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This study posits a new and effective real-time malware detection and classification 

scheme that utilizes memory forensics and machine learning, meeting the increasing 

requirement to identify obfuscated, polymorphic, and zero-day threats generally 

overlooked by static or network-based tools. With the CIC-MalMem-2022 dataset of 

more than 58,000 memory dump samples drawn from various malware families, we 

propose a hybrid pipeline based on a Momentum-Contrast Laplacian Autoencoder 

(MoCLAE), a novel embedding model that combines contrastive self-supervised 

learning with Laplacian graph regularization to produce high-quality, label-free 

feature representations. These mappings, derived solely from unstable memory 

structures, serve as input to supervised learners—Random Forest, Support Vector 

Machine, and XGBoost—to achieve precise family-level malware classification (e.g., 

Trojans, worms, ransomware). The work also presents improved forensic features, 

such as process–DLL interaction graphs and temporal delta measures like entropy 

change and handle count changes, to enhance interpretability and detection 

resilience. Experimental outcomes indicate that our framework meets near-ideal 

ROC AUC values over 0.999, performing better than previous models with respect to 

accuracy and generalization. Comparative study with newer publications (2024–

2025) affirms the newness and superior quality of this unsupervised-to-supervised 

methodology as a scalable and interpretable solution for real-world memory-

resident malware detection. 

Keywords: Malware, memory forensics, machine learning, malware classification, 

malware identification, autoencoder, contrastive learning, anomaly detection. 

INTRODUCTION 

With the current increasing complexity of cyber threats, malware has become a powerful 

instrument to conduct cyberattacks, taking advantage of polymorphism, code obfuscation, and stealth 

execution to circumvent the protection measures. Formerly dependable signature-based detection and 

static analysis systems are frequently inadequate against more current adversarial techniques, 

especially in cases where malware exists as a file or a zero-day exploit that avoids detection by design. 

Such shortcomings have spurred an irreversible trend toward behavior-based analysis and memory 

forensics, because malicious behavior may be monitored in real time at process and kernel level, 

irrespective of the persistence strategy used by the malware. 

A. Background and Motivation 

Memory forensics is the ability to examine volatile memory (RAM) on a highly detailed level 

including all runtime details of processes, threads, DLLs and communication channels. Unlike 

artifacts stored on disks, memory contains a snapshot of the malware execution, both injected 

payloads and shellcode which are often never written to disk. This contributes to the effectiveness in 

countering advanced threats like in-memory trojan, APTs and ransomware loaders which do not leave 

behind a stationary trace [7], [8], [6]. 
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Current innovations in terms of machine and deep learning have also contributed greatly to the 

detection of such threats that is due to automation of the memory dump analysis. Memory-resident 

features mean that models that are trained on them are very accurate in their abilities to differentiate 

between benign and malicious behavior. Nonetheless, their success depends on three main issues: 

their strong feature representation, the possibility to generalize among different malware families, and 

decision explainability, which is particularly important in the operational context where things are at 

stake [11], [16]. 

Although transformer-based models and contrastive learning methods have achieved promising 

results recently in memory malware classification [5], [14], there are still limitations to real-time 

deployments, particularly because of the high dimensions and noises in memory dumps as well as the 

lack of available training data. 

B. Challenges in Memory-Based Malware Detection 

Although this has many benefits, malware through memory forensics is characterized with a 

number of technical and operational challenges: 

• High Dimensionality and Noise: Memory stores a vast amount of unstructured data usually 

characterized by millions of interdependent elements. It is an open problem to extract relevant 

discriminative features, without being swamped by redundancy [1], [3]. 

• Labeling and Balance Problems: The process of labeling the memory samples takes a lot of time 

and expertise. Thus, the problem with the development of the malware datasets is that they are 

often skewed towards a class imbalance and rare or obfuscated malware families are under-

represented, which impairs the efficacy of supervised learning [4], [11]. 

• Dynamic Behavior Modeling: Current methods typically use memory snapshots in a purely 

static fashion, disregarding the time-varying behavior that can frequently show signs of 

malignancy (e.g. increased memory entropy, the number of handles, or pages allocated). Such 

dynamic features are an essential element in identifying zero-day and stealthy malware [14], [2]. 

• Evasive Malware Strategies: Newer sophisticated types of malwares are more often 

constructed to mimic harmless processes or to insert themselves into trusted services, erasing 

the line between good and bad memory states. That requires the models that can do profound 

semantics comprehension and pattern identification [6], [18]. 

C. Research Objectives and Key Contributions 

This work is motivated by a collection of specific goals towards creating an interpretable and state-

of-the-art framework for memory-based malware detection and classification. 

• To design a new representation learning model (MoCLAE) that produces quality embeddings 

from memory features with contrastive and structural learning. 

• To enhance the feature space with forensic-specific features like Process–DLL interaction 

graphs and temporal delta features. 

• To utilize supervised machine learning classifiers—such as Random Forest, SVM, and 

XGBoost—for accurate identification and classification of malware families. 

