑋𝑖 ⊆  𝑌1 ∪ 𝑌2 ∪. . .∪ 𝑌𝑚 and 𝑌𝑗  ⊆  𝑋1 ∪ 𝑋2 ∪. . .∪ 𝑋𝑛 , that is, 𝑋𝑖 ∩ {𝑌𝑗}𝑗=1
𝑚 ≠  ∅ for each 1 ≤  𝑖 ≤  𝑛 and 𝑌𝑗 ∩

{𝑋𝑖}𝑖=1
𝑛 ≠  ∅  for each 1 ≤  𝑗 ≤  𝑚.  

Hence 𝑋𝑖 ∩ 𝑌𝑗 ≠  ∅, ∀𝑖, 𝑗. 

Corollary 3.4.1: 𝐺𝑠𝑏  is a regular graph if and only if |𝑉1|  =  |𝑉2| |and 𝑋𝑖 ∩ 𝑌𝑗 ≠  ∅, ∀𝑖, 𝑗.  

Corollary 3.4.2: 𝐺𝑠𝑏  is a biregular graph if and only if |𝑉1|  ≠  |𝑉2| and 𝑋𝑖 ∩ 𝑌𝑗 ≠  ∅, ∀𝑖, 𝑗. 

Theorem 3.5: 𝐺𝑠𝑏 is a cycle if and only if |𝑉1|  =  |𝑉2| and for any 𝑣 ∈  𝑉 (𝐺𝑠𝑏), 𝑣 ⊆  (𝑌1 ∪ 𝑌2) or (𝑋1 ∪ 𝑋2) and 𝑣 ∩

[{𝑌𝑗}𝑗=3
𝑚 𝑜𝑟{𝑋𝑖}𝑖=3

𝑛 ]  =  ∅, where 𝑋𝑖 ∈ 𝑉1 and 𝑌𝑗 ∈ 𝑉2, 1 ≤  𝑖 ≤  𝑛,1 ≤  𝑗 ≤  𝑚. 

Proof:  

Any graph is a cycle graph if and only if 𝑑𝑒𝑔(𝑣)  =  2. Using Theorem 3.2, 𝑣 ⊆ {𝑋1 ∪ 𝑋2} or {𝑌1 ∪ 𝑌2} and 𝑣 ∩

[{𝑌𝑗}𝑗=3
𝑚 𝑜𝑟{𝑋𝑖}𝑖=3

𝑛 ]  =  ∅, for every 𝑣 ∈  𝑉 (𝐺𝑠𝑏). Using Corollary 3.4.1, we get |𝑉1| =  |𝑉2|.  

Hence the proof. 

Theorem 3.6: A graph 𝐺𝑠𝑏 is planar if and only if 𝐺𝑠𝑏 has no sub graph homeomorphic to 𝐾3,3. 

Proof:  

Suppose 𝐺𝑠𝑏  is a planar graph. By Kuratowski’s theorem, 𝐺𝑠𝑏 has no sub graph homeomorphic to either 𝐾 5 or 𝐾3,3. 

Since 𝐺𝑠𝑏 is bipartite, it cannot have sub graph homeomorphic to 𝐾 5. Hence the proof. 

Theorem 3.7: 𝐺𝑠𝑏 is disconnected if and only if {𝑋1 ∪ 𝑋2 ∪. . .∪ 𝑋𝑖 } = {𝑌1 ∪ 𝑌2 ∪. . .∪ 𝑌𝑗} for 𝑖 <  𝑛 and 𝑗 <  𝑚 and {𝑋1 ∪

𝑋2 ∪. . .∪ 𝑋𝑖 } ∩ {𝑌𝑗+1 ∪ 𝑌𝑗+2 ∪. . .∪ 𝑌𝑚}  =  ∅ and/or {𝑌1 ∪ 𝑌2 ∪. . .∪ 𝑌𝑗  } ∩ {𝑋𝑖+1 ∪ 𝑋𝑖+2 ∪. . .∪ 𝑋𝑛 }  =  ∅. 

