

Copyright © 2017 by Author/s and Licensed by Lectito BV, Netherlands. This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Information Systems Engineering
& Management, 2(2), 11
ISSN: 2468-4376

Software Residence Application in the Versions of a Software Product Line

Alexandre L’Erario1*, José Augusto Fabri1, José Antônio Gonçalves1, Alessandro Silveira Duarte1

1 Federal University of Technology - Parana, BRAZIL

*Corresponding Author: alerario@utfpr.edu.br

Citation: L’Erario, A., Fabri, J.A., Gonçalves, J.A. and Duarte, A.S. (2017). Software Residence Application
in the Versions of a Software Product Line. Journal of Information Systems Engineering & Management, 2(2), 11.
doi: 10.20897/jisem.201711

Published: March 30, 2017

ABSTRACT

This article presents an experience in software residence, addressing jointly, software product line and
version control process. A residency program in software is conceptually similar to the medical residency
programs, which aims to train professionals in an area/specific activity. A real scenario was presented to
three groups of master's students who had a mission to develop and specify a process to meet a specific
problem. As a result of this experiment, we developed the process and the software of residence contributed
to knowledge on the scene was internalized and disseminated among the participants.

Keywords: software residency, product line software, control system version

INTRODUCTION

In Brazil, a limited number of organizations producing software with certified quality standards for a model.
The number of companies certified with CMMI in Brazil is 166, while in 5153 China, the United States in 2053
and India in 1059, such data can be found at https://sas.cmmiinstitute.com/pars/pars.aspx.

Factors arising from the high tax burden, plus the qualified labor shortage in software engineering area
constitute an inhibitor scenario for Brazil's expansion process in software production industry. In order to train
professionals in the sector, generating highly skilled labor, some companies and universities have joined the
concept of residence in software (something similar to medical residency).

This work is an approach to residence in software, whose scope is focused on the product line with the version
control system. Versioning arctifacts is a common practice in organizations, however, in this study, the approach
incorporates the concept of software product line, increasing the complexity of residence and making it closer to
the real environment (L’Erario, Fabri, Goncalves, & Duarte, 2016).

The objective of this work is to use the concept of residence in software for a group of master's program
students can solve a problem related to product line of software and version management.

This problem was identified in a real company and led to the students by the GTI research group UTFPR.
Teachers of the Federal Technological University of Paraná software engineering (UTFPR) created the Group of
Information Technology Management (GTI). The group aims to provide directions in the process of improvement
area. Currently the group consists of 6 teachers working actively with the software production companies, the
software deployment process, assisting them in evaluations of CMMI, ISO and MPS-BR models.

http://dx.doi.org/10.20897/jisem.2017xx
http://www.lectitopublishing.nl/
http://www.lectitopublishing.nl/journal-for-information-systems-engineering-management

 L’Erario et al. / Software Residence Application in the Versions of a Software Product Line

2 © 2017 by Author/s

LITERATURE REVIEW

Residence in Software

The residency idea was created in Brazil by decree number 80281 of 05 September 1977. This is characterized
as a graduate teaching mode and aims to improve health in the form of a specialization course in which it is inserted
into an organization's health.

The residence in software follows the same line of reasoning: to provide a real experience to the student
graduate in this way promotes the dissemination of the concepts of quality, production process and management
projects in the software engineering field.

Second (Fabri et al., 2010) in residence provides software in a real environment of software development,
practical experience to undergraduate students, graduate and / or professionals involved in the industry. These real
environments are prepared for residents to specialize a given area.

As in medical residency, second (Sampaio et al., n.d.), residence in software, should be developed into a center
of learning, evolving expertise, relevant concepts and present formal educational features. The development of
practices employed in the software industry should guide the attention of the tutors responsible for the residents.

For the authors (Fabri et al., 2010; L’Erario et al., 2016; Sampaio et al., n.d.), the software house has a
resemblance to the residency, because both have the same purpose: specialize students / professionals interested
in a particular area.

To (Silveira Duarte, L’Erario, Domingues, & Fabri, 2013) the residence of the execution environment can be
classified into levels that start in fully simulated to actual execution environment. This paper presents a partially
simulated environment that is a real problem a company has been imported into the academic environment,
providing students with a problem / scenario identical to the real.

Software Product Line

According (Mahmood & Oxley, 2010) , the lines of software product (Software Product Lines -SPL) are used
to increase productivity , improving the quality in a short period of time. The artifacts produced in this concept
are reused in a systematic way into products. Such artifacts are defined as core assets.

