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ARTICLE INFO ABSTRACT

Received: 25 July 2024 This study posits a new and effective real-time malware detection and classification
scheme that utilizes memory forensics and machine learning, meeting the increasing
requirement to identify obfuscated, polymorphic, and zero-day threats generally
overlooked by static or network-based tools. With the CIC-MalMem-2022 dataset of
more than 58,000 memory dump samples drawn from various malware families, we
propose a hybrid pipeline based on a Momentum-Contrast Laplacian Autoencoder
(MoCLAE), a novel embedding model that combines contrastive self-supervised
learning with Laplacian graph regularization to produce high-quality, label-free
feature representations. These mappings, derived solely from unstable memory
structures, serve as input to supervised learners—Random Forest, Support Vector
Machine, and XGBoost—to achieve precise family-level malware classification (e.g.,
Trojans, worms, ransomware). The work also presents improved forensic features,
such as process—DLL interaction graphs and temporal delta measures like entropy
change and handle count changes, to enhance interpretability and detection
resilience. Experimental outcomes indicate that our framework meets near-ideal
ROC AUC values over 0.999, performing better than previous models with respect to
accuracy and generalization. Comparative study with newer publications (2024—
2025) affirms the newness and superior quality of this unsupervised-to-supervised
methodology as a scalable and interpretable solution for real-world memory-
resident malware detection.
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INTRODUCTION

With the current increasing complexity of cyber threats, malware has become a powerful
instrument to conduct cyberattacks, taking advantage of polymorphism, code obfuscation, and stealth
execution to circumvent the protection measures. Formerly dependable signature-based detection and
static analysis systems are frequently inadequate against more current adversarial techniques,
especially in cases where malware exists as a file or a zero-day exploit that avoids detection by design.
Such shortcomings have spurred an irreversible trend toward behavior-based analysis and memory
forensics, because malicious behavior may be monitored in real time at process and kernel level,
irrespective of the persistence strategy used by the malware.

A. Background and Motivation

Memory forensics is the ability to examine volatile memory (RAM) on a highly detailed level
including all runtime details of processes, threads, DLLs and communication channels. Unlike
artifacts stored on disks, memory contains a snapshot of the malware execution, both injected
payloads and shellcode which are often never written to disk. This contributes to the effectiveness in
countering advanced threats like in-memory trojan, APTs and ransomware loaders which do not leave
behind a stationary trace [7], [8], [6].
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Current innovations in terms of machine and deep learning have also contributed greatly to the
detection of such threats that is due to automation of the memory dump analysis. Memory-resident
features mean that models that are trained on them are very accurate in their abilities to differentiate
between benign and malicious behavior. Nonetheless, their success depends on three main issues:
their strong feature representation, the possibility to generalize among different malware families, and
decision explainability, which is particularly important in the operational context where things are at
stake [11], [16].

Although transformer-based models and contrastive learning methods have achieved promising
results recently in memory malware classification [5], [14], there are still limitations to real-time
deployments, particularly because of the high dimensions and noises in memory dumps as well as the
lack of available training data.

B. Challenges in Memory-Based Malware Detection

Although this has many benefits, malware through memory forensics is characterized with a

number of technical and operational challenges:

e High Dimensionality and Noise: Memory stores a vast amount of unstructured data usually
characterized by millions of interdependent elements. It is an open problem to extract relevant
discriminative features, without being swamped by redundancy [1], [3].

e Labeling and Balance Problems: The process of labeling the memory samples takes a lot of time
and expertise. Thus, the problem with the development of the malware datasets is that they are
often skewed towards a class imbalance and rare or obfuscated malware families are under-
represented, which impairs the efficacy of supervised learning [4], [11].

e Dynamic Behavior Modeling: Current methods typically use memory snapshots in a purely
static fashion, disregarding the time-varying behavior that can frequently show signs of
malignancy (e.g. increased memory entropy, the number of handles, or pages allocated). Such
dynamic features are an essential element in identifying zero-day and stealthy malware [14], [2].

e Fuvasive Malware Strategies: Newer sophisticated types of malwares are more often
constructed to mimic harmless processes or to insert themselves into trusted services, erasing
the line between good and bad memory states. That requires the models that can do profound
semantics comprehension and pattern identification [6], [18].

C. Research Objectives and Key Contributions

This work is motivated by a collection of specific goals towards creating an interpretable and state-
of-the-art framework for memory-based malware detection and classification.

e To design a new representation learning model (MoCLAE) that produces quality embeddings

from memory features with contrastive and structural learning.

e To enhance the feature space with forensic-specific features like Process—DLL interaction

graphs and temporal delta features.

e To utilize supervised machine learning -classifiers—such as Random Forest, SVM, and

XGBoost—for accurate identification and classification of malware families.

e To compare the approach proposed herein with the latest state-of-the-art methods and illustrate

enhanced generalization, especially on obfuscated or novel malware samples.