Proof:  

Suppose {𝑋1 ∪ 𝑋2 ∪. . .∪ 𝑋𝑖 }= {𝑌1 ∪ 𝑌2 ∪. . .∪ 𝑌𝑗} for 𝑖 <  𝑛 and 𝑗 <  𝑚 and {𝑋1 ∪ 𝑋2 ∪. . .∪ 𝑋𝑖 } ∩ {𝑌𝑗+1 ∪ 𝑌𝑗+2 ∪. . .∪ 𝑌𝑚}  =

 ∅ and/or {𝑌1 ∪ 𝑌2 ∪. . .∪ 𝑌𝑗  } ∩ {𝑋𝑖+1 ∪ 𝑋𝑖+2 ∪. . .∪ 𝑋𝑛 }  =  ∅. Then, for any 𝑖 <  𝑛, 𝑋𝑖 ⊂  {𝑌1 ∪ 𝑌2 ∪. . .∪ 𝑌𝑗} or for any 𝑗 <

 𝑚, 𝑌𝑗  ⊂ {𝑋1 ∪ 𝑋2 ∪. . .∪ 𝑋𝑖 }. So, each 𝑋𝑖 is adjacent with 𝑌1 and/or 𝑌2and/or 𝑌3...and/or 𝑌𝑗. Similarly, 𝑌𝑗 is adjacent with 

𝑋1 and/or 𝑋2 and/or 𝑋3... and/or 𝑋𝑖 . Therefore, {𝑋1, 𝑋2, . . . , 𝑋𝑖 , 𝑌1, 𝑌2, . . . , 𝑌𝑗}  lies in one component of 𝐺𝑠𝑏. Since{𝑋1 ∪

𝑋2 ∪. . .∪ 𝑋𝑖 } ∩ {𝑌𝑗+1 ∪ 𝑌𝑗+2 ∪. . .∪ 𝑌𝑚}  =  ∅, any of 𝑋1, 𝑋2, . . . , 𝑋𝑖 ’𝑠 are not adjacent with any of 𝑌𝑗+1, 𝑌𝑗+2, . . . , 𝑌𝑚. Therefore 

 𝐺𝑠𝑏  is disconnected. 

Conversely, suppose  𝐺𝑠𝑏  is disconnected, then there exists 𝑋𝑖+1 ∈ 𝑉1 for 𝑖 +  1 ≤  𝑛 such that 𝑋𝑖+1  ∩ {𝑌1 ∪ 𝑌2 ∪. . .∪

𝑌𝑗} =  ∅, 𝑗 <  𝑚. Since  𝐺𝑠𝑏 has no isolates, there exists some 𝑌𝑗+1 such that 𝑋𝑖+1  ∩ 𝑌𝑗+1 ≠ ∅ which implies that 

{𝑋𝑖+1, 𝑌𝑗+1} lies in one component of 𝐺𝑠𝑏. If there exists any other 𝑋𝑖+2  ∈  𝑉1 such that  𝑋𝑖+2  ∩ {𝑌1 ∪ 𝑌2 ∪. . .∪ 𝑌𝑗} =  ∅, 

then 𝑋𝑖+2  ∩ 𝑌𝑗+1 ≠ ∅ and/or𝑋𝑖+2  ∩ 𝑌𝑗+2 ≠ ∅. So { 𝑋𝑖+1, 𝑋𝑖+2, 𝑌𝑗+1, 𝑌𝑗+2} lies in same component of 𝐺𝑠𝑏. 
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Therefore{ 𝑋𝑖+1 ∪ 𝑋𝑖+2} ∩ {𝑌1 ∪ 𝑌2 ∪. . .∪ 𝑌𝑗} =  ∅. If there exists some more vertices in 𝑉1  which are not subsets of {𝑌1 ∪

𝑌2 ∪. . .∪ 𝑌𝑗}, then, {𝑌1 ∪ 𝑌2 ∪. . .∪ 𝑌𝑗  } ∩ {𝑋𝑖+1 ∪ 𝑋𝑖+2 ∪. . .∪ 𝑋𝑛 }  =  ∅.. Since the above intersection is empty, and  𝐺𝑠𝑏 has 

no isolates, {𝑌1, 𝑌2, . . . , 𝑌𝑗}  ∈  𝑉2 must be adjacent with some {𝑋1, 𝑋2, . . . , 𝑋𝑖}∈ 𝑉1 so that {𝑋1 ∪ 𝑋2 ∪. . .∪ 𝑋𝑖 } = {𝑌1 ∪ 𝑌2 ∪

