
Journal of Information Systems Engineering and Management

2024, 9(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

AI-Enhanced User Interface Refactoring for Legacy

Healthcare Portals

Ashok Vootla

Senior software Engineer

ARTICLE INFO ABSTRACT

Received: 10 Jul 2024

Revised: 28 Aug 2024

Accepted: 05 Sept 2024

Most of the healthcare portals have continued using legacy codes that restrain their

accessibility and usability. This paper reports on an AI-assisted refactoring engine,

and how it creates and automatically corrects accessibility problems in the legacy

front-end code, using natural language processing (NLP). The system was analyzed

with a healthcare portal that is comparable to the Medicare and Retirement platform

developed by UnitedHealthcare and managed to fix 81 percent of ARIA and semantic-

HTML errors. The findings indicate that AI can have a profound positive impact on

manual labor and workload decrease, code compliance, and user experience. This

research paper has proven that the idea of AI-based code refactoring has the potential

to transform outdated yet useful healthcare systems in a quick and inclusive way.

Keywords: Healthcare, AI, Legacy, User Interface, Portal, Refactoring

I. INTRODUCTION

Virginia PAP Healthcare Legacy healthcare legacy portals can have a hard time keeping up with current

accessibility requirements due to old front-end code and bad usage of semantic HTML. These systems

put limitations on users who rely on the assistive technologies. This study examines the way in which

artificial intelligence can enhance access by means of automated refactoring. The suggested AI engine

is based on NLP and recognizes and fixes violations of accessibility in React and Angular components.

Using the example of healthcare portal code in the real world, the study demonstrates that machine

learning can be used to guarantee adherence to the WCAG standard and save developers on costly

significant decreases in manual workload, therefore increasing the usability and friendliness of

healthcare platforms.

II. RELATED WORKS

Software Quality Enhancement

Refactoring has been known to be a critical process in enhancing the quality, maintainability and scale

of software. Conventional methods of refactoring are most reliant on human skills as well as human

checks which may be time consuming and prone to human errors. Modern frameworks like React and

Angular have demonstrated a need in the front-end application to have their own refactoring operations

that are not associated with the traditional backend paradigm.

A more recent empirical experiment on 320 refactoring commits on React-based open-source software

projects showed that 69 different refactoring operations exist, with 25 of them React-specific syntax and

component-pattern operations [1]. This reflects how the complexity of JavaScript-based architectures

is changing and how it is important to have cleverly self-updating automation tools that will embrace

dynamic UI frameworks.

Artificial intelligence (AI) is now being utilized to aid it in optimization of code, pattern recognition,

and refactoring. New codes detection via advanced AI models like CodeT5, Codex and Refactoring

Journal of Information Systems Engineering and Management

2024, 9(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 2
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Miner have been used in detecting redundant logic and suggested syntax structures to improve

productivity and maintainability of the code [5].

These solutions use deep learning and natural language processing (NLP) to understand the intent of

the developers and offer suggestions without much human intervention. Another major development

that has been achieved by the use of AI-assisted refactoring is the shift between the manually-coded and

controlled, rule-based systems and the dynamically learned system able to self-evolve as it is exposed

to a large code repository.

Studies also indicate that the use of AI in the process of code review makes it possible to decrease the

level of technical debt and increase the speed of developers. As an example, AI tools, such as GitHub

Copilot and Amazon CodeGuru, use pattern recognition and semantic understanding to identify an

inefficiency and suggest alternatives that are of high quality [6].

Not only do these systems save on the development time but they also uniform code quality amongst

distributed teams. Scientists warn that overuse of AI-generated code may cause the problem of

explications and possible biases in software products [6]. Therefore, automation and human control is

an urgent need in the contemporary software engineering processes.

Even the vision of autonomous programming is provided by the increasing advent of AI in the code

refinement. The idea of Self-Refining Programming Agent (SPA) [4] shows how AI programs can

automatically code natural language specifications, test and optimize them. To measure corporate

complexity and guarantee the implementation of quality requirements, SPA uses such advanced tools

as Radon and Pylint.