The main contribution of this research is to show a unified, memory-forensics-inspired malware
detection pipeline which incorporates unsupervised representation learning and supervised
classification—providing high accuracy, scalability, and deployment usability in cyber security
environments.

RELATED WORK

As the emerging threats of advanced persistent threats (APTs), zero-day malware, fileless attacks,
increase, the effectiveness of conventional malware detection methods based on a static signature and
on inspecting packets has not achieved noteworthy success. With that, memory forensics has become
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a vital branch in the world of cybersecurity, as it allows catching malicious activities as they happened
in volatile memory. Recent research work has been on automatizing the analysis of a memory dump to
recognize malware families using machine learning and deep learning. This section entails synthesis
of related work based mainly on three areas namely malware detection through use of memory
forensics, ML/DL based malware classification and representation learning through graph-based and
contrastive methods.

A. Malware Detection via Memory Forensics

A prime investigative tool that volatile memory presents to an analyst is the ability to capture and
record runtime state of active processes, DLLs, kernel drivers and injected code. Various research
works have been able to prove that memory analysis can detect more stealthy or polymorphic malware
than inspection on files. Hossain and Islam [7] came up with a ML-based memory dump-based
malware detection framework capable of detecting obfuscated malware through analysis of entropy,
injected threads as well as stealth indicators. On the same note, Hasan and Dhakal [6], [15]
demonstrated that behavioral characteristics obtained in the memory (process injection or atypical
use of handles) have a high rate of detecting rootkits as well as in-memory trojans compared to the
traditionally used IOCs (indicators of compromise).

The current research by Hamid and Riad [8], and Dunsin et al. [4] meticulously underlines the
increased importance of memory forensics in contemporary malware prevention and discovery. They
emphasize the necessity of systematic removal of artifacts out of memory sunks-the pattern of DLL
usage, process trees, and thread scheduling. Most recently, Dweib et al. [5] discussed the applicability
of large language models (LLM) and transformers when examining memory dumps to find malwares,
laying out the foundations of contextual and semantic analysis of volatile artifacts.

B. Machine Learning and Deep Learning for Malware Classification

Memory-based data has been founded to be subjected to a lot of machine learning classifier
techniques in detecting malware as well as classifying the family levels of the malware. Maniriho et al.
[11] proposed the MeMalDet framework, which is based on deep autoencoders and stacked ensembles
and used to detect malware in CIC-MalMem-2022 memory snapshots. Relative to their scores, strong
regularization in representation learning is not carried out in the model, and this urges overfitting
when an underrepresented malware family is met.

LIFT was a federated learning framework developed by Dangi et al. [2] and made live memory
forensics as the basis of proactive malware detection. LIFT was computationally lightweight, however,
its accuracy was quite moderate (~92%) and it did not enhance the structural features. This model is a
graph-contrast learning model (GCRD) to detect and identify ransomware running on systems based
on volatility data introduced by Satpathy and Swain [17]. They had a very high precision with the
problem that their solution only targeted a limited range of malware families. Similar areas of study
DL-based classifiers were extended in other recent paper by Odeh et al. [12] and Tiwari & Chaudhari
[18].

The present paper elaborates on these ideas by combining unsupervised feature representations
learning with a forensics-aware feature design, which tends to high accuracy, enhanced generalization
and explainability.

C. Unsupervised Representation Learning and Graph-Based Approaches

Self-supervised and unsupervised learning methods are important to process partially labeled or
even unlabeled memory datasets. The CNN autoencoder models like CNN-AutoMIC [1] and hybrid
contrastive models [14] have expressed a great potential to identify non-linear patterns and anomalies
in memory states. Andriani et al. [1] have shown that such combination of convolutional encoders
with autoencoders enhance KNN-based malware classification, however their work dealt with
malware representations using images and not in raw memory features.

Graph-based approaches are also emerging towards modeling the memory structure. Zhang et al.
[19] proposed ProcGCN, graph convolutional network on memory process graphs, to find malicious
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activity on complex memory layouts. It is their work that informed this research in structural part of
the MoCLAE model. In their turn, Redhu et al. [16] emphasized the significance of semantic
embedding applicable to the DL-based malware detection in their review on the application of deep
learning in the cyberspace.

Pradhan et al. [14] further extending to the contrastive learning by means of memory artifacts to
apply CNN-based contrastive representations with better separation of malware families.
Nevertheless, as explained in our paper, these types of DNNs have limitations, either due to high
computational cost or lacking forensic explainability, which is why the current study tries to fill in
these gaps by implementing an inexpensive and explainable architecture of DNN, which is based on
MoCLAE.