. . .∪ 𝑌𝑗} 

 Similarly, we can prove that {𝑋1 ∪ 𝑋2 ∪. . .∪ 𝑋𝑖 } ∩ {𝑌𝑗+1 ∪ 𝑌𝑗+2 ∪. . .∪ 𝑌𝑚}  =  ∅.  

Theorem 3.8: 𝐺𝑠𝑏 is a tree if and only if there is no 𝑋1 =  {𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑝} and 𝑋2  =  {𝑏1, 𝑏2, 𝑏3, . . . , 𝑏𝑞}, 𝑝, 𝑞 <  𝑛 

such that {𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑖 , 𝑏1, 𝑏2, 𝑏3, . . . , 𝑏𝑗} ∈ 𝑌1 and {𝑎𝑖+1, 𝑎𝑖+2, . . . , 𝑎𝑙 , 𝑏𝑗+1, 𝑏𝑗+2, 𝑏𝑗+3, . . . , 𝑏𝑘}  ∈  𝑌2where 𝑋1, 𝑋2 ∈  𝑉1 and 

𝑌1, 𝑌2  ∈  𝑉2, 𝑙, 𝑖 <  𝑝 and 𝑗, 𝑘 <  𝑞.  

Proof:  

Suppose there exists 𝑋1 =  {𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑝}∈𝑉1, 𝑋2 =  {𝑏1, 𝑏2, 𝑏3, . . . , 𝑏𝑞} ∈ 𝑉1, 𝑋3  =  {𝑐1, 𝑐2, 𝑐3, . . . , 𝑐𝑟} ∈ 𝑉1,... such that 

{𝑎1, 𝑎2, . . . , 𝑎𝑖 , 𝑏1, 𝑏2, . . . , 𝑏𝑗 , 𝑐1, 𝑐2, . . . , 𝑐ℎ} ∈  𝑌1, {𝑎𝑖+1, 𝑎𝑖+2, . . . , 𝑎𝑙 , 𝑏𝑗+1, 𝑏𝑗+2, . . . , 𝑏𝑘, 𝑐ℎ+1, 𝑐ℎ+2, . . . , 𝑐𝑔} ∈  𝑌2, 

{𝑎𝑙+1, 𝑎𝑙+2, . . . , 𝑏𝑘+1, 𝑏𝑘+2, . . . , 𝑐𝑔+1, 𝑐𝑔+2, . . . , } ∈ 𝑌3 and so on. Then 𝑋1, 𝑌1, 𝑋2, 𝑌2 , . . . , 𝑋1 forms a cycle. Hence 𝐺𝑠𝑏  is not a 

tree.  

Conversely, suppose 𝐺𝑠𝑏 is not a tree which implies that 𝐺𝑠𝑏 has atleast one cycle say {𝑋1, 𝑌1, 𝑋2, 𝑌2 , . . . , 𝑋1}, where 𝑋𝑖 ∈

𝑉1 and 𝑌𝑗 ∈ 𝑉2 Then 𝑎1 ∈ 𝑋1 ∩ 𝑌1, 𝑎2 ∈ 𝑋1 ∩ 𝑌2, 𝑏1 ∈  𝑋2 ∩ 𝑌1, 𝑏2 ∈  𝑋2 ∩ 𝑌2, ... That is, 𝑎1, 𝑎2 ∈ 𝑋1, 𝑏1, 𝑏2 ∈ 𝑋2, 𝑎1, 𝑏1 ∈

𝑌1, 𝑎2, 𝑏2 ∈ 𝑌2 and so on.  