Development guided by SPL, the core assets include the artifacts developed during the production process,
such as requirements documents, architecture, use cases, code, and other (Alzahmi, Abu-Matar, & Mizouni, 2014;
Mahmood & Oxley, 2010). Many products can be derived from the major active. These products are distinguished
of the others given its characteristics (Thao, 2012).

SPL focuses on the systematic use of reuse and the concept is essential to the existence of a software product
line (L’Erario et al., 2016; Murugesupillai, Mohabbati, & Gašević, 2011). To (Mahmood & Oxley, 2010) SPL
should promote a mechanism to track changes and new versions of artifacts and products emerging from the
baseline. SPL must ensure that it monitors the line as well as the propagation of changes.

Version Control Systems

Second (Ghezzi, Wursch, Giger, & Gall, 2012) the actual concept of a version control system and its first
implementation was introduced by (Rochkind, 1975). In this publication, the author called the source code control
system as a tool to assist the project schedule controlling changes in the source code. In this way it would be
possible to store, update and retrieve all versions of all there allocated codes.

Currently the version control systems have features that allow remote access to process assets, as well as the
possibility of co-developers work on the same project. You can identify which changes were generated by which
developers and compare changes made to the user's computer and also the repository.

The version control tools are integrated into the developer environment. You can use the IDE to write part of
your project (source code) with a text editor to modify / create a requirements document for example. All assets
created would be stored in the version control system, whether centralized or distributed.

Such a concept supported by a set of tools arouses interest from researchers to analyze and optimize their use
with respect to software production, as is the case of (An, Khomh, & Adams, 2014; Kamei, Ohira, Hassan,
Ubayashi, & Matsumoto, 2014; Malhotra, Pritam, Nagpal, & Upmanyu, 2014).

METHODOLOGY

The methodology used in this research was experimental, guided by (Wohlin et al., 2012). In this case the
variables are known and the final results are analysis of the change of values of these variables.

The objective of this experiment was to determine whether the knowledge gained from a residence process was
enough that a group of students could solve a problem arising from the real world.

Journal of Information Systems Engineering & Management, 2(2), 11

© 2017 by Author/s 3

Figure 1 represents the set of steps to carry out this work. It is important to note that the implementation of
residence, here treated, addresses stage in which students must solve the above problem. The test is the validation
mechanism of the solution while validation, characterized as the last step, you should check that the skills and
knowledge acquired by residents in relation to similar problems.

Defining the Problem Scenario

The group of teachers GTI / UTFPR identified in a consulting company with a critical problem of
configuration management. The problem was solved and the solution was successfully deployed.

Although authorization to disclose the problem, the company has not authorized the disclosure of his name
and for this reason is not identified in this article. This scenario is typical and can be considered as the applicant in
several companies in the sector.

They were conducted to students two aspects of this scenario: the characterization of the company and a
product with the same architectural properties. The original product handled by GTI is the organization 's domain
and for this reason a minimalist version, but with the same architectural significance was conducted to the
residence. The difference between the original product and the product led to the residence was the
implementation of the number of use cases. The product treated by the students implemented only a single use
case representing a record, whereas original product implements some 70 cases, in addition, the registers.

The company in question operates exclusively in the software development industry, has a team of 10
developers and has a product here called P. The P product is the company's flagship product, is deployed in many
customers and represents a significant portion billing.

The product in question was developed by a software architect who is no longer in the organization. In this
case the knowledge regarding architecture, organization domain, restricted to only some documentation available.

For the company, the product P can be sold to a customer in its original form, though there are customers who
need customization. The customization of a customer cannot meet each other, in addition, new updates
(improvements or bug fixes) may be made available to all customers and new versions will be released, the latter
on the form of contract negotiation. In real business, to customize the product to a particular customer the
company spends about two weeks.

The product distribution structure for its customers, according to the company, is explicit in Figure 2. From a
baseline is created a first version of the product, called PoV1 Product (Original Version 1). This is the software
product ready for distribution. The PoV1 distribution in the case of Figure 2, has been delivered to customers 1
and 2. In the case of customers 3,4 and 5, it was necessary to perform a customizing the system, with the first
personalized, represented by the rectangle Pd1 (Product Distribution 1) met the clients 3 and 4 while other
customization, Pd2 (Product Distribution 2), attended the customer 5.

Figure 2 shows how the company distributes its products to its customers. In a real scenario the number of
customers is much more significant and not just 5 as shown in the figure. Each client has an independent
installation of the product.