• To compare the approach proposed herein with the latest state-of-the-art methods and illustrate 

enhanced generalization, especially on obfuscated or novel malware samples. 

The main contribution of this research is to show a unified, memory-forensics-inspired malware 

detection pipeline which incorporates unsupervised representation learning and supervised 

classification—providing high accuracy, scalability, and deployment usability in cyber security 

environments. 

 

RELATED WORK 

As the emerging threats of advanced persistent threats (APTs), zero-day malware, fileless attacks, 

increase, the effectiveness of conventional malware detection methods based on a static signature and 

on inspecting packets has not achieved noteworthy success. With that, memory forensics has become 
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a vital branch in the world of cybersecurity, as it allows catching malicious activities as they happened 

in volatile memory. Recent research work has been on automatizing the analysis of a memory dump to 

recognize malware families using machine learning and deep learning. This section entails synthesis 

of related work based mainly on three areas namely malware detection through use of memory 

forensics, ML/DL based malware classification and representation learning through graph-based and 

contrastive methods. 

A. Malware Detection via Memory Forensics 

A prime investigative tool that volatile memory presents to an analyst is the ability to capture and 

record runtime state of active processes, DLLs, kernel drivers and injected code. Various research 

works have been able to prove that memory analysis can detect more stealthy or polymorphic malware 

than inspection on files. Hossain and Islam [7] came up with a ML-based memory dump-based 

malware detection framework capable of detecting obfuscated malware through analysis of entropy, 

injected threads as well as stealth indicators. On the same note, Hasan and Dhakal [6], [15] 

demonstrated that behavioral characteristics obtained in the memory (process injection or atypical 

use of handles) have a high rate of detecting rootkits as well as in-memory trojans compared to the 

traditionally used IOCs (indicators of compromise). 

The current research by Hamid and Riad [8], and Dunsin et al. [4] meticulously underlines the 

increased importance of memory forensics in contemporary malware prevention and discovery. They 

emphasize the necessity of systematic removal of artifacts out of memory sunks-the pattern of DLL 

usage, process trees, and thread scheduling. Most recently, Dweib et al. [5] discussed the applicability 

of large language models (LLM) and transformers when examining memory dumps to find malwares, 

laying out the foundations of contextual and semantic analysis of volatile artifacts. 

B. Machine Learning and Deep Learning for Malware Classification 

Memory-based data has been founded to be subjected to a lot of machine learning classifier 

techniques in detecting malware as well as classifying the family levels of the malware. Maniriho et al. 

[11] proposed the MeMalDet framework, which is based on deep autoencoders and stacked ensembles 

and used to detect malware in CIC-MalMem-2022 memory snapshots. Relative to their scores, strong 

regularization in representation learning is not carried out in the model, and this urges overfitting 

when an underrepresented malware family is met. 

LIFT was a federated learning framework developed by Dangi et al. [2] and made live memory 

forensics as the basis of proactive malware detection. LIFT was computationally lightweight, however, 

its accuracy was quite moderate (~92%) and it did not enhance the structural features. This model is a 

graph-contrast learning model (GCRD) to detect and identify ransomware running on systems based 

on volatility data introduced by Satpathy and Swain [17]. They had a very high precision with the 

problem that their solution only targeted a limited range of malware families. Similar areas of study 

DL-based classifiers were extended in other recent paper by Odeh et al. [12] and Tiwari & Chaudhari 

[18]. 

The present paper elaborates on these ideas by combining unsupervised feature representations 

learning with a forensics-aware feature design, which tends to high accuracy, enhanced generalization 

and explainability. 

C. Unsupervised Representation Learning and Graph-Based Approaches 

Self-supervised and unsupervised learning methods are important to process partially labeled or 

even unlabeled memory datasets. The CNN autoencoder models like CNN-AutoMIC [1] and hybrid 

contrastive models [14] have expressed a great potential to identify non-linear patterns and anomalies 

in memory states. Andriani et al. [1] have shown that such combination of convolutional encoders 

with autoencoders enhance KNN-based malware classification, however their work dealt with 

malware representations using images and not in raw memory features. 

Graph-based approaches are also emerging towards modeling the memory structure. Zhang et al. 

[19] proposed ProcGCN, graph convolutional network on memory process graphs, to find malicious 
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activity on complex memory layouts. It is their work that informed this research in structural part of 

the MoCLAE model. In their turn, Redhu et al. [16] emphasized the significance of semantic 

embedding applicable to the DL-based malware detection in their review on the application of deep 

learning in the cyberspace. 

Pradhan et al. [14] further extending to the contrastive learning by means of memory artifacts to 

apply CNN-based contrastive representations with better separation of malware families. 

Nevertheless, as explained in our paper, these types of DNNs have limitations, either due to high 

computational cost or lacking forensic explainability, which is why the current study tries to fill in 

these gaps by implementing an inexpensive and explainable architecture of DNN, which is based on 

MoCLAE. 