In general, there exists 𝑋1 = {𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑝} and 𝑋2 = {𝑏1, 𝑏2, 𝑏3, . . . , 𝑏𝑞}, 𝑝, 𝑞 <  𝑛, {𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑖 , 𝑏1, 𝑏2, 𝑏3, . . . , 𝑏𝑗} ∈

𝑌1 and {𝑎𝑖+1, 𝑎𝑖+2, . . . , 𝑎𝑙 , 𝑏𝑗+1, 𝑏𝑗+2, 𝑏𝑗+3, . . . , 𝑏𝑘}  ∈  𝑌2  

Hence the proof. 

Theorem 3.9: Any connected graph 𝐺𝑠𝑏 is Eulerian if and only if for each 𝑋𝑖 ∈ 𝑉1 and 𝑌𝑗 ∈ 𝑉2, 1 ≤  𝑖 ≤  𝑛, 1 ≤  𝑗 ≤

 𝑚, the elements of 𝑋𝑖  and 𝑌𝑗 belong to an even number of 𝑌𝑗 ’𝑠 and 𝑋𝑖 ’𝑠 respectively.  

Proof:  

Suppose 𝐺𝑠𝑏 is a Eulerian graph. Then 𝑑𝑒𝑔(𝑣𝑖)  =  2𝑘 for each 𝑣𝑖 ∈ 𝑉(𝐺𝑠𝑏). For any 𝑣𝑖 ∈ 𝑉1, by Theorem 3.2,𝑣𝑖 ∩

{𝑌𝑖}𝑖=1
2𝑘 ≠  ∅ and 𝑣𝑖 ∩ {𝑌𝑖}𝑖=2𝑘+1

𝑚 =  ∅, which implies that, for any 𝑣𝑖 ∈ 𝑉1, the elements of 𝑣𝑖 belong to an even number 

of 𝑌𝑗 ’𝑠  and similar is the situation for any 𝑣𝑖 ∈ 𝑉2, 𝑣𝑖 ∩ {𝑋𝑖}𝑖=1
2𝑘 ≠  ∅ and 𝑣𝑖 ∩ {𝑋𝑖}𝑖=2𝑘+1

𝑚 =  ∅.Therefore for any 𝑣𝑖 ∈ 𝑉2, 

the elements of 𝑣𝑖 belong to an even number of 𝑋𝑖 ’𝑠.  

Hence the proof. 

Theorem 3.10: 𝐺𝑠𝑏 is a ladder graph if and only if 𝐺𝑠𝑏 is connected with |𝑉1| = |𝑉2| = 𝑛 and for any 𝑣𝑖 ∈ 𝑉(𝐺𝑠𝑏), 𝑣 𝑖 ⊂

{𝑌𝑖−1 ∪ 𝑌𝑖 ∪ 𝑌𝑖+1} or {𝑋𝑖−1 ∪ 𝑋𝑖 ∪ 𝑋𝑖+1} for 𝑖 =  1,2, . . . , 𝑛. 

Proof:  

Let 𝐺𝑠𝑏 be a ladder graph. Then |𝑉1| = |𝑉2| =  𝑛 and for any 𝑣𝑖 ∈ 𝑉(𝐺𝑠𝑏),  

𝑑𝑒𝑔(𝑣𝑖)  = {
2   for i =  1 and i =  n
3           for 1 <  𝑖 <  𝑛 .

 

Therefore, 𝑁(𝑣𝑖)  ∈ {𝑌𝑖 ∪ 𝑌𝑖+1} 𝑜𝑟 {𝑋𝑖 ∪ 𝑋𝑖+1} for 𝑖 =  1, 𝑁(𝑣𝑖)  ∈⊂ {𝑌𝑖−1 ∪ 𝑌𝑖 ∪ 𝑌𝑖+1} 𝑜𝑟 {𝑋𝑖−1 ∪ 𝑋𝑖 ∪ 𝑋𝑖+1} for 1 <  𝑖 <

 𝑛, 𝑁(𝑣𝑖)  ∈ {𝑌𝑖−1 ∪ 𝑌𝑖} 𝑜𝑟 {𝑋𝑖−1 ∪ 𝑋𝑖} for 𝑖 =  𝑛.  

Hence 𝑣 𝑖 ⊂ {𝑌𝑖−1 ∪ 𝑌𝑖 ∪ 𝑌𝑖+1} 𝑜𝑟 {𝑋𝑖−1 ∪ 𝑋𝑖 ∪ 𝑋𝑖+1}.  