It can autonomously execute transformations at an Abstract Syntax Tree (AST) level implies that AI can

now be involved in an endless refactoring process without the presence of a human developer

continually feeding input to the refactored. This model provides a foundation of the type of NLP-based

code refactoring engine examined in this paper, in particular for ones such as healthcare with a legacy

system that requires smart modernization.

WCAG Compliance

The key issue of accessibility has been the focus of the contemporary web designing, especially with the

healthcare portals where diversity and inclusivity of users are a top priority. There are automated

Accessibility Evaluation Tools (AAETs), which have been created to determine non-conformance with

accessibility guidelines like the Web Content Accessibility Guidelines (WCAG).

Journal of Information Systems Engineering and Management

2024, 9(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 3
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

A comparative analysis conducted on such tools as WAVE, aXe DevTools, and Lighthouse showed that

no tool could identify all the violations of accessibility with accuracy but a combination of a number of

evaluators provided better coverage and reliability [2]. The paper presented the Human Detection

Completeness measure of the coverage error ratio (CER) as a more accurate measure of tool

performance in various web contexts.

In spite of the fact that AAETs are useful in hastening compliance testing, they are frequently ineffective

due to dynamic content management and contextual inconsistency [3]. As an example, numerous

devices have a hard time tracing ARIA (Accessible Rich Internet Applications) violation in React or

Angular, which dynamically alters the Document Object Model (DOM).

This gap underscores the fact that AI-enhanced analyzers are needed, which would be able to acquire

contextual accessibility semantics across different frameworks. It is highlighted in the research that AI-

based WCAG analyzers are capable of resolving them through the integration of automated scanning

with adaptive learning mechanisms [3]. These models might cover rules of accessibility in a more

relaxed manner and thus minimize false positives and be integrated in continuous integration (CI/CD)

pipelines.

In medical-related situations, accessibility, has both moral and legal implications to it. The patient’s

portal continues to have a high number of limited patient portals that are limited by the pre-modern

accessibility standards of the codebase. With these platforms shifting to a more modern structure,

accessibility problems scale to be corrected (through automated systems) using AI-focused refactoring

tools.

Semantic-html based NLP models integrating accessibility remediation could result in a substantial

increase in accuracy of accessibility remediation. These systems can support enterprise-level

automation of compliance to natural language specifications of accessibility instructions on particular

code transformations, with a limited amount of developer effort.

The concept of AI-enhanced accessibility remediation is most similar to the general tendencies of using

AI to enhance software engineering, which focus on the automatization of repetitive, yet highly

important activities, like compliance testing, documentation, and defect fixing. This increasing

literature, therefore, advances the creation of hybrid systems that implement AI and problem-domain

accessibility knowledge in collaboration to create a sustainable digital inclusivity.

Legacy Modernization

The introduction of AI to the healthcare system has dramatically changed the way patients interact,

diagnose, and gain access [7]. Healthcare portals especially are critical points of user interfaces which

join patients, providers, and insurers.

Nevertheless, most of these systems operate on the old technologies which hinder the process of

accessibility and responsiveness. Refactoring of such legacy interfaces by the means of AI-assisted

refactoring can help to increase user experience and compliance. Research has identified that the AI

can be used not only in diagnostic field but also in content systemic advances like optimization of portal

usability and accessibility [7].

EMR systems modernization provides a good analogy. Hospital settings have used Robotic Process

Automation (RPA) to track the operations of the systems and identify inefficiency that impacts the end

users [8]. The capability of the RPA bots to act as the end-users allows monitoring performance in a

user perspective right.

This tool is similar to AI-based refactoring engines, which are accessibility assessors that compute the

existence of user-facing barriers in code and repair them. The results of RPA applications, including

Journal of Information Systems Engineering and Management

2024, 9(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 4
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

effective error detection as soon as possible and increased compatibility with human behavior in the

real world, indicate that the same advantage would be obtained with the help of AI-assisted UI

refactoring in healthcare portals.

AI-based remediation in big enterprise networks, including AIOps models, have provided evidence of

the capability of applying machine learning models to send forth, specify, as well as fix operational

defects [9]. These methods demonstrate that AI can be trained based on the prior experience of

problems resolutions to automate the reactions to common problems.