Bug fixes or improvements to the product can be deployed. In this case when there is a modification in its
original version all nodes associated with this need to receive such updates. In Figure 2, for example, if a
modification is implemented in PoV1, customers 1 to 5 are also updated.

Figure 1. Implementing steps.

 L’Erario et al. / Software Residence Application in the Versions of a Software Product Line

4 © 2017 by Author/s

New versions of the product will be launched. In Figure 2, represented by PoV2, ie original product 2. There
may be migrating from a client that is in version 1 for this, but it depends on the contractual arrangements between
the company and its customer.

After presenting this scenario the following set of questions was conducted for the students:
a. How new developers start their work?
b. How new features can be implemented and deployed?
c. How specify configuration/versioning processes for this scenario?

Research Protocol

The protocol indicates that the activities performed by the researcher during the operation of the research.
Table 1 contains the description of the research protocol elements used here. It is noteworthy that in this
procedure the experimental test (preliminary execution of the experiment in an attempt to validate the research
process) was not run by GTI experience in residence in software (Fabri et al., 2010; Silveira Duarte et al., 2013)
and also the experience of selected population, already active in the market.

At the end of the implementation of residence, the students delivered a report and also the versioning structure.
The final analysis was drawn from artifacts (report and versioning directory) delivered by the teams.

Variables Monitored

Through the protocol, presented in Table 1 together with the generated artifacts, it was possible to see how
each team developed an solution to the problem. It is important to note that the results presented by the teams
were analyzed individually.

There were two artifacts generated by each of the teams. The first one is a directory structure referring to the
version control system. In this case, all they used Subversion. In this directory each team should create a basic
working structure, which later in the testing activity, should, along with the other students allocate 5 distributions
for 5 alleged clients as illustrated in Figure 2.

Figure 2. Structure distributions covered by company.

Table 1. Research protocol.

Context
Residence in software, simulation of a real problem, obtained from the software
industry.

Purpose of
residence

Enable residents to treat a software product line with multiple distributions and
versions.

Participants Tutor and students of informatics graduate program.

Selected population
12 students of the program, all active in the software market, with at least 2 years
of experience. Students were divided into groups of 4 participants.

Generated artifacts
A versioning structure and a report containing the specification of the processes
required

Analyzed variables

Based on both generated artifacts the following issues were discussed: the ability
to create new distributions, creating new versions, the creation of new updates
and the creation of new features.

Journal of Information Systems Engineering & Management, 2(2), 11

© 2017 by Author/s 5

Table 2. Variables.

Problem (creating..) Definition

New Installation
Created when a new customer is captured by the company. A new area in
versions environment should be created.

New distributions
Created at the time that an identical copy of a product serves more than
one client.

New updates
A bug or an improvement was detected. In this case it must be propagated
to all clients in this release.

New features
It is deploying a new feature in an existing version and propagates it to all
customers (distributions) in this release

New versions
A new generation of the product is created. Customers can migrate from
earlier to later in accordance with contractual terms.

The second artifact is a report that should contain a set of specifications processes described in BPMN

(Business Process Model and Notation), so that the entire development team was able to create new versions,
distributions and product updates, and contemplating the beginning of new developers in the company.

The variables treated in this study are explained by Table 2. The first column refers to what problem the
solution proposed by the group must solve, while the second description.

The variables listed in Table 2 were measured in terms of yes or no. That is, the solution proposed by the
group can meet a variable or not. Furthermore, three scales were used to measure. The ability to solve this problem
automatically, partially automatic or manually.

Solve an automatically problem means that with the execution of a problem script will be resolved, partially
automatic occurs when the developer process needs to run a set of scripts and manually when the developer needs
to intervene with the software to verify and validate the action.

THE SOFTWARE RESIDENCY EXECUTION

The implementation of residence followed the steps outlined in Figure 1. The systematic implementation of
these steps ensured that the residence was executed successfully and especially the knowledge was generated and
disseminated among residents.

Creation Environment Process

In this first stage, the environment and also the problem presented were created and configured. The creation
of such implied real case of adaptations within the university, featuring a simulation. While driving the
organization's characteristics in question (size, number of employees and customers) into the residence is plausible,
the product studied had to be adapted. In this step, a new version was created, following the precepts referring to
the original architecture, so creating an imaginary product, but with the features of the original.

Training

As learner's evening, a training about 8 hours was jointly developed. It is noteworthy that the participants were
already active in the market and for this reason the training has been optimized for such a team, since everyone
already had some knowledge in Java and mainly in object orientation. This training covered subjects: JavaServer
Faces, JPA, Subversion and BPMN.