Conversely, suppose 𝐺𝑠𝑏 is a connected graph with |𝑉1| = |𝑉2| = 𝑛 and for any 𝑣𝑖 ∈ 𝑉(𝐺𝑠𝑏), 𝑣 𝑖 ⊂ {𝑌𝑖−1 ∪ 𝑌𝑖 ∪

𝑌𝑖+1} 𝑜𝑟 {𝑋𝑖−1 ∪ 𝑋𝑖 ∪ 𝑋𝑖+1}. Then 𝑑𝑒𝑔(𝑣𝑖)   ≤  3 for 𝑖 =  1,2, . . . , 𝑛.  
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For 𝑖 = 1,𝑣1 ⊂ {𝑌0 ∪ 𝑌1 ∪ 𝑌2} 𝑜𝑟 {𝑋0 ∪ 𝑋1 ∪ 𝑋2}. Since 𝑋0, 𝑌0 do not exist in 𝐺𝑠𝑏, 𝑣1 ⊂ {𝑌1 ∪ 𝑌2} 𝑜𝑟 {𝑋1 ∪ 𝑋2}. Then 

𝑑𝑒𝑔(𝑣1) =  2 which implies that 𝑑𝑒𝑔(𝑋1) =  𝑑𝑒𝑔(𝑌1)  =  2.  

For 1 < 𝑖 <  𝑛, 𝑣 𝑖 ⊂ {𝑌𝑖−1 ∪ 𝑌𝑖 ∪ 𝑌𝑖+1}or {𝑋𝑖−1 ∪ 𝑋𝑖 ∪ 𝑋𝑖+1}. Then 𝑑𝑒𝑔(𝑣 𝑖)  =  3 which implies that 𝑑𝑒𝑔(𝑋𝑖) = 3 =

𝑑𝑒𝑔(𝑌𝑖) for 1 <  𝑖 < 𝑛.  

For 𝑖 =  𝑛, 𝑣𝑛 ⊂ {𝑌𝑛−1 ∪ 𝑌𝑛 ∪ 𝑌𝑛+1} or {𝑋𝑛−1 ∪ 𝑋𝑛 ∪ 𝑋𝑛+1}. Since 𝑋𝑛+1 and 𝑌𝑛+1 do not exist in 𝐺𝑠𝑏, 𝑣𝑛 ⊂ {𝑌𝑛−1 ∪ 𝑌𝑛} 

or {𝑋𝑛−1 ∪ 𝑋𝑛}.. So 𝑑𝑒𝑔(𝑣𝑛)  =  2. That is, 𝑑𝑒𝑔(𝑋𝑛) =  𝑑𝑒𝑔(𝑌𝑛) =  2. Hence 𝐺𝑠𝑏 is a ladder graph.  

Theorem 3.11: If 𝐺𝑠𝑏is a connected 𝑛-regular graph (𝑛 >  2) with 𝑋𝑖 ∩ 𝑌𝑗   =  ∅ for 𝑖 =  𝑗 and 𝑋𝑖 ∩ 𝑌𝑗  ≠  ∅ for 𝑖 ≠  𝑗, 

then 𝐺𝑠𝑏 is a crown graph.   

Proof: 

Let 𝐺𝑠𝑏  be a connected n-regular graph with the given conditions. By corollary 3.4.1, |𝑉1| = |𝑉2| and 𝑋𝑖  ∈  𝑁(𝑌𝑗) or 

𝑌𝑗  ∈  𝑁(𝑋𝑖) for all 𝑖 ≠  𝑗, which implies that any 𝑋𝑖 ∈ 𝑉1 is not adjacent with 𝑌𝑖 ∈ 𝑉2 and 𝑋𝑖 is adjacent with all other 

𝑌𝑗 ’𝑠 (𝑖 ≠  𝑗) and vice versa. Therefore 𝐺𝑠𝑏 is a crown graph. 

Theorem 3.12: For any 𝐺𝑠𝑏, 𝛾(𝐺𝑠𝑏) ≤   𝑀𝑖𝑛{|𝑉1|, |𝑉2|}. 