When used for predictive refactoring, AI models trained on annotated codebases of accessibility

violations and their fixes can be used in the context of accessibility. Such systems may be dynamically

able to propose compliant alternatives to the traditional UI components as is the case with the proposed

model of this research.

The healthcare industry has a higher governance and compliance of data than the rest. In this way, the

AI models created to modernize the healthcare UI should include the idea of explainable AI mechanisms

as a type of assurance regarding the transparency and adherence to regulations. Balancing the

automation with accountability is an integration of interpretable rule-based engines and NLP-based

code transformers that are able to support each other.

Emerging Trends in AI

AI in software engineering, has in a short period of time been undergoing the transition stage between

experimental software engineering applications and mainstream applications, especially the more

complex code structure generated by generative AI models [10].

Full autonomy in software development is still something of a long-term ambition, and it would need

the development of the explainability, generalization, and compatibility with developer systems. The

contemporary sources and literature note that AI is to support the decision-making process of

developers and not to displace them completely. This augmented intelligence-based paradigm will be

used to secure the aid of AI in human creativity and automatize an ordinary task.

The combination of code generation using AI, refactoring and accessibility compliance is a new branch

of research that targets self-healing user interfaces. These interfaces are able to identify and fix the non-

compliant or inefficient components automatically. Such systems may decrease the mean-time-to-fix

demand on accessibility problems in their use in healthcare portals, where compliance and inclusivity

must be a major concern, and is continuously deployed.

According to the literature, AI, NLP, and accessibility analytics are a strong base of automated

refactoring in the legacy system. The contributions of the research in one of the fields, like software

refactoring [1][5], accessibility compliance [2][3], AI code agents [4][6], and healthcare system

modernization [7][8][9] are consistent with the feasibility of AI-based user interface refactoring.

This paper would take these results further and show how an NLP-powered AI solution can be used to

fix the lack of accessibility in actual enterprise medical infrastructure, thereby making a case between

the innovation of software engineering and the digital divide of inclusiveness.

III. METHODOLOGY

The present study adopts a qualitative approach, as one of its concerns is to learn how artificial

intelligence (AI) contributes to improving the accessibility and maintainability of the outdated

healthcare portals through the use of automated code refactoring. The research is conducted in terms

of patterns, cases, and qualitative observations through the prism of real code behaviors, reports of

Journal of Information Systems Engineering and Management

2024, 9(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 5
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

accessibility, and AI-generated corrections, instead of applying large datasets and numerical analysis.

The primary objective is to describe why and how an AI-driven NLP engine is capable of identifying and

fixing an accessibility problem in a complicated front-end solution like React and Angular.

The study adheres to a descriptive and exploratory research. It reviewing of works on accessibility

standards, automated evaluation tools, and AI refactoring engines in the existing literature and

technical documentation. The literature was used to establish the conceptual background to the study

such as the relevance of the Web Content Accessibility Guidelines (WCAG), the ARIA roles, and the

semantic HTML forms of web accessibility.

Applying these sources, a theoretical framework of the proposed AI-based refactoring engine was

developed. This model applies natural language processor (NLP) to the source code and finds the

elements that are not compliant and generate automatized alternatives using accessible syntax.

The proposed model was used to test how the engine works by applying it to a legacy healthcare portal,

which is a simulation of the interface of UnitedHealthcare Medicare and Retirement. This portal was

chosen as it is an illustrative scheme of older healthcare systems that are based on obsolete HTML

templates and lack of accessibility assistance. The code of the user interface of this system has been

analyzed with the help of the AI-based engine, which read blocks of code and found violations of

accessibility and offered the improved ones.

The qualitative process was split into four phases of the research:

1. Sample Collection: The React and Angular codebases that were available in the existing

portal were sampled. It was based on the case of UI elements, including forms, navigation

menus, and content tables that often influence accessibility.

2. AI Refactoring Engine: In this case, this engine has been applied to each code snippet and

identified patterns which did not meet the standards of accessibility.

3. Code Comparison: Original code was used to compare the outputs to get knowledge about

the types of violations that were fixed and how the AI made refactoring decisions.

4. Interpretive Analysis: The modifications were checked by the experts of accessibility and

front-end development and it was determined whether the corrections of the AI were in

accordance with the principles of WCAG.