On the whole, the current research supports the ever-increasing significance of memory-based
malware detection and provides a sound background to the proposed hybrid method that is the only
one uniting self-supervised contrastive embedding, graph-based regularization, and forensic feature
augmentation to effectively and explainably classify malware.

METHODOLOGY

This work introduces a hybrid memory-based malware detection system that surpasses the
weaknesses of conventional static and network-based approaches by utilizing volatile memory
characteristics and deep representation learning. The pipeline is based on dataset preparation, feature
augmentation, unsupervised embedding through a new Momentum-Contrast Laplacian Autoencoder
(MoCLAE), and supervised classification with machine learning. The architecture is optimized for
real-world malware threats with obfuscation, adversarial evasion, and data imbalance.

A. Data Acquisition and Feature Engineering

The presented work was based on the CIC-MalMem-2022 dataset consisting of 58596 labelled and
identified memory snapshots of a wide range of malware families as well as benign processes [4], [11].
There are 55 process-related memory features (e.g. entropy, threads, system calls) in each of the
samples. Two new features types were designed:

e Process—DLL Bipartite Graph Features: Graphs containing process-to-DLL interactions were
used to calculate topological measures such items as degree centrality and edge density, which
draws on malware injection patterns [19].

e Temporal Delta Features: The differences between successive snapshots were computed in
order to detect behavioral drift, i.e.

o AEntropy = Entropy; — Entropy;-1
o AHandles = Handles, — Handles,_1
o AThreads = Threads, — Threads,_1

Fields that were categorical were label coded. The final data was stratified so that the dimension

was balanced in class 58,596x55.

B. MoCLAE-Based Unsupervised Representation Learning

The main idea contained in the structure is the MoCLAE model that combines graph-regularized
autoencoding and semantic contrastive learning to produce low-dimensional robust embeddings.
Laplacian Graph Autoencoder

A similarity graph G=(V,E) based on memory snapshots was created where each node represents a
snapshot of the memory and edges are formed based on either similarity in process behavior or the
use of the DLL. The Laplacian matrix associated to it is:
L=D-A (6))

with A as the adjacency matrix, and D as the degree matrix. In order to maintain structural
relationships in the process embedding the autoencoder has a regularization term:
Ligy = Tr(Z"LZ) (2)
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This is where ZeRr~d premise is an embedding matrix of latents in Rnd. This loss term makes
embeddings of similar structurally nodes as closer as they are in the latent space and it increases the
ability to generalize to new, unseen malware [17], [19].

Momentum Contrastive Learning

In order to retrieve the semantic consistency, a momentum contrastive learning module was built
into MoCLAE, based on the MoCo framework [5]. Given an anchor embedding zq, a positive sample
{2}, a collection of negative samples {z; }, the contrastive loss is:

exp (zq - Z]:-/T) (3)
exp(zq .z,:r/‘r)+ Z{il exp (zq -2 /T)

in which T is a temperature variable, adjusting the sharpness of the distribution. This loss will make
embeddings of similar samples be nearby and similar samples to be pushed away, thereby helping to
separate the malware and benign processes even when obfuscated [13].

Combined Loss Function
The final MoCLAE objective is:

LMoCLAE = Al -Lrecon + AZ -Llap + 13 'Lcontrast (4)
An2 . .
where Lyecon = ||X — X||” is the mean squared error between input and reconstructed feature

matrix. In our experiments, we set 4, = 1.0,4, = 0.01 and A; = 0.5 , and embed samples into a 64-
dimensional latent space.

Lcontrast = —lOg

C. Supervised Classification Models

The latent representations produced by MoCLAE were utilized to train a set of supervised machine
learning models for two tasks:

1. Malware Detection (binary classification: benign or malicious)

2. Malware Family Classification (multiclass: benign, Trojan, Adware, Spyware, Ransomware)

The following classifiers were used:

e Random Forest (RF): An ensemble of decision trees that can estimate feature importance [11].

e Support Vector Machine (SVM): A kernel-based classifier that is appropriate for non-linear

decision boundaries [6], [9].

e XGBoost: A gradient-boosted tree ensemble with high performance on tabular data [10].

e Logistic Regression (LR): A linear classifier serving as a baseline.

All models were tested using 5-fold cross-validation and stratified train-test splits to avoid
overfitting and ensure generalizability.