Proof:  

In 𝐺𝑠𝑏, 𝑉1 =  {𝑋1 ∪ 𝑋2 ∪. . .∪ 𝑋𝑖 } and 𝑉2 =  {𝑌1 ∪ 𝑌2 ∪. . .∪ 𝑌𝑗} are dominating sets of 𝐺𝑠𝑏. Thus, 𝛾(𝐺𝑠𝑏) ≤  𝑀𝑖𝑛{|𝑉1|, |𝑉2|}. 

4. Applications 

In this section, we present an application of the soft bipartite graph in a decision-making problem. The problem we 

consider is as given below. 

4.1. Suppose we are analyzing a dataset related to people undergoing tests for diabetes. 

Let there be eight people who have undergone investigation for diabetes, forming the universe: 

𝑉 = {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8}. 

Medical experts primarily consider parameters for identifying diabetes in people. These parameters include: 

𝐸 = { Blood Sugar Levels, BMI (Body Mass Index)} = {𝑉1, 𝑉2}. 

Let  𝐶 be the set of opinions regarding diabetes diagnosis, where 𝐶 = {1 =  𝑌𝑒𝑠, 0 = 𝑁𝑜}. 

Here is the information collected from the investigation, which involves two primary medical parameters: 

Patient Blood Sugar Level BMI Diabetes Diagnosis 

𝑝1 Normal  Normal No 

𝑝2 Elevated Overweight Yes 

𝑝3 Very High Overweight Yes 

𝑝4 Normal Normal No 

𝑝5 Elevated Overweight No 

𝑝6 Very High Overweight Yes 

𝑝7 Elevated Overweight Yes 

𝑝8 Very High Normal No 

      By the above data, 

1. Blood Sugar Levels: 𝑉1 = {𝑛𝑜𝑟𝑚𝑎𝑙, 𝑒𝑙𝑒𝑣𝑎𝑡𝑒𝑑, 𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ} = {{𝑝1, 𝑝4}, {𝑝2, 𝑝5, 𝑝7}, {𝑝3, 𝑝6, 𝑝8}} = {𝑋1, 𝑋2, 𝑋3}. 

2. BMI: 𝑉2 = {𝑛𝑜𝑟𝑚𝑎𝑙, 𝑜𝑣𝑒𝑟𝑤𝑒𝑖𝑔ℎ𝑡} = {{𝑝1 , 𝑝4, 𝑝8}, {𝑝2 , 𝑝3, 𝑝5, 𝑝6, 𝑝7}} = {𝑌1, 𝑌2}. 
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3. Diabetes Diagnosis: 𝐶 = {1 = 𝑌𝑒𝑠, 0 = 𝑁𝑜} = {{𝑝2, 𝑝3, 𝑝6, 𝑝7}, {𝑝1, 𝑝4, 𝑝5, 𝑝8}}. 

Analysis 

The set of patients forms the universe 𝑉, where the patients have been categorized based on their blood sugar levels 

and BMI. These parameters help in identifying whether a person has been diagnosed with diabetes or not. 

 
In the above graph, the edges are labeled ’0’ and/or ’1’, which represent the opinion with respect to diabetes diagnosis 

based on the parameters. 

For instance, the edge between 𝑋1and 𝑌1 which represents people who have normal blood sugar level and normal 

BMI is labeled ’0’, since 𝑋1  ∩  𝑌1 = {𝑝1, 𝑝4}, has no diabetes as per the report/data. Therefore, the edge ( 𝑋1, 𝑌1) is 

labeled ’0’. Similarly, 𝑋3  ∩  𝑌2  = {𝑝3, 𝑝6} and {𝑝3, 𝑝6} has diabetes as per the report/data. Therefore, the edge (𝑋3, 𝑌2)  

is labeled as ‘1’.  

We have,  𝑋2  ∩  𝑌2  = {𝑝2, 𝑝5, 𝑝7} = {1,0,1}. From the above graph, we observe that patients {𝑝2, 𝑝5, 𝑝7} have same blood 

sugar level and BMI, report says 𝑝2 and 𝑝7 have diabetes and 𝑝5 is has no diabetes which may not be correct. 