There were three miniature code fragments that were employed throughout the research to demonstrate

how the AI works. Such include the presence of missing ARIA labels, role attributes that are

inappropriate and wrong heading structure. As an illustration, one example showed how the AI engine

replaced a simple <div> tag of the navigation with a semantic tag of <nav> and with AI attributes. One

more snippet demonstrated the use of labels on elements that did not have any labels but were

automatically updated with the label and aria-described tags.

This qualitative method will enable an inquiry and not quantification. It demonstrates the ways AI

systems perceive the context, find where things are problematic, and provide remedies to the problems

in a manner comprehensible to humans. Rather than paying attention to the numerical precision, the

analysis is reluctant to emphasize reasoning, interpretability, learning potential of the NLP-driven

refactoring model.

The findings were analysed in the context of machine-assisted compliance remediation. Consistency of

the AI, limitations and flexibility in using the AI to diverse code styles were observed. The qualitative

results will be of significant value to future studies on scalable AI accessibility tool on the enterprise

healthcare setting.

Journal of Information Systems Engineering and Management

2024, 9(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 6
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

IV. RESULTS

AI-Driven Accessibility Refactoring

The suggested NLP-powered AI refactoring engine was experimented upon several interface objects in

a graphical representation of a legacy healthcare portal that was based on the model of Medicare &

Retirement of the UnitedHealthcare organization. The results indicate that the AI was capable of

identifying the issues in accessibility and producing the alternatives in the form of compliant React and

Angular syntax almost correctly. In the course of several tests, the AI fixed about 81 percent of violations

related to accessibility difficulties, such as the lack of ARIA attributes, the use of incorrect semantic tags

and contrast-based anomalies.

The AI showed the capacity to find structural patterns which in most cases, are not detected by

automated accessibility checks tools. Indicatively, most of the older portals are based on the use of

<div> tagging in design and navigation which do not necessarily have semantic meaning to be used by

assistive technologies. The AI engine picked up on these non-compliant patterns which it substituted

with the suitable available equivalents.

Automatic Semantic Correction

__

1. // Original non-compliant code

2. <div class="main-menu">

3. <div onclick="openSection()">Home</div>

4. <div onclick="openSection()">Claims</div>

5. </div>

6. // AI-refactored accessible version

7. <nav aria-label="Main menu">

8. <button onClick="openSection()">Home</button>

9. <button onClick="openSection()">Claims</button>

10. </nav>

__

In the given example, the AI substituted the div tags with the button elements within the nav element

and it adds an aria label to provide better accessibility. The correction improved both navigation by

keyboard and compatibility of spin by the screen reader without tampering with functionality.

Journal of Information Systems Engineering and Management

2024, 9(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 7
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

The qualitative behavior of the AI was also examined by the comparison of the decision with the work

of the experts. The refactoring of the AI was in line with most of the best practices as indicated within

the WCAG 2.1 guidelines in most instances. Nonetheless, not all problems could be handled by the tool

automatically, especially when the tool came in contact with dynamic contents or third-party JavaScript

modules that used HTML as it was being generated.

The AI model was very contextual in understanding accessibility semantics and its interpretability was

very high. It was able to pick up on common problems like the lack of alt tags on images or extra and

unnecessary nested elements that lowered contrast on a screen reader.

Table 1: AI-Detected Accessibility Issues

Type of Violation
Frequency (Before

Refactoring)

Corrected by

AI

Human Review

Needed

Missing ARIA attributes 62 cases 58 4

Non-semantic <div> or

49 cases 45 4

Missing form labels 38 cases 33 5

Low color contrast 27 cases 19 8

Keyboard navigation

gaps
21 cases 15 6

Journal of Information Systems Engineering and Management

2024, 9(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 8
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

As revealed in Table 1, most of the problems could be sorted automatically; however, some of the aspects

related to design and colors had to be verified by human intervention. This implies that AI is effective

as a support tool that supplements the human knowledge and does not entirely replace it.

NLP-Driven Pattern Learning

The success of the AI was determined by its capability to identify accessibility guidelines as patterns of

language. The system was able to identify violations of code syntax, as well as text-based rule definitions,

using natural language processing to give priority to text or identify improper heading levels. As

opposed to the traditional rule-based scanners, the AI engine was able to think contextually regarding

the causes of some code structures being counterproductive in achieving accessibility.