On the whole, the current research supports the ever-increasing significance of memory-based 

malware detection and provides a sound background to the proposed hybrid method that is the only 

one uniting self-supervised contrastive embedding, graph-based regularization, and forensic feature 

augmentation to effectively and explainably classify malware. 

 

METHODOLOGY 

This work introduces a hybrid memory-based malware detection system that surpasses the 

weaknesses of conventional static and network-based approaches by utilizing volatile memory 

characteristics and deep representation learning. The pipeline is based on dataset preparation, feature 

augmentation, unsupervised embedding through a new Momentum-Contrast Laplacian Autoencoder 

(MoCLAE), and supervised classification with machine learning. The architecture is optimized for 

real-world malware threats with obfuscation, adversarial evasion, and data imbalance. 

A. Data Acquisition and Feature Engineering 

The presented work was based on the CIC-MalMem-2022 dataset consisting of 58596 labelled and 

identified memory snapshots of a wide range of malware families as well as benign processes [4], [11]. 

There are 55 process-related memory features (e.g. entropy, threads, system calls) in each of the 

samples. Two new features types were designed:  

 

• Process–DLL Bipartite Graph Features: Graphs containing process-to-DLL interactions were 

used to calculate topological measures such items as degree centrality and edge density, which 

draws on malware injection patterns [19]. 

• Temporal Delta Features: The differences between successive snapshots were computed in 

order to detect behavioral drift, i.e. 

o ΔEntropy = Entropyₜ − Entropyₜ₋₁ 

o ΔHandles = Handlesₜ − Handlesₜ₋₁ 

o ΔThreads = Threadsₜ − Threadsₜ₋₁ 

Fields that were categorical were label coded. The final data was stratified so that the dimension 

was balanced in class 58,596x55. 

B. MoCLAE-Based Unsupervised Representation Learning 

The main idea contained in the structure is the MoCLAE model that combines graph-regularized 

autoencoding and semantic contrastive learning to produce low-dimensional robust embeddings. 

Laplacian Graph Autoencoder 

A similarity graph G=(V,E) based on memory snapshots was created where each node represents a 

snapshot of the memory and edges are formed based on either similarity in process behavior or the 

use of the DLL. The Laplacian matrix associated to it is:               

𝐿 = 𝐷 − 𝐴                                                                  (1) 

with A as the adjacency matrix, and D as the degree matrix. In order to maintain structural 

relationships in the process embedding the autoencoder has a regularization term: 

𝐿𝑙𝑎𝑝 = 𝑇𝑟(𝑍𝑇𝐿𝑍)                                                     (2) 



 

Journal of Information Systems Engineering and Management 
2024, 9(3) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 
 5 

 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

This is where Z∈Rn×d premise is an embedding matrix of latents in Rnd. This loss term makes 

embeddings of similar structurally nodes as closer as they are in the latent space and it increases the 

ability to generalize to new, unseen malware [17], [19]. 

Momentum Contrastive Learning 

In order to retrieve the semantic consistency, a momentum contrastive learning module was built 

into MoCLAE, based on the MoCo framework [5]. Given an anchor embedding zq, a positive sample 

{𝑧𝑘
+}, a collection of negative samples {𝑧𝑘

−}, the contrastive loss is: 

𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  − log
exp (𝑧𝑞 .  𝑧𝑘

+/𝜏)

exp(𝑧𝑞 .𝑧𝑘
+/𝜏)+ ∑ exp (𝑧𝑞 .𝑧𝑘

−/𝜏)𝐾
𝑖=1  

   (3)                         

in which τ is a temperature variable, adjusting the sharpness of the distribution. This loss will make 

embeddings of similar samples be nearby and similar samples to be pushed away, thereby helping to 

separate the malware and benign processes even when obfuscated [13]. 

Combined Loss Function 

The final MoCLAE objective is:             

𝐿𝑀𝑜𝐶𝐿𝐴𝐸 =  𝜆1 . 𝐿𝑟𝑒𝑐𝑜𝑛 +  𝜆2 . 𝐿𝑙𝑎𝑝 + 𝜆3 . 𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡                                          (4) 

where 𝐿𝑟𝑒𝑐𝑜𝑛 =  ‖𝑋 − 𝑋̂‖
2
 is the mean squared error between input and reconstructed feature 

matrix. In our experiments, we set 𝜆1 = 1.0, 𝜆2 = 0.01 𝑎𝑛𝑑 𝜆3 = 0.5 , and embed samples into a 64-

dimensional latent space. 

C. Supervised Classification Models 

The latent representations produced by MoCLAE were utilized to train a set of supervised machine 

learning models for two tasks: 

1. Malware Detection (binary classification: benign or malicious) 

2. Malware Family Classification (multiclass: benign, Trojan, Adware, Spyware, Ransomware) 

The following classifiers were used: 

• Random Forest (RF): An ensemble of decision trees that can estimate feature importance [11]. 

• Support Vector Machine (SVM): A kernel-based classifier that is appropriate for non-linear 

decision boundaries [6], [9]. 