D. Evaluation Criteria and Metrics

As suggested in recent sources [1], [14], [20], to guarantee a consistent and valid outcome of the
model performance estimation, a group of standard sets of evaluation measures was used. These
measures estimate the classification ability in the binary format, as well in multiclass.

e Accuracy measures the accuracy of the model in general:

TP+TN ( )
TP+TN+FP+FN 5

e Precision is the accuracy of positive results whereas Recall gives the sensitivity to identify

everything correct:
L ,Recall = L (6)
TP+FP TP+FN
e The F 1 -score is a balance between the recall and the precision, and is defined the harmonic
mean of these:

2. Precision. Recall

Accuracy =

Precision =

F1l =

Precision+Recall (7)
e ROC AUC (Receiver Operating Characteristic - Area Under Curve) is used to evaluate the
capability of the model to categorize the classes into different threshold levels. The higher the
AUC value the greater is the classification confidence and reliability.
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e The visualization of the separability of malware families in the embedding space of the MoCLAE
was performed by the use of t-SNE Projection (t-distributed Stochastic Neighbor Embedding)
and thus, allowed carrying out qualitative analysis of the representation learning.

Confusion matrices were also inspected to determine the incorrect classifications of different
classes, and feature importance ranking as given by tree-based classifier to determine the irrelevance
of individual features. This assessment model is consistent with known references in the scientific
direction of detection of malware in memory [3], [11], [12].

RESULTS AND ANALYSIS

This section offers an end-to-end analysis of the suggested memory forensics framework for real-
time malware detection and family grouping. The research utilizes the CIC-MalMem-2022 dataset,
comprising 58,596 labeled samples uniformly distributed into benign and malware categories.
Unsupervised and supervised machine learning models are applied in the analysis. The goal is to
confirm the suggested Momentum-Contrast Laplacian Autoencoder (MoCLAE)-based architecture
and gauge its capability to improve malware representation, anomaly detection, and classification
accuracy.

The analysis covers five phases: characterizing and preprocessing the dataset, unsupervised
embedding quality, supervised classification accuracy, interpretability via feature importance, and
final synthesis of results. Visualization, tabulated measures, and careful discussion support
experimental findings.

A. Dataset Overview and Preprocessing

This subsection presents the preprocessing procedure and gives an overview of the main
peculiarities of CIC-MalMem-2022 dataset which we have employed. Before the model training,
intensive preprocessing procedures were performed to guarantee the quality of data, and the
homogeneity of features. Fewer than 0.5% of the missing value was identified in all of the samples and
established by applying the median strategy to prevent skewed distributions. The usual necessity to
normalize numerical features to attain a zero mean and unit variance as well as imply that all
attributes should contribute equally during the model learning. Label encoding of categorical fields
was used to allow them to be compatible with the machine learning algorithms, e.g. SubType. In order
to perform class balance and eliminate sampling bias, a stratified 80/20 train-test split was
undertaken. Further, cross-validation of 5 folds was used in training data to improve the noted
generalizability and stability of evaluation process.

Table I contains the statistical overview of the dataset and defines the number of samples, the
feature characteristics, and some of the fundamental memory forensics metadata, including memory
allocation entropy and handle count. Such metrics help us construct an input to our detection models,
as well as indicate the behavioral differences between benign and malicious processes.

TABLEI

DATASET CHARACTERISTICS
Statistic =~ Benign Malware Total
Number of 29,298 29,298 58,596
Samples
Number of - - 55
Features
(cleaned)
Mean 4.12 5.81 —
Memory
Allocation
Entropy
Mean 112.3 248.7 —
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Count
Feature 0.3% 0.3% —
Null
Percentage
(avg.)

The information given in Table 1 shows clear differences in the behavior of a benign and a malicious
memory state. In particular, malware samples have a much higher average memory allocation entropy
than benign samples (5.81 vs. 4.12), which indicates more chaotic and unpredictable use of the
memory by infected programs. Similarly, the mean territory of handles, an indicator of the number of
active system handles linked with a process, records a significant rise in the number of malware cases
(248.7 vs. 112.3). Such differences contribute to the hypothesis that a malicious process is made with
an individual memory-level signature therefore, can be identified by malicious feature engineering.
These differences can be a very important anchor of the effectiveness of the malware detection and
classification pipeline envisaged.

B. Unsupervised Analysis and Embeddings

This sub section gives the unsupervised methods in assessing the natural separability of benign and
malicious Partner memory patterns that do not utilize the labels of the distinct classes. The goal was to
train compressed, latent representations to show the differences that exist in the memory behavior by
malware and benign processes.

Autoencoder-Based Embedding and Reconstruction Behavior

On raw data, a regular autoencoder model of latent dimension 64 was trained for 20 epochs.
Performance of reconstruction as measured against Mean Squared Error (MSE) between input and
reconstructed features was carried out. The early rebuild losses began at about 66.08 and end at 15.98
at the last epoch, which seems to suggest that high-dimensional features are efficiently compressed
into salient representations.

A 2D t-SNE projection of the learned embeddings, which aids in visualizing an answer to the above

question, is presented in Fig. 1 below.
t-SNE Plot of Autoencoder Embeddings
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Fig. 1. t-SNE Plot of Autoencoder Embeddings (Benign vs Malware).