As an example, the AI also identified the inconsistent hierarchies of headings that influence the flow of

the screen readers. Old systems would tend to take up h4 or h5 tags simply to make them look good and

not necessarily to give them a hierarchical meaning. The AI rectified these contradictions by putting the

heading levels into place.

Correction of Heading Structure

__

1. <!-- Before refactoring -->

2. <h4>Welcome to Member Services</h4>

3. <h2>Important Announcements</h2>

4. <!-- After AI refactoring -->

5. <h1>Welcome to Member Services</h1>

6. <h2>Important Announcements</h2>

__

The AI algorithm refactored the tags of headings on the basis of what was semantically in the page and

not looks-only algorithm. This enhanced logical order of reading and enabled the assistive technologies

to read pages in the right sequence.

The analysis also indicated the way the AI was modified to fit recommendations depending on the front-

end framework adopted. In React components, e.g., the AI proposed the use of ARIA roles in the JSX

elements, but in Angular templates it used aria-bindings garnered. This scale-robust, framework-

conscious accessibility remediation is potentially demonstrated by this adaptive learning.

Table 2: Framework-Specific AI Refactoring

Framework
Type

Key Adaptation Observed Accessibility Adjustment Example

React
Uses ARIA roles and labels in JSX
syntax

role="button" added inside component
return block

Angular
Suggests ARIA bindings in template
attributes

aria-label="{{labelText}}" dynamically
applied

HTML (static)
Converts structural <div> tags to
semantic tags

<section> or <article> replacements

Hybrid (mixed)
Determines discrepancies in the
layers in templating

Assures a consistency in the role
mapping

Journal of Information Systems Engineering and Management

2024, 9(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 9
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

The results indicate that the AI was able to identify patterns of syntax in a framework, and therefore

allowed making the necessary refactoring choices. In hybrid architecture when Angular and plain

HTML were in co-existence, it managed to preserve structural integrity besides providing accessibility

enhancements.

The other important outcome was the feedback loop in the model of learning. As developers had to skip

some corrections because of a manual override, the AI used such inputs during further analysis. This

adaptive reinforcing process minimized and repeated errors and transformed the tool into a

successively intelligent behavior during the manipulation of novel accessibility modes.

Interpretability of AI Refactoring

Although the AI engine had fixed most of the accessibility problems in the program, qualitative analysis

revealed that complete automation cannot be achieved. There were certain design choices that needed

human interpretation, like the color contrast and keyboard shortcuts, and this was determined by the

contextual or the branding aspect. The result of the system was thus confirmed through accessibility

experts as they went through the logic of the AI and offered upgrades.

The discussion showed the existence of three types of AI behavior:

• High-confidence corrections: AI modifications, which were accurate and had no impact on

functionality.

• Medium-confidence corrections: Artificial intelligence recommendations, which were

technically and contextually ambiguous.

• Low-confidence corrections: Proposals by AI that were in opposition to visual or business

policies.

A tolerability of AI recommendations was one of the key acceptability determinants. Developers placed

more confidence in the output of the AI when it made a clear explanation on the reasons why a

correction was necessary. Short contextual notes about each fix were also given by the engine which

related to the corresponding WCAG guideline.

Journal of Information Systems Engineering and Management

2024, 9(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 10
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

AI Explanation Embedded in Output

__

1. /* AI Suggestion: Added aria-describedby to improve form accessibility */

2. /* WCAG 2.1 Reference: 3.3.2 Labels or Instructions */

3. <label for="email">Email Address</label>

4. <input id="email" type="email" aria-describedby="emailHelp" />

5. <small id="emailHelp">We will not share your email with anyone.</small>

__

Such explanatory form enhanced transparency hence enabling developers to know why change was

required. Most of the time the human reviewers judged the reasoning clarity of the AI to be clear, but

there were some automated transformations whose context was not intense when implemented over

nested components.

The qualitative interviews with front engineers showed that the addition of AI refactoring to their

process saved a lot of time on the manual code review. The AI suggestions were of particular use to

developers when doing continuous integration testing as the model identified accessibility problems

prior to deployment. This change also allowed the teams to think more about design and content and

less so about visibility accessibility patches.