Therefore, the people 𝑝2, 𝑝5, 𝑝7 have to undergo re-examination with respect to Diabetes. 

4.2. Let us consider the Loan approval for a bank's customers based on certain financial parameters. Assume there 

are eight customers who have applied for a loan at a bank. The universe of customers is: 𝑉 = {𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7, 𝑐8}. 

Bank experts primarily consider two parameters to assess loan eligibility: 

𝐸 = {Credit Score, Annual Income} = {𝑉1, 𝑉2}. 

Let  𝐶 be the set of opinions regarding loan approval, where 𝐶 = {1 =  𝐴𝑝𝑝𝑟𝑜𝑣𝑒𝑑, 0 = 𝑅𝑒𝑗𝑒𝑐𝑡𝑒𝑑}. 

Here is the information collected from the loan application investigation, including the two key financial parameters: 

Customer Credit Score Annual Income Loan Approval 

𝑐1 High  High Approved 

𝑐2 Medium High Approved 

𝑐3 Low Low Rejected 

𝑐4 High Medium Approved 

𝑐5 Low High Rejected 

𝑐6 Medium Medium Rejected 

𝑐7 High Low Approved 

𝑐8 Low High Approved 

𝑋1 = {𝑝1, 𝑝4} 𝑋2 = {𝑝2, 𝑝5, 𝑝7} 𝑋3 = {𝑝3, 𝑝6, 𝑝8} 

𝑉1: 

𝑉2: 

𝑌1 = {𝑝1, 𝑝4, 𝑝8} 𝑌2 = {𝑝2, 𝑝3, 𝑝5, 𝑝6, 𝑝7} 

0 

{1,0,1} 
1 

0 
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By the above data, 

1. Credit Score: 𝑉1 = {𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ} = {{𝑐3, 𝑐5, 𝑐8}, {𝑐2, 𝑐6}, {𝑐1, 𝑐4, 𝑐7}} = {𝑋1, 𝑋2, 𝑋3}. 

2. Annual Income: 𝑉2 = {𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ} = {{𝑐3, 𝑐7}, {𝑐4, 𝑐6}, {𝑐1, 𝑐2, 𝑐5, 𝑐8}} = {𝑌1, 𝑌2, 𝑌3}. 

3. Loan Approval: 𝐶 = {1 = 𝐴𝑝𝑝𝑟𝑜𝑣𝑒𝑑, 0 = 𝑅𝑒𝑗𝑒𝑐𝑡𝑒𝑑} = {{𝑐1, 𝑐2, 𝑐4, 𝑐7, 𝑐8}, {𝑐3, 𝑐5, 𝑐6}}. 

 Analysis 

The set of customers forms the universe 𝑉, where the customers have been categorized based on their credit scores 

and annual incomes. These financial parameters are used to assess whether a customer is eligible for loan approval. 

 

By the above data, 

1. Credit Score: 𝑉1 = {𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ} = {{𝑐3, 𝑐5, 𝑐8}, {𝑐2, 𝑐6}, {𝑐1, 𝑐4, 𝑐7}} = {𝑋1, 𝑋2, 𝑋3}. 

2. Annual Income: 𝑉2 = {𝑙𝑜𝑤, 𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ} = {{𝑐3, 𝑐7}, {𝑐4, 𝑐6}, {𝑐1, 𝑐2, 𝑐5, 𝑐8}} = {𝑌1, 𝑌2, 𝑌3}. 

3. Loan Approval: 𝐶 = {1 = 𝐴𝑝𝑝𝑟𝑜𝑣𝑒𝑑, 0 = 𝑅𝑒𝑗𝑒𝑐𝑡𝑒𝑑} = {{𝑐1, 𝑐2, 𝑐4, 𝑐7, 𝑐8}, {𝑐3, 𝑐5, 𝑐6}}. 

In the above graph, the edges are labeled ’0’ and/or ’1’, which represent the          opinion with respect to loan approval 

based on the parameters. 