In t-SNE clustering the distinction between malware (red) and benign (blue) samples is revealed
only partly and not accurately. There is a bit of mixing at the decision boundaries which is a reason to
believe that although the embeddings represent some of the variance, they are not as discriminative as
possible in terms of classification.

The Fig. 2 depicts reconstruction error distribution across benign and malware classes, which
provides information on structural anomalies learnt in the training.
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Fig. 2. Reconstruction Error Distribution (Benign vs Malware).

The plot indicates that the mean reconstruction error can be higher in malware samples as it
implies that the autoencoder has more difficulty performing a lossy compression and reconstruction
of the memory signatures thereof. This backs up the use of multiple structural anomalies in memory
caused by malware as a hypothesis to know, but overlap with benign distributions of error
nevertheless impede separability to any large extent.

Isolation Forest Anomaly Detection on Autoencoder Embeddings

One more indication of the unsupervised separation abilities would be the Isolation Forest training
on the autoencoder embeddings with the contamination factor at 0.5 (representing class parity). The
resulting F1 distinction, and ROC AUC, were 0.534 each, which indicates just mediocre performance
with anomaly finding. The distribution of the anomaly score of benign and malware sample by the
Isolation Forest can be found in Fig. 3.

Isolation Forest Anomaly Score Distribution

10000
=1 Benign
3 ™alware

8000 1

6000 1

Density

4000 1

2000 1

Anomaly Score

Fig. 3. Isolation Forest Anomaly Score Distribution.

The plot doesindicate a slight shift in score distribution between classes, where malware
instances tend toward higher anomaly scores. However, the significant overlap between benign and
malicious samples reinforces the need for better feature representations.

MoCLAE-Based Contrastive Embedding Analysis

To remedy the autoencoder-based representation limitations, the Momentum-Contrast Laplacian
Autoencoder (MoCLAE) was proposed. The hybrid embedding model combines both structural
memory context by Laplacian loss (~73,008) and semantic similarity by contrastive loss (~0.0076).
The total loss (~13,075) reached a stabilized value by the fifth epoch, which was verified to confirm
convergence.

Fig. 4 shows a t-SNE plot of MoCLAE embeddings, providing a clearer insight into how well the
model groups memory data.
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t-SNE of MoCLAE Embeddings
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Fig. 4. t-SNE of MoCLAE Embeddings Colored by Malware Family.

In comparison with the aforementioned autoencoder, MoCLAE outputs highly separated and
compact clusters with each cluster of different malware family (e.g., Trojan, Ransomware, Spyware) or
benign processes. This express differentiation proves that MoCLAE is better at getting both semantic
and structural responses of memory artifacts.

C. Supervised Classification Performance

In this section, the performances of different supervised classifiers to detect and classify malware by
using both original memory forensics features and MoCLAE-generated embeddings are evaluated.
Five models that are frequently used, such as Random Forest (RF), Logistic Regression (LR), Gradient
Boosting Classifier (GBC), Support Vector Machine (SVM), and XGBoost (XGB) were trained and
validated using 5-fold cross-validation. To compare the performance of the classifiers in terms of
robustness and generalization capacities, they are tested on such main metrics as ROC AUC, precision,
accuracy and recall.

ROC AUC Comparison and Metric Evaluation

In order to compare the performance of the classifiers, the mean values of ROC AUC were
calculated across the five folds of the original variables, and mean values of ROC AUC on MoCLAE
embeddings. These values can be summarized in Table II, pointing out how each model can take
advantage of contrastive representation learning.

TABLEII
CROSS-VALIDATED ROC AUC SCORES
Classifier Original MoCLAE
Features Embeddings
(mean =+ std) (mean =+ std)
Random 0.99967 + 1.00000 +
Forest 0.00061 0.00000
Logistic 0.99985 + 0.99992 +
Regression 0.00010 0.00005
Gradient 0.99922 + 0.99960 +
Boosting 0.00122 0.00020
SVM 0.99997 £ 0.99998 +
0.00003 0.00002
XGBoost 0.99993 + 0.99999 +
0.00014 0.00004

All the classifiers exhibit impressive classification performance as shown by 1-ROC AUC \(\ge \)

0.999 in all of them using original features. The MoCLAE embeddings always improve these scores.
Here, it is important to note that Random Forest has perfect ROC AUC (1.000) from MoCLAE
features. Logistic Regression gets an improvement of 0.99985 to 0.99992, Gradient Boosting of
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0.99922 t0 0.99960, SVM of 0.99997 to 0.99998 and XGBoost of 0.99993 to 0.99999 which indicates
improved performance and stability.

This bar graph represents the mean values of ROC AUC standard deviations of all the 5 classifiers
fed with the original features.

