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The real-time integration of LiDAR and camera sensor data plays a vital role in the field of 

autonomous driving. This fusion enables accurate depth estimation and object detection at 

various distances, significantly enhancing a vehicle’s perception capabilities. This study proposes 

an effective method to estimate distances between a self-driving vehicle and surrounding objects 

such as other vehicles, pedestrians, and traffic signs through LiDAR-camera data fusion. The 

methodology begins with applying Rigid Body Transformations (rotation and translation) to 

align the coordinate frames of the LiDAR and camera systems. This is followed by projecting 3D 

LiDAR points onto the 2D camera image plane using Homogeneous Coordinate Transformation 

(matrix multiplication). The fused data is then processed with the YOLOv5 deep learning model 

for object detection. Distance estimation involves associating the nearest bounding box 

coordinates of detected objects in the camera images with the corresponding LiDAR points. 

Depth values are extracted from the LiDAR data, and the Euclidean distance from the ego vehicle 

is computed. This sensor fusion approach is rigorously evaluated using both real-world scenarios 

and simulated environments. The analysis includes both quantitative and qualitative 

assessments. The results demonstrate significant improvements in environmental perception, 

with consistent and reliable depth information that supports safe autonomous navigation. The 

technique achieved an accuracy of approximately 82%, with a mean absolute error of 4.69 and 

RMSE of 5.863 in highway road scenarios. These results highlight the robustness and potential of 

sensor fusion for enhancing perception systems in autonomous vehicles. 
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Introduction 

Autonomous vehicles (AVs) are transforming modern transportation by reducing acci- dent risk and enhancing 

road safety. They also promise to reduce emissions, improve traffic flow, and drive economic growth [1]. AVs 

are designed to perceive their surround- ings and navigate with little or no human input. According to 

Precedence Research, the global AV market reached around 6,500 units in 2019 and is projected to grow at 

a CAGR of 63.5% from 2020 to 2027 [2]. Object detection and distance estimation are key to AVs’ safe 

navigation in dynamic environments. Recently, Multi-Source and Heterogeneous Information Fusion 

(MSHIF) has emerged as a powerful strategy for enhancing AV perception. By combining inputs from various 

sensors, MSHIF addresses limitations of individual sensors and provides a richer, more accurate 

environmen- tal understanding [3]. Sensors like cameras, LiDAR, radar, sonar, GPS, IMU, and odometers 

are integral to autonomous driving. Among them, camera-LiDAR fusion has gained attention due to its 

complementary strengths—cameras provide high-resolution visual data, while LiDAR offers accurate depth 

information [4]. 3D LiDAR sensors are widely used for their wide field of view, precise depth capabilities, and 

long-range detection, even at night [5]. However, point cloud sparsity at greater distances can reduce 

classification accuracy [6]. In contrast, cameras excel at object classification due to their high resolution and 
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the recent progress in deep learning-based image recog- nition [7]. Typical object detection methods involve 

generating region proposals (e.g., sliding window, edge box, selective search) and using convolutional neural 

networks (CNNs) for classification [8]. Sensor data fusion is achieved through various techniques, including rule-

based methods, probabilistic models like Kalman filters, and Bayesian inference [9]. More recently, machine 

learning and deep learning fusion techniques have shown promise, especially CNNs and recurrent neural 

networks (RNNs), which pro- cess multi-modal data for improved perception, localization, and decision-making 

[10]. Integrating sensor data in autonomous vehicles is challenged by calibration, synchro- nization, and real-time 

processing. Environmental factors like weather and lighting add complexity, requiring robust fusion 

algorithms. This thesis aims to enhance percep- tion and reliability through advanced LiDAR-camera 

fusion, benefiting autonomous driving and related fields. In this study, we introduce a novel approach that 

combines camera and LiDAR data with the YOLOv5 deep learning model for integrated object detection 

and distance estimation. This fusion leverages the strengths of both sen- sor cameras for rich visual 

context and LiDAR for accurate depth information. By processing the combined data through YOLOv5, we 

achieve reliable object detection and precise distance measurements. Experimental evaluations across various 

real-time  datasets demonstrate that this approach delivers strong accuracy and robust perfor- mance in 

diverse driving scenarios. The objective is to create a robust perception system that enhances the 

vehicle’s autonomous navigation capabilities in complex environments. The project is entitled as ”Sensor 