For instance, the edge between 𝑋1and 𝑌1 which represents customers who have low credit score and low annual 

income is labeled ’0’, since 𝑋1  ∩  𝑌1 = {𝑐3}, application for loan is rejected as per the report/data. Therefore, the edge 

( 𝑋1, 𝑌1) is labeled ’0’. Similarly, 𝑋2  ∩  𝑌3  = {𝑐2} and 𝑐2 application for loan is approved. Therefore, the edge (𝑋2, 𝑌3)  

is labeled as ‘1’.  

We have,  𝑋1  ∩  𝑌3  = {𝑐5, 𝑐8} = {0,1}. From the above graph, we observe that patients 𝑐5, 𝑐8 have same financial 

parameters of low credit score with high income, report says loan application of 𝑐5 is rejected and loan application of 

𝑐8 is approved, which may not be correct. Therefore, the bank customers 𝑐5, 𝑐8 loan applications have to undergo re-

examination with respect to loan approval. 

Hence, in a graph whenever an edge has more than one label one can easily conclude that those elements must be re-

examined in order to avoid making wrong decision. 

5. Conclusion 

Graph theory is an extremely useful mathematical tool to solve complicated problems in different fields. In the 

𝑋1 = {𝑐3, 𝑐5, 𝑐8} 
𝑋2 = {𝑐2, 𝑐6} 𝑋3 = {𝑐

1
, 𝑐4, 𝑐7} 

𝑌1 = {𝑐3, 𝑐7} 𝑌2={𝑐4, 𝑐6} 𝑌3 = {𝑐
1

, 𝑐2, 𝑐5, 𝑐8} 

0 

{0,1} 

0 

1 

1 

1 

1 

𝑉1: 

𝑉2: 
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decision-making problem, whenever huge collection of data is available, graph representation makes it easy to take 

a decision. We have illustrated through this example the application of a soft bipartite graph in the decision-making 

problem. Also, a case study has been taken to exhibit the technique. 

 

REFRENCES 
[1] Akram M, Nawaz S., 2015. Operations on soft graphs. Fuzzy Information and Engineering 7, 423 - 449. 

doi:10.1016/j.fiae.2015.11.003. 

[2] Euler L., 1741. The solution of a problem relating to the geometry of position. Commentarii academiae 

scientiarum Petropolitanae 8, 128-140. 

[3] Harary F., 1969. Graph Theory, Addison-Wesley Publishing Company. 

[4] Maji P.K, Roy A.R, Biswas R., 2002. An application of soft sets in a decision-making problem. Computers & 

Mathematics with Applications 44, 1077 - 1083. doi:10.1016/S0898-1221(02)00216-X. 

[5] Molodtsov D., 1999. Soft Set Theory-First results. Computers & Mathematics with Applications 37, 19-31. 

doi:10.1016/S0898-1221(99)00056-5. 

[6] West D.B., 1996. Introduction to graph theory. Prentice Hall Upper Saddle River NJ USA. 

[7] Zhang H, Zhan J., 2017. Rough soft lattice implication algebras and corresponding decision making methods. 

International Journal of Machine Learning and Cybernetics 8, 13011308. doi:10.1007/s13042-016-0502-6. 

[8] P.K. Maji, R. Biswas, A.R. Roy, Soft set theory, Computers & Mathematics with Applications, Volume 45, Issues 

4-5, 2003, Pages 555-562, ISSN 0898-1221 

[9] Degang Chen, E.C.C. Tsang, Daniel S. Yeung, Xizhao Wang, The parameterization reduction of soft sets and its 

applications, Computers & Mathematics with Applications, Volume 49, Issues 5–6, 2005, Pages 757-763.  

[10] Jinta Jose, Bobin George, and Rajesh K Thumbakara, Soft Graphs: A Comprehensive Survey, New Mathematics 

and Natural Computation, 2024, doi: 10.1142/S1793005725500474. 

[11] Jyoti Dharmendra Thenge-Mashale, B.Surendranath Reddy and Rupali Shikharchand Jain, Comparative study 

of two Soft Graph Concepts, Global Journal of Pure and Applied Mathematics. Volume 19, Number 2 (2023), pp. 

241-251. 

 