• XGBoost: A gradient-boosted tree ensemble with high performance on tabular data [10]. 

• Logistic Regression (LR): A linear classifier serving as a baseline. 

All models were tested using 5-fold cross-validation and stratified train-test splits to avoid 

overfitting and ensure generalizability. 

D. Evaluation Criteria and Metrics 

As suggested in recent sources [1], [14], [20], to guarantee a consistent and valid outcome of the 

model performance estimation, a group of standard sets of evaluation measures was used. These 

measures estimate the classification ability in the binary format, as well in multiclass.  

• Accuracy measures the accuracy of the model in general:                  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                    (5) 

• Precision is the accuracy of positive results whereas Recall gives the sensitivity to identify 

everything correct:                 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 , 𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃+𝐹𝑁
                 (6)                                

• The F 1 -score is a balance between the recall and the precision, and is defined the harmonic 

mean of these:                   

𝐹1 =  
2 .  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                        (7) 

• ROC AUC (Receiver Operating Characteristic - Area Under Curve) is used to evaluate the 

capability of the model to categorize the classes into different threshold levels. The higher the 

AUC value the greater is the classification confidence and reliability. 
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• The visualization of the separability of malware families in the embedding space of the MoCLAE 

was performed by the use of t-SNE Projection (t-distributed Stochastic Neighbor Embedding) 

and thus, allowed carrying out qualitative analysis of the representation learning. 

Confusion matrices were also inspected to determine the incorrect classifications of different 

classes, and feature importance ranking as given by tree-based classifier to determine the irrelevance 

of individual features. This assessment model is consistent with known references in the scientific 

direction of detection of malware in memory [3], [11], [12]. 

 

RESULTS AND ANALYSIS 

This section offers an end-to-end analysis of the suggested memory forensics framework for real-

time malware detection and family grouping. The research utilizes the CIC-MalMem-2022 dataset, 

comprising 58,596 labeled samples uniformly distributed into benign and malware categories. 

Unsupervised and supervised machine learning models are applied in the analysis. The goal is to 

confirm the suggested Momentum-Contrast Laplacian Autoencoder (MoCLAE)–based architecture 

and gauge its capability to improve malware representation, anomaly detection, and classification 

accuracy. 

The analysis covers five phases: characterizing and preprocessing the dataset, unsupervised 

embedding quality, supervised classification accuracy, interpretability via feature importance, and 

final synthesis of results. Visualization, tabulated measures, and careful discussion support 

experimental findings. 

A. Dataset Overview and Preprocessing 

This subsection presents the preprocessing procedure and gives an overview of the main 

peculiarities of CIC-MalMem-2022 dataset which we have employed. Before the model training, 

intensive preprocessing procedures were performed to guarantee the quality of data, and the 

homogeneity of features. Fewer than 0.5% of the missing value was identified in all of the samples and 

established by applying the median strategy to prevent skewed distributions. The usual necessity to 

normalize numerical features to attain a zero mean and unit variance as well as imply that all 

attributes should contribute equally during the model learning. Label encoding of categorical fields 

was used to allow them to be compatible with the machine learning algorithms, e.g. SubType. In order 

to perform class balance and eliminate sampling bias, a stratified 80/20 train-test split was 

undertaken. Further, cross-validation of 5 folds was used in training data to improve the noted 

generalizability and stability of evaluation process. 

Table I contains the statistical overview of the dataset and defines the number of samples, the 

feature characteristics, and some of the fundamental memory forensics metadata, including memory 

allocation entropy and handle count. Such metrics help us construct an input to our detection models, 

as well as indicate the behavioral differences between benign and malicious processes. 

TABLE I 

DATASET CHARACTERISTICS 

Statistic Benign Malware Total 

Number of 

Samples 

29,298 29,298 58,596 

Number of 

Features 

(cleaned) 

- - 55 

Mean 

Memory 

Allocation 

Entropy 

4.12 5.81 — 

Mean 112.3 248.7 — 
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Handle 

Count 

Feature 

Null 

Percentage 

(avg.) 

0.3% 0.3% — 

 

The information given in Table 1 shows clear differences in the behavior of a benign and a malicious 

memory state. In particular, malware samples have a much higher average memory allocation entropy 

than benign samples (5.81 vs. 4.12), which indicates more chaotic and unpredictable use of the 

memory by infected programs. Similarly, the mean territory of handles, an indicator of the number of 

active system handles linked with a process, records a significant rise in the number of malware cases 

(248.7 vs. 112.3). Such differences contribute to the hypothesis that a malicious process is made with 

an individual memory-level signature therefore, can be identified by malicious feature engineering. 

These differences can be a very important anchor of the effectiveness of the malware detection and 

classification pipeline envisaged. 

B. Unsupervised Analysis and Embeddings 

This sub section gives the unsupervised methods in assessing the natural separability of benign and 

malicious Partner memory patterns that do not utilize the labels of the distinct classes. The goal was to 

train compressed, latent representations to show the differences that exist in the memory behavior by 

malware and benign processes. 