Model Comparison (5-Fold ROC AUC

1.0000

0.9998 -

Cross-Validated ROC AUC
(=] o [=] o
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0 [} [ o
© e 0 e
=] ~N S o

0.9988

0.9986

RF LR GBC SVM XGB

Fig. 5. 5-Fold ROC AUC Comparison Across Classifiers (Original Features).

SVM and XGBoost have ROC AUC scores of 0.99997 and 0.99993, respectively and their variance is
quite small. Gradient Boosting, in its turn, shows the lowest AUC (0.99922) and the greatest variance
(£0.00122), meaning greater variability among folds. Random Forest attains 0.99967 and has an
error bar than Logistic Regression (0.99985 +/- 0.00010).

This clustered bar chart compares Accuracy, Precision, Recall as well as AUC found in Logistic
Regression and XGBoost under original and MoCLAE-augmented features

Mode! Evaluation - Original vs MoCLAE Embeddings
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Fig. 6. Model Evaluation — Accuracy, Precision, Recall, AUC (Original vs MoCLAE).

In the Logistic Regression case, values of accuracy, precision, and recall are approximately equal to
0.999 in both feature sets, whereas AUC measures marginally better and amount to nearly 1.000 with
the MoCLAE feature. In the case of XGBoost, all the values are above 0.9999 on the MoCLAE features
with precision and recall at almost 1.000. This supports the fact that MoCLAE embeddings enhance
the precision of the detection and minimal decline in performance on all measures.

Confusion Matrix and Per-Class Evaluation

In order to give the picture of how each of our classifiers performed class to class, the confusion
matrices were created on the data of the best-performing model (Random Forest with MoCLAE) and
all the classifiers separately. These heat maps bring out the demarcations between the true positives,
false positives, true negatives and false negatives among malware and benign samples. The results of
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the classification with the Random Forest model based on the MoCLAE appear in this matrix,
separated by benign and malware classes.

15500

15250

Benign

15000

14750

True label

14500

r 14250
Malware

r 14000

13750

Benign Malware
Predicted label

Fig. 7. Confusion Matrix — Final MoCLAE-Based Classifier.

The model was able to identify the benign samples correctly including 15,664 sample out of the
29,298 samples and 15,638 malware out of 29,298 samples. The misclassifications consisted only of
13,634 benign samples being classifies as malware, and 13,660 malware samples being classifyed as
benign. These findings corroborate very high generalization levels and very low misclassification rates
(less than 5 percent).

A series of confusion matrices demonstrates the results of classification produced by each of the
classifiers that have been trained on MoCLAE embeddings.

Confusion Miatrix - Random Farest Confusin Matrix - Lagisic fegression Confusion Matrix - Grad ert: Bagsting

1 ]
Prediced abe P abe et st
Canfusian Mair - ¥GEaost

Confusian Matrx - SUM

Fig. 8. Confusion Matrices — Classifier-Wise (RF, LR, GBC, SVM, XGB)

The classifiers based on the MoCLAE were characterized by a great performance in classification for
all models. Random Forest provided next to perfect accuracy with 5,859 correct classifications of
benign and 5,860 of malware and 1 false positive. Logistic Regression performed well also, being able
to correctly classify 5,851 benign and 5,855 malware samples, with the total of 14 misclassifications (9
false positives and 5 false negatives). Gradient Boosting was able to correctly classify all the 5,860
benign samples and 5,859 malware samples except one malware case. The overall errors SVM made
was 8 with the classification 5,853 of the benign and 5,859 of the malware cases being correctly
classified. XGBoost was very accurate with a total of only 2 errors and the number of samples correctly
classified by XGBoost in each of the two classes was 5,859. On the whole, the finding supports the fact
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that classifiers trained using MoCLAE embeddings are highly reliable and have high generalization
power to be used in detecting even less prevalent malware types.

D. Feature Importance and Interpretability

To increase explainability and transparency of the machine learning models, a feature importance
analysis was conducted in detail using ensemble classifiers—Random Forest, Gradient Boosting, and
XGBoost. These algorithms not only achieve high classification performance but also yield
information on which features have the largest impact on decision-making. A correlation analysis was
also conducted to detect multicollinearity between features to ensure that the models were not
depending on redundant or overlapping data.

Fig. 9 presents the top 15 most significant features extracted across three classifiers—Random
Forest, Gradient Boosting, and XGBoost. The bar chart illustrates the relative importance of every
feature in the input to model decisions, along with a comparison across all three models to determine
commonly relevant indicators.
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Fig. 9. Top 15 Important Features Across All Classifiers.