Fusion for Object Detection and Dis- tance Estimation in Autonomous Vehicle Perception,” which succinctly 

summarizes its purpose. Camera–LiDAR fusion plays a crucial role in enhancing autonomous vehicle 

perception, which is highly relevant for Industry and advanced manufacturing envi- ronments. By 

combining the rich visual details from cameras with the precise depth information from LiDAR, sensor 

fusion enables accurate object detection and reli- able distance estimation. In industrial settings such as 

automated warehouses, smart factories, and material transport systems, this capability ensures safer navigation, 

col- lision avoidance, and efficient task execution. Moreover, robust perception through camera–LiDAR 

fusion supports the development of intelligent robotic platforms and autonomous guided vehicles (AGVs), 

which are key components in Industry, ultimately improving productivity, safety, and automation in 

manufacturing processes. 

Related Work 

Autonomous vehicles (AVs), or self-driving cars, operate with minimal human input by processing data 

from multiple sensors for safe navigation [7]. They perform two key perception tasks: environmental 

perception (using RGB/thermal cameras, LiDAR) and localization (using GNSS, IMU, INS, odometry, 

and LiDAR) [11]. Key perception modules include object detection, tracking, and SLAM, where cameras 

detect objects and road signs, and LiDAR provides accurate depth information [12]. Combined, these sensors 

support mapping and localization by extracting features used in SLAM or matching with HD maps 

[13].Sensor fusion enhances perception by integrating outputs from various sensors to reduce uncertainty and 

improve decision-making [14]. Tradi- tional fusion algorithms include statistical, probabilistic, knowledge-

based, evidence reasoning, and interval analysis methods [15]. Deep learning has significantly advanced sensor 

fusion, with models like CNNs, RNNs, DBNs, and AEs applied to perception tasks [16]. Fusion of LiDAR 

and camera data is widely used to improve detection. For example, Asvadi et al. [17] fused LiDAR-

generated depth and reflectance maps with RGB images, processed via YOLO, using decision-level fusion 

for vehicle detection. Another approach [18] projects LiDAR ROIs onto camera images for enhanced detec- 

tion. Fusion methods are categorized as early fusion (e.g., projecting 3D LiDAR onto 2D images) and late 

fusion (e.g., merging 2D and 3D bounding boxes post-detection) [19]. Object detection and distance 

estimation techniques include camera-based (e.g., Fast R-CNN, YOLO) [20], LiDAR-based (e.g., 

PointRCNN, VoxelNet) [21], and multi- sensor-based methods. While cameras offer rich visuals, they struggle 

in poor lighting. LiDAR provides precise 3D data but becomes sparse with distance. Combining sensors enhances 

results. Object-centric fusion (using Bird’s Eye View and front view), Point- Painting [22], and radar fusion 

(e.g., CenterFusion) help improve robustness, especially in challenging weather conditions. Based on the above 

research, our focus is to enhance sensor integration for autonomous driving and improve perception and 

localization for accurate object detection and distance estimation. This approach addresses key chal- lenges 
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such as sensor misalignment and environmental variability, while also enhancing the accuracy of object 

localization and distance measurements. The combination of deep learning and late fusion thus forms a strong 

foundation for safer and more efficient autonomous vehicle navigation. 

Methodology 

1.1 Dataset 

The KITTI dataset, collected in Germany’s rural and urban areas, contains six hours of traffic data 

captured at 10–100 Hz using a GPS/IMU system, a 64-beam Velodyne LiDAR, and high-resolution 

grayscale and color stereo cameras. Data were recorded in daylight and good weather to minimize 

illumination effects. The dataset provides raw and processed stereo sequences (0.5 MP, PNG), LiDAR 

point clouds ( 100k points/frame), GPS/IMU metadata (location, speed, acceleration), and calibration 

files (camera, LiDAR, IMU) for accurate sensor fusion and depth estimation. It also includes 3D object 

tracking labels for vehicles, pedestrians, cyclists, and others, along with synchronized timestamps. setup for 

sensors on car is shown in Figure1. 