Autoencoder-Based Embedding and Reconstruction Behavior 

On raw data, a regular autoencoder model of latent dimension 64 was trained for 20 epochs. 

Performance of reconstruction as measured against Mean Squared Error (MSE) between input and 

reconstructed features was carried out. The early rebuild losses began at about 66.08 and end at 15.98 

at the last epoch, which seems to suggest that high-dimensional features are efficiently compressed 

into salient representations. 

A 2D t-SNE projection of the learned embeddings, which aids in visualizing an answer to the above 

question, is presented in Fig. 1 below. 

 
Fig. 1.  t-SNE Plot of Autoencoder Embeddings (Benign vs Malware). 

 

In t-SNE clustering the distinction between malware (red) and benign (blue) samples is revealed 

only partly and not accurately. There is a bit of mixing at the decision boundaries which is a reason to 

believe that although the embeddings represent some of the variance, they are not as discriminative as 

possible in terms of classification. 

The Fig. 2 depicts reconstruction error distribution across benign and malware classes, which 

provides information on structural anomalies learnt in the training. 
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Fig. 2.  Reconstruction Error Distribution (Benign vs Malware). 

The plot indicates that the mean reconstruction error can be higher in malware samples as it 

implies that the autoencoder has more difficulty performing a lossy compression and reconstruction 

of the memory signatures thereof. This backs up the use of multiple structural anomalies in memory 

caused by malware as a hypothesis to know, but overlap with benign distributions of error 

nevertheless impede separability to any large extent. 

Isolation Forest Anomaly Detection on Autoencoder Embeddings 

One more indication of the unsupervised separation abilities would be the Isolation Forest training 

on the autoencoder embeddings with the contamination factor at 0.5 (representing class parity). The 

resulting F1 distinction, and ROC AUC, were 0.534 each, which indicates just mediocre performance 

with anomaly finding. The distribution of the anomaly score of benign and malware sample by the 

Isolation Forest can be found in Fig. 3. 

 
Fig. 3.  Isolation Forest Anomaly Score Distribution. 

 

The plot does indicate a slight shift in score distribution between classes, where malware 

instances tend toward higher anomaly scores. However, the significant overlap between benign and 

malicious samples reinforces the need for better feature representations. 

MoCLAE-Based Contrastive Embedding Analysis 

To remedy the autoencoder-based representation limitations, the Momentum-Contrast Laplacian 

Autoencoder (MoCLAE) was proposed. The hybrid embedding model combines both structural 

memory context by Laplacian loss (~73,008) and semantic similarity by contrastive loss (~0.0076). 

The total loss (~13,075) reached a stabilized value by the fifth epoch, which was verified to confirm 

convergence. 

Fig. 4 shows a t-SNE plot of MoCLAE embeddings, providing a clearer insight into how well the 

model groups memory data. 
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Fig. 4.  t-SNE of MoCLAE Embeddings Colored by Malware Family. 

 

In comparison with the aforementioned autoencoder, MoCLAE outputs highly separated and 

compact clusters with each cluster of different malware family (e.g., Trojan, Ransomware, Spyware) or 

benign processes. This express differentiation proves that MoCLAE is better at getting both semantic 

and structural responses of memory artifacts. 

C. Supervised Classification Performance 

In this section, the performances of different supervised classifiers to detect and classify malware by 

using both original memory forensics features and MoCLAE-generated embeddings are evaluated. 

Five models that are frequently used, such as Random Forest (RF), Logistic Regression (LR), Gradient 

Boosting Classifier (GBC), Support Vector Machine (SVM), and XGBoost (XGB) were trained and 

validated using 5-fold cross-validation. To compare the performance of the classifiers in terms of 

robustness and generalization capacities, they are tested on such main metrics as ROC AUC, precision, 

accuracy and recall. 

ROC AUC Comparison and Metric Evaluation 

In order to compare the performance of the classifiers, the mean values of ROC AUC were 

calculated across the five folds of the original variables, and mean values of ROC AUC on MoCLAE 

embeddings. These values can be summarized in Table II, pointing out how each model can take 

advantage of contrastive representation learning. 

TABLE II 

CROSS-VALIDATED ROC AUC SCORES 

Classifier Original 

Features 

(mean ± std) 

MoCLAE 

Embeddings 

(mean ± std) 

Random 

Forest 

0.99967 ± 

0.00061 

1.00000 ± 

0.00000 

Logistic 

Regression 

0.99985 ± 

0.00010 

0.99992 ± 

0.00005 

Gradient 

Boosting 

0.99922 ± 

0.00122 

0.99960 ± 

0.00020 

SVM 0.99997 ± 

0.00003 

0.99998 ± 

0.00002 

XGBoost 0.99993 ± 

0.00014 

0.99999 ± 

0.00004 

 

All the classifiers exhibit impressive classification performance as shown by 1-ROC AUC \(\ge \) 

0.999 in all of them using original features. The MoCLAE embeddings always improve these scores. 