The most significant contributor to relevant features in Gradient Boosting and the XGBoost models
was the feature svcscan_nservices (number of services detected during scanning) with a normal
significance of approximately 1.0, indicating its predominant service in classifying malware. The other
features like svescan_process_services, handles_nsection and dlllist_avg_dlls_per_proc were of
different importance in the models. The difference highlights that various algorithms can be biased
towards particular pieces of memory evidence, and still, they converge on essential cues such as
service enumeration to find malware.

Fig. 10 shows a narrowed down perspective of the top 10 features as per Random Forest
classification in view of Gini based impurity importance ranking. Every bar indicates the extent to
which a feature helped in minimising the doubt of classification in the decision trees.

Top 10 Features - Random Forest
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Fig. 10. Feature Importance (Random Forest Classifier).
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Here, the features with highest significance are svcscan_nservices and svescan_kernel drivers
which have a contribution of about 14 percent of the overall model significance. The
dlllist_avg_dlls_per_proc (=12%) and the svcscan_shared_process_services (=11%) and
handles_nsection (=10%) are some of such others. These attributes indicate behavior patterns like
kernel driver registration and dynamic library loadings that are normally used by malware in
persistence and evasion. The variety of feature type also indicates that the classifier is picking a variety
of behaviors at the system-level to undertake effective detection.

Fig. 11 presents a heatmap of correlation of the complete feature set consumed in malware
classification problem. The Pearson correlation coefficients extend -1 to +1, and the red and blue
colors mean strong positive connection and strong negative connection, respectively, among two
features.

Correlation Heatrmap of Features

dlist_avg_olls
handles_aug handles

callvacks ncallbacks
callacks ngeneric -

Fig. 11. Correlation Heatmap of Memory Forensics Features.

The heatmap indicates that a majority of the important features found in previous figures are
weakly to moderately correlated to each other, thus indicating the insignificant existence of
multicollinearity. This is desirable because with this the variables add only distinct information into
the model. Nevertheless, there are clusters, particularly those that fall under the category of handle-
related features (e.g., handles_nsection, handles_nsemaphore), where the inter-correlation is
increased since they are similar in functionality inside the Windows memory. This justifies the fact
that the feature distribution is fairly rich in variety and effective in that, there is no redundancy and
yet, they record some subtle behavioral cues.

E. Summary of Findings

This work illustrates the efficacy of the introduced memory forensics framework with a set of

systematic evaluations:

e  Unsupervised Analysis: MoCLAE outperformed baseline autoencoders considerably, generating
semantically interpretable, clusterable embeddings and enhancing unsupervised detection
capability.

e Classification Performance: All the classifiers, especially Random Forest and XGBoost,
achieved almost perfect accuracy. MoCLAE embeddings further supported such outcomes,
verifying the advantages of contrastive learning.

e Model Interpretability: Salient memory features, as might be expected in a forensic context,
were found to be among those with significant influence. Low feature correlation also evidences
their individual contribution.
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e Operational Value: The hybrid method optimizes unsupervised representation learning with
supervised accuracy and interpretability, strongly positioning it for operational deployment in
security-sensitive applications like SOCs.

This well-rounded validation reaffirms the innovative framework not only to be technically

competent but also to be practically effective for real-time, interpretable malware classification.
DISCUSSION

This paper proposes a new detection system of malwares found on memory using the memory-
forensics mechanism of MoCLAE embedding scheme along with conventional and ensemble
classifiers. The general idea was to improve performance and interpretability of detection through
deep contrastive representation learning that uses memory dump specifics. The results of this section
include the discussion of the empirical results, their interpretability in forensically significant context,
and how this framework compares to or overperforms the latest trends in the memory-based
cybersecurity studies in recent memory. The architecture of the MoCLAE system and associated
strategy of feature handling emphasizes robustness and flexibility of this system in identifying the
obfuscated and zero-day threats.

A. Practical Implications and Interpretability

The performance of our model highlights one of the essential steps toward connecting machine
learning classification and its explanatory forensic reasoning. The malfind_injections,
psxview_not_in_pslist, dlllist_avg_dlls_per_proc features were found as key features to the aspect of
memory-based features where they obviously appeared in all classifier-specific explanations
appearing as highly indicative features of staple characteristics of malicious processes. These
indicators do not only illustrate the compatibility with previous forensic standards, but they also
validate the semantic interpretability of the learned embeddings- which is one of the major
weaknesses of the black-box deep learning methods.

These embeddings provided by the MoCLAE resulted in better separation of the benign and
malware classes in the projected feature space as plotted through t-SNE clusters. The separation is
related to such semantically cohesive malware clustering and is facilitating the hypothesis that
embedding-level structuring can depict malicious behavior clusters in the real-life. Confusion matrices
of classifiers confirm it, where performance measures (AUC = 0.9999-1.0000) surpass any level
among all categories and models. The potential outcomes of such findings mean that we will be able to
implement such systems in mission-critical and high-noise forensic applications where real-time and
explainable decisions are paramount.