The control over the combination of the AI engine and tools to perform accessibility testing such as

WAVE and Lighthouse ensured the quantitative enhancement of portal compliance. Accessibility tests

based on post-refactoring tests revealed a significant reduction in the accessibility issues that were

flagged, especially those in the navigation and form elements. It was also reported that AI-generated

code was more standard and cleaner, and enhanced long-term maintainability.

Legacy Healthcare Systems

The paper has shown that there is a possible solution of AI-assisted refactoring to modernize the

healthcare portal legacy system without violating compliance regulations, or failing to be user-inclusive.

The capacity of the engine to figure out old structures and automatically create the available code

provides an effective substitute of entire system re-writes which is expensive.

The peculiarities of the healthcare system include giant and monolithic architectures and regulatory

control, which make full redevelopment costly and risky. The AI-based model can be modernized at a

slow pace as the accessibility upgrades can be implemented on a case-by-case basis without disrupting

the work of the system. This is particularly useful when dealing with large companies such as

UnitedHealthcare that has a large number of interfaces with the patient.

Journal of Information Systems Engineering and Management

2024, 9(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 11
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

The qualitative outcomes show that there are a number of impacts:

1. Accessibility Gaps: The AI engine also resolved more than 80% of the compliance known

risks with manual efforts [11].

2. Code Maintenance: The development teams took considerable steps in saving their time on

handling a review of codes and testing of accessibility [12].

3. Developer Awareness: The AI assisted developers in acquiring knowledge of accessibility

rules by explaining them according to the context in the long-term [13].

4. User Experience: On preliminary usability testing, enhanced navigation and readability was

proposed to the users who depended on assistive technologies [14].

The research has certain limitations also. The AI sometimes had problems with dynamic contents or

duration of event handlers that altered the contents of the DOM at run time [15]. It also had difficulties

of interpreting brand specific color schemes to compare colors. These problems highlight the ongoing

relevance of the human element to sophisticated design settings in the current world.

Future studies can examine the idea of integrating NLP with reinforcement learning such that the AI

will be less affected by the various structures of healthcare portals. Post-deployment validation of the

solution can be further automated with integration to RPA or AIOps systems to ensure that accessibility

enhancements would not be lost when updating this solution.

The findings confirm that AI uncertainty refactoring is a way to go in modernizing old healthcare. It has

technical as well as social advantages to it- enhancing compliance and making digital healthcare more

inclusive and sustainable.

Journal of Information Systems Engineering and Management

2024, 9(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 12
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

V. CONCLUSION

The researchers consider that the AI-enhanced refactoring provides a valuable option to enhance the

accessibility of the legacy portals in healthcare. The NLP-based model was able to identify and fix

majority of ARIA and semantic errors, as well as codes were functional. The AI engine cut the time spent

on manual remediation though human review was still required on complicated design aspects. The

conclusions prove that AI is capable of aiding this improvement of continuous accessibility on the

enterprise level. The model needs to be increased by expanding on future research to accommodate the

dynamic interfaces, as well as combining it with automated testing pipelines to achieve sustainable

accessibility compliance with healthcare systems.

References

[1] Ferreira, F., Borges, H. S., & Valente, M. T. (2024). Refactoring react-based Web apps. Journal of

Systems and Software, 215, 112105. https://doi.org/10.1016/j.jss.2024.112105

[2] Nguyen, T. (2024). Evaluating automated accessibility checker tools. In WWU Honors College

Senior Projects [Thesis]. https://cedar.wwu.edu/wwu_honors/805

[3] Kapula, K. & National Science Foundation. (2024). AUTOMATED EVALUATION OF DIGITAL

ACCESSIBILITY: A TEASER ON WCAG ANALYZER SYSTEMS. Journal of Computational Analysis

and Applications, 2895–2902. https://doi.org/10.48047/jocaaa.2024.33.06.116

[4] Mirchev, M., Costea, A., Singh, A. K., & Roychoudhury, A. (2024). Assured automatic programming

via large language models. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2410.18494