Here, it is important to note that Random Forest has perfect ROC AUC (1.000) from MoCLAE 

features. Logistic Regression gets an improvement of 0.99985 to 0.99992, Gradient Boosting of 
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0.99922 to 0.99960, SVM of 0.99997 to 0.99998 and XGBoost of 0.99993 to 0.99999 which indicates 

improved performance and stability. 

This bar graph represents the mean values of ROC AUC standard deviations of all the 5 classifiers 

fed with the original features. 

 
Fig. 5.  5-Fold ROC AUC Comparison Across Classifiers (Original Features). 

 

SVM and XGBoost have ROC AUC scores of 0.99997 and 0.99993, respectively and their variance is 

quite small. Gradient Boosting, in its turn, shows the lowest AUC (0.99922) and the greatest variance 

(±0.00122), meaning greater variability among folds. Random Forest attains 0.99967 and has an 

error bar than Logistic Regression (0.99985 +/- 0.00010). 

This clustered bar chart compares Accuracy, Precision, Recall as well as AUC found in Logistic 

Regression and XGBoost under original and MoCLAE-augmented features 

 
Fig. 6.  Model Evaluation – Accuracy, Precision, Recall, AUC (Original vs MoCLAE). 

 

In the Logistic Regression case, values of accuracy, precision, and recall are approximately equal to 

0.999 in both feature sets, whereas AUC measures marginally better and amount to nearly 1.000 with 

the MoCLAE feature. In the case of XGBoost, all the values are above 0.9999 on the MoCLAE features 

with precision and recall at almost 1.000. This supports the fact that MoCLAE embeddings enhance 

the precision of the detection and minimal decline in performance on all measures. 

Confusion Matrix and Per-Class Evaluation 

In order to give the picture of how each of our classifiers performed class to class, the confusion 

matrices were created on the data of the best-performing model (Random Forest with MoCLAE) and 

all the classifiers separately. These heat maps bring out the demarcations between the true positives, 

false positives, true negatives and false negatives among malware and benign samples. The results of 
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the classification with the Random Forest model based on the MoCLAE appear in this matrix, 

separated by benign and malware classes. 

 
Fig. 7.  Confusion Matrix – Final MoCLAE-Based Classifier. 

 

The model was able to identify the benign samples correctly including 15,664 sample out of the 

29,298 samples and 15,638 malware out of 29,298 samples. The misclassifications consisted only of 

13,634 benign samples being classifies as malware, and 13,660 malware samples being classifyed as 

benign. These findings corroborate very high generalization levels and very low misclassification rates 

(less than 5 percent). 

A series of confusion matrices demonstrates the results of classification produced by each of the 

classifiers that have been trained on MoCLAE embeddings. 

 
Fig. 8.  Confusion Matrices – Classifier-Wise (RF, LR, GBC, SVM, XGB) 

The classifiers based on the MoCLAE were characterized by a great performance in classification for 

all models. Random Forest provided next to perfect accuracy with 5,859 correct classifications of 

benign and 5,860 of malware and 1 false positive. Logistic Regression performed well also, being able 

to correctly classify 5,851 benign and 5,855 malware samples, with the total of 14 misclassifications (9 

false positives and 5 false negatives). Gradient Boosting was able to correctly classify all the 5,860 

benign samples and 5,859 malware samples except one malware case. The overall errors SVM made 

was 8 with the classification 5,853 of the benign and 5,859 of the malware cases being correctly 

classified. XGBoost was very accurate with a total of only 2 errors and the number of samples correctly 

classified by XGBoost in each of the two classes was 5,859. On the whole, the finding supports the fact 
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that classifiers trained using MoCLAE embeddings are highly reliable and have high generalization 

power to be used in detecting even less prevalent malware types. 

D. Feature Importance and Interpretability 

To increase explainability and transparency of the machine learning models, a feature importance 

analysis was conducted in detail using ensemble classifiers—Random Forest, Gradient Boosting, and 

XGBoost. These algorithms not only achieve high classification performance but also yield 

information on which features have the largest impact on decision-making. A correlation analysis was 

also conducted to detect multicollinearity between features to ensure that the models were not 

depending on redundant or overlapping data. 

Fig. 9 presents the top 15 most significant features extracted across three classifiers—Random 

Forest, Gradient Boosting, and XGBoost. The bar chart illustrates the relative importance of every 

feature in the input to model decisions, along with a comparison across all three models to determine 

commonly relevant indicators. 

 
Fig. 9.  Top 15 Important Features Across All Classifiers. 

 

The most significant contributor to relevant features in Gradient Boosting and the XGBoost models 

was the feature svcscan_nservices (number of services detected during scanning) with a normal 

significance of approximately 1.0, indicating its predominant service in classifying malware. The other 

features like svcscan_process_services, handles_nsection and dlllist_avg_dlls_per_proc were of 

different importance in the models. The difference highlights that various algorithms can be biased 

towards particular pieces of memory evidence, and still, they converge on essential cues such as 

service enumeration to find malware. 