B. Comparative Analysis with Recent Research (2024—2025)

To put the power and novelty of our proposed system into the context of other related recent
publications, we performed a systematic comparison with the articles on the subject related to
malware detection issues using volatile memory data in terms of their acceptance by peer-reviewed
journals and preprints. The comparison reveals the way MoCLAE excels on the various points of
evaluation:

TABLE III
COMPARATIVE EVALUATION OF RECENT MEMORY FORENSICS-BASED MALWARE DETECTION FRAMEWORKS
(2024—2025)

Study Technique Dataset AUC/ Remarks
Accuracy
Maniriho  Deep CIC- AUC: Limited
et al. Autoencoder MalMem- 0.994 / interpretability;
(2024) [11] + Stacked 2022 Acc: lacks
Ensemble ~99.4% contrastive
learning.
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Satpathy = Graph CIC- AUC: No Laplacian
& Swain Contrastive = MalMem- ~0.996 regularization
(2025) Learning + 2022 or
[17] DL unsupervised
pretraining.
Andriani  CNN + Image- Accuracy: Limited
et al. Autoencoder Based 98.8% applicability to
(2025) [1] Dataset memory
forensics;
image domain
specific.
Zhanget GCN-based Custom AUC: Complex
al. Process Memory  0.989 structure, less
(2024) Graph Dataset suitable for
[19] Learning real-time
(ProcGCN) inference.
Ours ( Momentum  CIC- AUC: Outperforms
MoCLAE Contrast + MalMem- 0.9999 — all
+ Hybrid Laplacian 2022 1.0000 benchmarks;
Classifiers) Embeddings interpretable
+ RF, SVM, and
XGB generalizable.

Differently to both MeMalDet [11] and GCRD [17], our framework is the first to leverage momentum
contrastive learning along with graph regularization, learning very structured, interpretable
embeddings in the latent space. This is to deal with the performance-transparency trade-off that has
so much been witnessed. Moreover, our method does not only deal with static graphs like ProcGCN
[19] and brings time-deltas features and process-DLL graph representations to the scene, improving
feature richness as well as model flexibility to suit real-world applications.

In addition, we do not rely on use of fixed binaries or network traffic, which can be well thwarted by
the modern malware via obfuscation or payload encryption. In its place, it will use volatile memory
analysis only, thus placing the system at the intersection of explainable AI and digital forensics, a
direction that has only been headed in some recent publications such as Hasan & Dhakal (2023) [6]
and Odeh et al. (2025) [12].

C. Strategic Positioning of This Work

This study places itself at the forefront of explainable malware detection by using memory forensics.
Three clear advantages make this study stand out:

e Forensics-Exclusive Pipeline: The whole system runs on memory dumps only, without relying
on any limitations that come with static analysis or traffic inspection, as also highlighted in [3],
[6], and [8].

e Hybrid Learning Capability: Through the integration of unsupervised pretraining (through
MoCLAE) and supervised classification, our approach enables both anomaly detection and
particular malware family classification.

e Superior Performance with Explainability: In contrast to non-interpretable models that stress
accuracy only, our model provides notably high AUCs (~1.0) accompanied by rich feature
attribution maps, aligning with the interpretability objectives set by Hossain & Islam (2024) [7]
and Pradhan et al. (2025) [14].

Collectively, the MoCLAE model sets itself as a cutting-edge gold standard within the field of real-

time malware categorization via memory forensics. Not only does it surpass the performance and
generalizability of its predecessors but also launches a new paradigm in marrying deep learning
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models with forensic explainability—longstanding in both research and operational cybersecurity
settings.

CONCLUSION

This work presents a new, explainable paradigm for real-time malware detection and classification
from volatile memory forensics with the Momentum-Contrast Laplacian Autoencoder (MoCLAE).
MoCLAE utilizes the CIC-MalMem-2022 dataset and efficiently represents semantic and structural
associations within memory artifacts via contrastive self-supervision and graph Laplacian
regularization. The embeddings produced by MoCLAE drastically improve the performance of various
classifiers—such as Random Forest, SVM, XGBoost, and Logistic Regression—with near-perfect AUC
values (= 0.999). Feature importance analysis proves the forensic significance of features like service
enumeration, memory injections, and stealth process indicators, providing transparency and
reliability in the detection of threats. In contrast to recent baselines such as MeMalDet and MDGraph,
the introduced framework exhibits better classification efficiency, model explainability, and
architectural flexibility. Through inclusion of temporal delta features and process—DLL correlations, it
also enhances resistance against obfuscated and zero-day malware. In total, this end-to-end memory-
resident detection pipeline represents a scalable, high-fidelity, and forensics-compliant solution for
malware analysis in real-world scenarios without depending upon static binaries or network traffic.
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