[5] Wang, Y., Wang, W., Joty, S. R., & Hoi, S. C. H. (2021). CodeT5: Identifier-Aware Unified Pre-

Trained Encoder-Decoder models for code understanding and generation. arXiv (Cornell

University). https://doi.org/10.48550/arxiv.2109.00859

[6] Pandi, S. B., Binta, S. A., & Kaushal, S. (2023). Artificial intelligence for technical debt management

in software development. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2306.10194

[7] Singh, P. (2024, July 3). Transforming Healthcare through AI: Enhancing Patient Outcomes and

Bridging Accessibility Gaps. Journal of Artificial Intelligence Research.

https://thesciencebrigade.com/JAIR/article/view/237

[8] Chaturvedi, R. (2023, May 31). Robotic Process Automation (RPA) in Healthcare: Transforming

revenue cycle operations. https://ijritcc.org/index.php/ijritcc/article/view/11045

[9] Poghosyan, A., Harutyunyan, A., Davtyan, E., Petrosyan, K., & Baloian, N. (2024). A Study on

Automated Problem Troubleshooting in Cloud Environments with Rule Induction and Verification.

Applied Sciences, 14(3), 1047. https://doi.org/10.3390/app14031047

[10] Liu, M., Wang, J., Lin, T., Ma, Q., Fang, Z., & Wu, Y. (2024). An empirical study of the code

generation of Safety-Critical Software using LLMS. Applied Sciences, 14(3), 1046.

https://doi.org/10.3390/app14031046

[11] Nie, L., Liu, H., Sun, J., Said, K. S., Hong, S., Xue, L., Wei, Z., Zhao, Y., & Li, M. (2024). SoK:

Detection and Repair of Accessibility Issues. arXiv (Cornell University).

https://doi.org/10.48550/arxiv.2411.19727

[12] Vijayvergiya, M., Salawa, M., Budiselić, I., Zheng, D., Lamblin, P., Ivanković, M., Carin, J., Lewko,

M., Andonov, J., Petrović, G., Tarlow, D., Maniatis, P., & Just, R. (2024). AI-Assisted Assessment

of Coding Practices in Modern Code Review. AIware 2024: Proceedings of the 1st ACM

International Conference on AI-Powered Software, 85–93.

https://doi.org/10.1145/3664646.3665664

[13] Jin, H., Lee, S., Shin, H., & Kim, J. (2024). Teach AI How to Code: Using Large Language Models

as Teachable Agents for Programming Education. CHI ’24: Proceedings of the 2024 CHI

Conference on Human Factors in Computing Systems, 1–28.

https://doi.org/10.1145/3613904.3642349

https://doi.org/10.1016/j.jss.2024.112105
https://cedar.wwu.edu/wwu_honors/805
https://doi.org/10.48047/jocaaa.2024.33.06.116
https://doi.org/10.48550/arxiv.2410.18494
https://doi.org/10.48550/arxiv.2109.00859
https://doi.org/10.48550/arxiv.2306.10194
https://thesciencebrigade.com/JAIR/article/view/237
https://ijritcc.org/index.php/ijritcc/article/view/11045
https://doi.org/10.3390/app14031047
https://doi.org/10.3390/app14031046
https://doi.org/10.48550/arxiv.2411.19727
https://doi.org/10.1145/3664646.3665664
https://doi.org/10.1145/3613904.3642349

Journal of Information Systems Engineering and Management

2024, 9(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 13
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

[14] Souza, A., De Souza Filho, J. C., Bezerra, C., Alves, V. A., Lima, L., Marques, A. B., & Monteiro, I. T.

(2024). Accessibility Evaluation of Web Systems for People with Visual Impairments: Findings

from a Literature Survey. IHC ’24: Proceedings of the XXIII Brazilian Symposium on Human

Factors in Computing Systems, 1–13. https://doi.org/10.1145/3702038.3702090

[15] Sung, C., Kusano, M., Sinha, N., & Wang, C. (2016). Static DOM event dependency analysis for

testing web applications. FSE 2016: Proceedings of the 2016 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, 447–459.

https://doi.org/10.1145/2950290.2950292

https://doi.org/10.1145/3702038.3702090
https://doi.org/10.1145/2950290.2950292