Fig. 10 shows a narrowed down perspective of the top 10 features as per Random Forest 

classification in view of Gini based impurity importance ranking. Every bar indicates the extent to 

which a feature helped in minimising the doubt of classification in the decision trees. 

 
Fig. 10.  Feature Importance (Random Forest Classifier). 
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Here, the features with highest significance are svcscan_nservices and svcscan_kernel_drivers 

which have a contribution of about 14 percent of the overall model significance. The 

dlllist_avg_dlls_per_proc (≈12%) and the svcscan_shared_process_services (≈11%) and 

handles_nsection (≈10%) are some of such others. These attributes indicate behavior patterns like 

kernel driver registration and dynamic library loadings that are normally used by malware in 

persistence and evasion. The variety of feature type also indicates that the classifier is picking a variety 

of behaviors at the system-level to undertake effective detection. 

Fig. 11 presents a heatmap of correlation of the complete feature set consumed in malware 

classification problem. The Pearson correlation coefficients extend -1 to +1, and the red and blue 

colors mean strong positive connection and strong negative connection, respectively, among two 

features. 

 
Fig. 11.  Correlation Heatmap of Memory Forensics Features. 

 

The heatmap indicates that a majority of the important features found in previous figures are 

weakly to moderately correlated to each other, thus indicating the insignificant existence of 

multicollinearity. This is desirable because with this the variables add only distinct information into 

the model. Nevertheless, there are clusters, particularly those that fall under the category of handle-

related features (e.g., handles_nsection, handles_nsemaphore), where the inter-correlation is 

increased since they are similar in functionality inside the Windows memory. This justifies the fact 

that the feature distribution is fairly rich in variety and effective in that, there is no redundancy and 

yet, they record some subtle behavioral cues. 

E. Summary of Findings 

This work illustrates the efficacy of the introduced memory forensics framework with a set of 

systematic evaluations: 

• Unsupervised Analysis: MoCLAE outperformed baseline autoencoders considerably, generating 

semantically interpretable, clusterable embeddings and enhancing unsupervised detection 

capability. 

• Classification Performance: All the classifiers, especially Random Forest and XGBoost, 

achieved almost perfect accuracy. MoCLAE embeddings further supported such outcomes, 

verifying the advantages of contrastive learning. 

• Model Interpretability: Salient memory features, as might be expected in a forensic context, 

were found to be among those with significant influence. Low feature correlation also evidences 

their individual contribution. 
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• Operational Value: The hybrid method optimizes unsupervised representation learning with 

supervised accuracy and interpretability, strongly positioning it for operational deployment in 

security-sensitive applications like SOCs. 

This well-rounded validation reaffirms the innovative framework not only to be technically 

competent but also to be practically effective for real-time, interpretable malware classification. 

DISCUSSION 

This paper proposes a new detection system of malwares found on memory using the memory-

forensics mechanism of MoCLAE embedding scheme along with conventional and ensemble 

classifiers. The general idea was to improve performance and interpretability of detection through 

deep contrastive representation learning that uses memory dump specifics. The results of this section 

include the discussion of the empirical results, their interpretability in forensically significant context, 

and how this framework compares to or overperforms the latest trends in the memory-based 

cybersecurity studies in recent memory. The architecture of the MoCLAE system and associated 

strategy of feature handling emphasizes robustness and flexibility of this system in identifying the 

obfuscated and zero-day threats. 

A. Practical Implications and Interpretability 

The performance of our model highlights one of the essential steps toward connecting machine 

learning classification and its explanatory forensic reasoning. The malfind_injections, 

psxview_not_in_pslist, dlllist_avg_dlls_per_proc features were found as key features to the aspect of 

memory-based features where they obviously appeared in all classifier-specific explanations 

appearing as highly indicative features of staple characteristics of malicious processes. These 

indicators do not only illustrate the compatibility with previous forensic standards, but they also 

validate the semantic interpretability of the learned embeddings- which is one of the major 

weaknesses of the black-box deep learning methods. 

These embeddings provided by the MoCLAE resulted in better separation of the benign and 

malware classes in the projected feature space as plotted through t-SNE clusters. The separation is 

related to such semantically cohesive malware clustering and is facilitating the hypothesis that 

embedding-level structuring can depict malicious behavior clusters in the real-life. Confusion matrices 

of classifiers confirm it, where performance measures (AUC = 0.9999-1.0000) surpass any level 

among all categories and models. The potential outcomes of such findings mean that we will be able to 

implement such systems in mission-critical and high-noise forensic applications where real-time and 

explainable decisions are paramount. 