The Implementation of Residence

After training, this step, which lasted 8 hours, the scenario presented, along with the problem and aimed to lead
the groups to resolve tax problems.

The groups presented two versions of the report / process prior to the end of 8 hours. At the end, they delivered
the specification of processes in BPMN, along with versioning directory Subversion. The teams had three days to
prepare a report on such cases without the change this to make all documentation. At this stage the groups had
access to documentation and also to the application source code.

Test

At this stage, 5 alleged customers were created and each team had to demonstrate in seminar format as would
be the solution of the problem. The created customer match the structure shown in Figure 2, that is, customers
who had the product P would be made in an original way, and also customization, represented in distributions. It
was also exposed to possible migration of the first version to a second version of the clients.

 L’Erario et al. / Software Residence Application in the Versions of a Software Product Line

6 © 2017 by Author/s

Table 3. Results Group 1.

meets
No

Yes

variables 1 2 3

new

distributions X

updates X
Features X
versions X

Table 4. Results Group 2.

meets
No

Yes

variables 1 2 3

new

distributions X

updates X
Features X
versions X

Table 5. Results Group 3.

meets
No

Yes

variables 1 2 3

new

distributions X

updates X
Features X
versions X

Validation

After the seminar, based on the delivered documentation, a study on the validation of the solutions was
performed. In this study it was found that the artifacts generated by the groups met the needs presented in the
previous section.

Validation simulated faithfully the events in real company. In this regard, it was considered that new
distributions are created from the original version. For this, a copy of the source code of this version is copied to
a new directory, whose name refers to customer identification. In addition, new features in this product, it means
the need to implement new classes / methods and consequently a new interface or segment thereof. Once tested,
the new functionality should be propagated to all the distributions of a given version. Moreover, in this case, the
database can be modified with the addition of new fields.

The corrections made in the original version are also propagated to all distributions.
For each variable analyzed, based on the documentation submitted, two possible values were defined: yes / no.

If a variable is taken into consideration (value yes), there are 3 levels at which this was measured.
Level 3 indicates that with just a single command or script execution, the variable has been met. For example,

when creating a new distribution with the execution of a command line the group created and copied the original
source code to a directory whose name refers to the customer.

Analogously, but using documentation to meet the variable, you need to run more than one command line /
script, so has the level 2. Level 1 it is a manual solution, in which the developing need to understand concepts and
processes before running a larger set of commands, in addition to a distribution to another, these commands can
vary and human intervention is required to confirm changes.

Table 3, Table 4 and Table 5 report the individual results obtained from the analysis of the three groups used
in this experiment. It is noteworthy that a better explanation of the variables is shown in Table 2. Problems related
to distributions and facilities in new customers were treated equally in all groups.

CONCLUSIONS

This paper presented an experiment conducted to address issues relating to product line and version control
system software residence context.

Therefore, we selected three groups of IT professionals (graduate students) from Federal Technological
University of Paraná.

Journal of Information Systems Engineering & Management, 2(2), 11

© 2017 by Author/s 7

From the results it was found that the residency program was effective and made the groups could solve the
stated problems. Individually analyzing the results, wenote that no group failed to meet the problem of creating a
new distribution (or new installation), ie the delivered documentation, along with the directory structure fully
contemplated this variable.

The relevant results to update could not be partially automated by a group (group 2). In this case, so a bug was
corrected by adopting this solution, the company would need human intervention to confirm the distribution
correction manually. The same happened with the functionality, in addition, it is impractical in the case of group 2
(Table 4). New versions can be created in an automated manner by groups 1 and 2, the same does not occur with
the group 3.

The concern to automate these tasks is an eminent problem of real case presented. With a significant number
of customers (150) becomes unfeasible perform such tasks manual way, with full human intervention.

It was found that the automation of procedures analyzed here may mean a reduction of work / time developers;
however, there is not always a stable solution that you can rely entirely on created scripts. Such a problem is
prominent, for example, when a new feature is created and all distributions are updated without human
intervention. In a great setting, this problem could be solved only with a script, however, the differences between
the specific features of each distribution make it unfeasible.

Even approaching a great result, that is, without human intervention, operations that update the product
distributions and insert new features still need human intervention. Group 1 was the group that approached such
a result.

At the end of the experiment other issue was addressed, it is the continuous build distributions. As future work
is expected to the end of an automatic action, build and test routines are triggered for distributions, so ensuring
that their basic features are in working order. This approach will be treated as the subject of a nearby residence
experience in software.