Fig. 1: KITTI dataset data collection platform with multi-sensor setup including stereo cameras, LiDAR, 

and GPS/IMU [23] 

1.2 Yolo v5 Model 

YOLOv5 is an efficient object detection model with four variants (small to extra- large) offering a trade-off 

between speed and accuracy. Its model variants are shoen in Figure 2. It uses a CSP-Darknet53 backbone with 

SPP and PANet for robust feature extraction, and its head predicts bounding boxes, classes, and scores. 

Key improve- ments include SiLU activation, BCE and CIoU loss functions, optimized bounding box 

equations for edge accuracy, and a Focus Layer that reduces FLOPs and memory use. Implemented in 

PyTorch, YOLOv5 achieves high accuracy and speed, making it well-suited for real-time detection. 

 

Fig. 2: YOLO V5 Performance Comparison with Other models [18] 

1.1 Proposed Method 

The proposed method is illustrated in Figure 3. We used the KITTI dataset [23], which provides pre-calibrated 

LiDAR and camera data along with publicly available calibration files. These files contain the intrinsic and extrinsic 

parameters required to transform and project LiDAR points onto image planes, ensuring accurate sensor 

alignment. Intrinsic parameters of the camera are obtained using the checkerboard cal- ibration method, while 
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extrinsic parameters between LiDAR and camera are estimated with a planar 3D marker. Finally, rigid 

transformations (translation and rotation) are applied to align the coordinate systems using equations (1)–(4). 

 

Fig. 3: Process flow of the algorithm of the proposed method 

a. Rotation Matrix : A rotation matrix R can rotate a point (x,y,z) in 3D space to a new position (x′,y′,z′). It is a 3x3 

matrix . where R is 3 x 3 rotational matrix.             

[
𝑥′

𝑦′

𝑧′

] = R[
𝑥
𝑦
𝑧

]    
(1) 

 
 

R = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

]    
(2) 

b. Translation Vector : Translation involves moving the coordinate system by a vector t = [tx, ty, tz]T . If (x, y, z) is a 

point in 3D space, the translated point (x′, y′, z′) is given by:  

[
𝑥′

𝑦′

𝑧′

] = R[
𝑥 + 𝑡𝑥
𝑦 + 𝑡𝑦
𝑧 + 𝑡𝑧

]    
(3) 

The translational vector t is : 

t = [
𝑡𝑥
𝑡𝑦
𝑡𝑧

] 
(4) 

c. Homogeneous Transformation: Rotation and translation are often combined into a single 4 × 4 homogeneous 

transformation matrix T, which includes both components: 

T =[
𝑅 𝑡
0 1

] (5) 

d. Projection onto Image Plane: The overall transformation matrix from the LiDAR frame to the rectified camera 

frame projects 3D LiDAR points (X, Y,Z) onto the 2D image plane (u, v) as: 

[
𝑢
𝑣
1

] = 𝐾(𝑅 ∗ [
𝑋
𝑌
𝑍

] + 𝑇) 
(6) 

where K is the 3 × 3 intrinsic camera matrix, R is the 3 × 3 rotation matrix, T is the 3 × 1 translation 

vector, and (X, Y, Z) are the 3D LiDAR points. The fused data is processed using YOLOv5, which 

applies confidence and IoU thresholds to detect objects with bounding boxes, class labels, and confidence 

scores. Each detection is then associated with the nearest LiDAR point cloud, enabling calculation of the 

Euclidean distance (Equation 7.) between the object’s 3D coordinates (xp, yp, zp) and the ego vehicle’s 

reference coordinates (Xe, Ye, Ze). This ensures accurate object detection and distance estimation. 
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𝑑 =  √(𝑥𝑝 − 𝑋𝑒)2 + (𝑦𝑝 − 𝑌𝑒)2 + (𝑧𝑝 − 𝑍𝑒)2 (7) 

1.3 Evaluation Metrics 

An evaluation matrix is vital for assessing the performance and effectiveness of a model or system. They 

provide quantitative measures to determine how well the system meets its objectives.  

1.3.1 Evaluation Metrics for Object Detection 

To assess and compare the predictive capabilities of the different object detection models,  it’s essential to 

rely on some standardized quantitative measures. Among the most prevalent evaluation metrics are the 

Intersection over Union (IoU) and the Average Precision (AP). 

𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 

(8) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(9) 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(10) 

  

Where,  TP = True Positive 

FP = False Positive 

TN = True negative 

1.3.2 Evolution matrix for Distance Estimation 

Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) are common metrics for evaluating 

prediction accuracy. MAE measures the average absolute differ- ence between predicted and actual values, 

while RMSE squares errors before averaging, giving more weight to large discrepancies and penalizing 

outliers. 

𝑀𝐴𝐸 =  
|(𝑦𝑖 − 𝑦𝑝)|

𝑛
 

(11) 

 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖 − 𝑦𝑝)2

𝑛
  

(12) 

Where, yi = actual value, yˆi = predicted value, and n = number of observations. 

Results 

This section presents visualizations, GPU usage, and model performance. The model utilized only 26% GPU 

memory, showing efficient processing, and achieved a maximum accuracy of 81.82% with detailed distance 

error analysis across scenarios. These results confirm its robustness and real-world applicability. 

4.2 Visualization Results 

The visual results for 3 different visual scenarios are shown in the following Figure 4, which includes 

results for a) 3D point cloud projected on 2D camera image, b) Yolo Object detection with IoU score, c) 

Detection and Distance Estimation with the proposed method, and d) Bird’s Eye View with surrounding 

vehicles. 
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Fig. 4: Results for scenario 1 Highway Road 

Figure 5 shows a combined image of LiDAR + camera view together with detection and distance for a road 

scenario on the highway. 

 

Fig. 5: LiDAR+Camera+BEV together on a single frame for highway road Figures 6 and 7 show a 

combined image of LiDAR + Camera View together with Detection and Distance for a traffic road scenario 

and a Residential Road, respectively. 

 

Fig. 6: LiDAR+Camera+BEV together on a single frame for a traffic road scenario 
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Fig. 7: LiDAR+Camera+BEV together on single frame Residential Road scenario 

4.3 Performance Result 

The proposed system achieves a frame rate of 10, as illustrated in Figure 8. The results for different scenarios 

are listed in Table 1. 

Table 1: Performance results for different scenarios 

Sr. 

No. 

Scenario MAE 

(meters) 

RMSE 

(meters) 

Model 

Accuracy (%) 

1 Highway Road 0.7852 0.9773 81.82 

2 Traffic Signal 

Road 

0.7264 0.8996 77.27 

3 Residential 

Road 

0.8434 1.0570 72.73 

 

Fig. 8: FPS for Proposed model 

We have run our model on both CPU and cloud GPU. CPU is an INTEL I-5 7th Gen Processor. GPU 

details are in Figure 9. We have observed that the GPU utilization of my model is around 26 

 

(a) GPU score (b) Memory utilization 

Fig. 9: GPU score and Memory utilization of system 

Conclusion 

In this research work, we comprehensively reviewed the deep learning-based sensor fusion approach by 

integrating the early fusion of LiDAR and Camera information. We used the Coordinates transformation at 
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the early stage of projecting the 3D point cloud onto 2D image and then transferred the data to the YOLO v5 

object detection block and got the bounding box predictions. We have got box prediction along with the LiDAR 

point cloud information inside. We have x, y, z coordinates of the point cloud. We then used IMU data, 

which was earlier used during sensor calibration, provided by the DATASET author, to localize the EGO 

vehicle and measure the distance of the EGO vehicle from the other objects using the nearest point cloud 

information. We have performed out model in both CPU and Cloud GPU. We have worked on different scenarios 

like highway roads, residential roads, traffic signals etc. The proposed method achieved an accuracy of 82%, 

with a mean absolute error of 4.69 and an RMSE of 5.863 on the highway road scenario, demonstrating the 

effectiveness of sensor fusion in enhancing autonomous vehicle perception. 

Future Scope 

The field of autonomous driving is growing day by day. There is a wide range of research opportunities. The 

proposed method can be further improved by working with different large datasets and under different 

weather conditions. We can develop a vehicle tracking application and a navigation application, and improve 

the perception. 

We can also impart the fusion of RADAR data, thereby improving the object distance estimation. 
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