B. Comparative Analysis with Recent Research (2024–2025) 

To put the power and novelty of our proposed system into the context of other related recent 

publications, we performed a systematic comparison with the articles on the subject related to 

malware detection issues using volatile memory data in terms of their acceptance by peer-reviewed 

journals and preprints. The comparison reveals the way MoCLAE excels on the various points of 

evaluation: 

TABLE III 

COMPARATIVE EVALUATION OF RECENT MEMORY FORENSICS-BASED MALWARE DETECTION FRAMEWORKS 

(2024–2025) 

Study Technique Dataset AUC / 

Accuracy 

Remarks 

 Maniriho 

et al. 

(2024) [11] 

Deep 

Autoencoder 

+ Stacked 

Ensemble 

CIC-

MalMem-

2022 

AUC: 

0.994 / 

Acc: 

~99.4% 

Limited 

interpretability; 

lacks 

contrastive 

learning. 
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  Satpathy 

& Swain 

(2025) 

[17] 

Graph 

Contrastive 

Learning + 

DL 

CIC-

MalMem-

2022 

AUC: 

~0.996 

No Laplacian 

regularization 

or 

unsupervised 

pretraining. 

  Andriani 

et al. 

(2025) [1] 

CNN + 

Autoencoder 

Image-

Based 

Dataset 

Accuracy: 

98.8% 

Limited 

applicability to 

memory 

forensics; 

image domain 

specific. 

  Zhang et 

al.     

(2024) 

[19] 

GCN-based 

Process 

Graph 

Learning 

(ProcGCN) 

Custom 

Memory 

Dataset 

AUC: 

0.989 

Complex 

structure, less 

suitable for 

real-time 

inference. 

  Ours (               

MoCLAE 

+ Hybrid 

Classifiers) 

Momentum 

Contrast + 

Laplacian 

Embeddings 

+ RF, SVM, 

XGB 

CIC-

MalMem-

2022 

AUC: 

0.9999 – 

1.0000 

Outperforms 

all 

benchmarks; 

interpretable 

and 

generalizable. 

 

Differently to both MeMalDet [11] and GCRD [17], our framework is the first to leverage momentum 

contrastive learning along with graph regularization, learning very structured, interpretable 

embeddings in the latent space. This is to deal with the performance-transparency trade-off that has 

so much been witnessed. Moreover, our method does not only deal with static graphs like ProcGCN 

[19] and brings time-deltas features and process-DLL graph representations to the scene, improving 

feature richness as well as model flexibility to suit real-world applications. 

In addition, we do not rely on use of fixed binaries or network traffic, which can be well thwarted by 

the modern malware via obfuscation or payload encryption. In its place, it will use volatile memory 

analysis only, thus placing the system at the intersection of explainable AI and digital forensics, a 

direction that has only been headed in some recent publications such as Hasan & Dhakal (2023) [6] 

and Odeh et al. (2025) [12]. 

C. Strategic Positioning of This Work 

This study places itself at the forefront of explainable malware detection by using memory forensics. 

Three clear advantages make this study stand out: 

• Forensics-Exclusive Pipeline: The whole system runs on memory dumps only, without relying 

on any limitations that come with static analysis or traffic inspection, as also highlighted in [3], 

[6], and [8]. 

• Hybrid Learning Capability: Through the integration of unsupervised pretraining (through 

MoCLAE) and supervised classification, our approach enables both anomaly detection and 

particular malware family classification. 

• Superior Performance with Explainability: In contrast to non-interpretable models that stress 

accuracy only, our model provides notably high AUCs (~1.0) accompanied by rich feature 

attribution maps, aligning with the interpretability objectives set by Hossain & Islam (2024) [7] 

and Pradhan et al. (2025) [14]. 

Collectively, the MoCLAE model sets itself as a cutting-edge gold standard within the field of real-

time malware categorization via memory forensics. Not only does it surpass the performance and 

generalizability of its predecessors but also launches a new paradigm in marrying deep learning 
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models with forensic explainability—longstanding in both research and operational cybersecurity 

settings. 

 

CONCLUSION 

This work presents a new, explainable paradigm for real-time malware detection and classification 

from volatile memory forensics with the Momentum-Contrast Laplacian Autoencoder (MoCLAE). 

MoCLAE utilizes the CIC-MalMem-2022 dataset and efficiently represents semantic and structural 

associations within memory artifacts via contrastive self-supervision and graph Laplacian 

regularization. The embeddings produced by MoCLAE drastically improve the performance of various 

classifiers—such as Random Forest, SVM, XGBoost, and Logistic Regression—with near-perfect AUC 

values (≥ 0.999). Feature importance analysis proves the forensic significance of features like service 

enumeration, memory injections, and stealth process indicators, providing transparency and 

reliability in the detection of threats. In contrast to recent baselines such as MeMalDet and MDGraph, 

the introduced framework exhibits better classification efficiency, model explainability, and 

architectural flexibility. Through inclusion of temporal delta features and process–DLL correlations, it 

also enhances resistance against obfuscated and zero-day malware. In total, this end-to-end memory-

resident detection pipeline represents a scalable, high-fidelity, and forensics-compliant solution for 

malware analysis in real-world scenarios without depending upon static binaries or network traffic. 
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