REFERENCES

Alzahmi, S.M., Abu-Matar, M., and Mizouni, R. (2014). A Practical Tool for Automating Service Oriented Software
Product Lines Derivation. In 2014 IEEE 8th International Symposium on Service Oriented System Engineering (pp. 90–
97). IEEE. http://doi.org/10.1109/SOSE.2014.16.

An, L., Khomh, F., and Adams, B. (2014). Supplementary Bug Fixes vs. Re-opened Bugs. In 2014 IEEE 14th
International Working Conference on Source Code Analysis and Manipulation (pp. 205–214). IEEE.
http://doi.org/10.1109/SCAM.2014.29.

Fabri, J.A., L’Erario, A., Begosso, L.R.C.R.C.R.C., de Lima, F. C., Begosso, L.R.C.R.C.R.C., and de Lima, F.C.
(2010). Implementation of Software Residency at a graduation course. In Frontiers in Education Conference (FIE),
2010 IEEE (p. F1H–1–F1H–6). inproceedings, IEEE. http://doi.org/10.1109/FIE.2010.5673498.

Ghezzi, G., Wursch, M., Giger, E., and Gall, H. C. (2012). An architectural blueprint for a pluggable version control
system for software (evolution) analysis. In 2012 Second International Workshop on Developing Tools as Plug-Ins (TOPI)
(pp. 13–18). IEEE. http://doi.org/10.1109/TOPI.2012.6229803.

Kamei, Y., Ohira, M., Hassan, A.E., Ubayashi, N., and Matsumoto, K. (2014). Early Identification of Future
Committers in Open Source Software Projects. In 2014 14th International Conference on Quality Software (pp. 47–
56). IEEE. http://doi.org/10.1109/QSIC.2014.30.

L’Erario, A., Fabri, J.A., Goncalves, J.A., and Duarte, A.S. (2016). Control version system process anxd software
product line: Software residence experience. In 2016 11th Iberian Conference on Information Systems and Technologies
(CISTI) (pp. 1–6). IEEE. http://doi.org/10.1109/CISTI.2016.7521368.

Mahmood, A.K., and Oxley, A. (2010). A proposed reusability attribute model for aspect oriented software product
line components. In 2010 International Symposium on Information Technology (pp. 1138–1141). IEEE.
http://doi.org/10.1109/ITSIM.2010.5561503.

Malhotra, R., Pritam, N., Nagpal, K., and Upmanyu, P. (2014). Defect Collection and Reporting System for Git
based Open Source Software. In 2014 International Conference on Data Mining and Intelligent Computing (ICDMIC)
(pp. 1–7). IEEE. http://doi.org/10.1109/ICDMIC.2014.6954234.

Murugesupillai, E., Mohabbati, B., and Gašević, D. (2011). A preliminary mapping study of approaches bridging
software product lines and service-oriented architectures. In Proceedings of the 15th International Software Product
Line Conference on - SPLC ’11 (p. 1). New York, New York, USA: ACM Press.
http://doi.org/10.1145/2019136.2019149.

Rochkind, M.J. (1975). The source code control system. IEEE Transactions on Software Engineering, SE-1(4), 364–
370. http://doi.org/10.1109/TSE.1975.6312866.

 L’Erario et al. / Software Residence Application in the Versions of a Software Product Line

8 © 2017 by Author/s

Sampaio, A., Albuquerque, C., Vasconcelos, J., Cruz, L., Figueiredo, L., and Cavalcante, S. (n.d.). Software test
program: a software residency experience. In Proceedings. 27th International Conference on Software Engineering, 2005.
ICSE 2005. (pp. 611–612). IEEe. http://doi.org/10.1109/ICSE.2005.1553611.

Silveira Duarte, A., L’Erario, A., Domingues, A.L.D.S., and Fabri, J. (2013). Proposal of a model to classify software
residency environments. In Information Systems and Technologies (CISTI), 2013 8th Iberian Conference on (pp. 1–6).
Lisboa.

Thao, C. (2012). Managing evolution of software product line. In 2012 34th International Conference on Software
Engineering (ICSE) (pp. 1619–1621). IEEE. http://doi.org/10.1109/ICSE.2012.6227224.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A., and Pfleeger, S.L. (2012).
Experimentation in Software Engineering. Advances in Computers (Vol. 44). Berlin, Heidelberg: Springer Berlin
Heidelberg. http://doi.org/10.1007/978-3-642-29044-2.

