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ARTICLE INFO ABSTRACT

Received: 01 Aug 2024 The real-time integration of LiDAR and camera sensor data plays a vital role in the field of

autonomous driving. This fusion enables accurate depth estimation and object detection at

various distances, significantly enhancing a vehicle’s perception capabilities. This study proposes

Accepted: 25 Sept 2024 an effective method to estimate distances between a self-driving vehicle and surrounding objects
such as other vehicles, pedestrians, and traffic signs through LiDAR-camera data fusion. The
methodology begins with applying Rigid Body Transformations (rotation and translation) to
align the coordinate frames of the LiDAR and camera systems. This is followed by projecting 3D
LiDAR points onto the 2D camera image plane using Homogeneous Coordinate Transformation
(matrix multiplication). The fused data is then processed with the YOLOv5 deep learning model
for object detection. Distance estimation involves associating the nearest bounding box
coordinates of detected objects in the camera images with the corresponding LiDAR points.
Depth values are extracted from the LiDAR data, and the Euclidean distance from the ego vehicle
is computed. This sensor fusion approach is rigorously evaluated using both real-world scenarios
and simulated environments. The analysis includes both quantitative and qualitative
assessments. The results demonstrate significant improvements in environmental perception,
with consistent and reliable depth information that supports safe autonomous navigation. The
technique achieved an accuracy of approximately 82%, with a mean absolute error of 4.69 and
RMSE of 5.863 in highway road scenarios. These results highlight the robustness and potential of
sensor fusion for enhancing perception systems in autonomous vehicles.
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Introduction

Autonomous vehicles (AVs) are transforming modern transportation by reducing acci- dent risk and enhancing
road safety. They also promise to reduce emissions, improve traffic flow, and drive economic growth [1]. AVs
are designed to perceive their surround- ings and navigate with little or no human input. According to
Precedence Research, the global AV market reached around 6,500 units in 2019 and is projected to grow at
a CAGR of 63.5% from 2020 to 2027 [2]. Object detection and distance estimation are key to AVs’ safe
navigation in dynamic environments. Recently, Multi-Source and Heterogeneous Information Fusion
(MSHIF) has emerged as a powerful strategy for enhancing AV perception. By combining inputs from various
sensors, MSHIF addresses limitations of individual sensors and provides a richer, more accurate
environmen- tal understanding [3]. Sensors like cameras, LiDAR, radar, sonar, GPS, IMU, and odometers
are integral to autonomous driving. Among them, camera-LiDAR fusion has gained attention due to its
complementary strengths—cameras provide high-resolution visual data, while LiDAR offers accurate depth
information [4]. 3D LiDAR sensors are widely used for their wide field of view, precise depth capabilities, and
long-range detection, even at night [5]. However, point cloud sparsity at greater distances can reduce
classification accuracy [6]. In contrast, cameras excel at object classification due to their high resolution and
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the recent progress in deep learning-based image recog- nition [7]. Typical object detection methods involve
generating region proposals (e.g., sliding window, edge box, selective search) and using convolutional neural
networks (CNNs) for classification [8]. Sensor data fusion is achieved through various techniques, including rule-
based methods, probabilistic models like Kalman filters, and Bayesian inference [9]. More recently, machine
learning and deep learning fusion techniques have shown promise, especially CNNs and recurrent neural
networks (RNNs), which pro- cess multi-modal data for improved perception, localization, and decision-making
[10]. Integrating sensor data in autonomous vehicles is challenged by calibration, synchro- nization, and real-time
processing. Environmental factors like weather and lighting add complexity, requiring robust fusion
algorithms. This thesis aims to enhance percep- tion and reliability through advanced LiDAR-camera
fusion, benefiting autonomous driving and related fields. In this study, we introduce a novel approach that
combines camera and LiDAR data with the YOLOv5 deep learning model for integrated object detection
and distance estimation. This fusion leverages the strengths of both sen- sor cameras for rich visual
context and LiDAR for accurate depth information. By processing the combined data through YOLOvs5, we
achieve reliable object detection and precise distance measurements. Experimental evaluations across various
real-time datasets demonstrate that this approach delivers strong accuracy and robust perfor- mance in
diverse driving scenarios. The objective is to create a robust perception system that enhances the
vehicle’s autonomous navigation capabilities in complex environments. The project is entitled as "Sensor
Fusion for Object Detection and Dis- tance Estimation in Autonomous Vehicle Perception,” which succinctly
summarizes its purpose. Camera—LiDAR fusion plays a crucial role in enhancing autonomous vehicle
perception, which is highly relevant for Industry and advanced manufacturing envi- ronments. By
combining the rich visual details from cameras with the precise depth information from LiDAR, sensor
fusion enables accurate object detection and reli- able distance estimation. In industrial settings such as
automated warehouses, smart factories, and material transport systems, this capability ensures safer navigation,
col- lision avoidance, and efficient task execution. Moreover, robust perception through camera—LiDAR
fusion supports the development of intelligent robotic platforms and autonomous guided vehicles (AGVs),
which are key components in Industry, ultimately improving productivity, safety, and automation in
manufacturing processes.

Related Work

Autonomous vehicles (AVs), or self-driving cars, operate with minimal human input by processing data
from multiple sensors for safe navigation [7]. They perform two key perception tasks: environmental
perception (using RGB/thermal cameras, LiDAR) and localization (using GNSS, IMU, INS, odometry,
and LiDAR) [11]. Key perception modules include object detection, tracking, and SLAM, where cameras
detect objects and road signs, and LiDAR provides accurate depth information [12]. Combined, these sensors
support mapping and localization by extracting features used in SLAM or matching with HD maps
[13].Sensor fusion enhances perception by integrating outputs from various sensors to reduce uncertainty and
improve decision-making [14]. Tradi- tional fusion algorithms include statistical, probabilistic, knowledge-
based, evidence reasoning, and interval analysis methods [15]. Deep learning has significantly advanced sensor
fusion, with models like CNNs, RNNs, DBNs, and AEs applied to perception tasks [16]. Fusion of LIDAR
and camera data is widely used to improve detection. For example, Asvadi et al. [17] fused LiDAR-
generated depth and reflectance maps with RGB images, processed via YOLO, using decision-level fusion
for vehicle detection. Another approach [18] projects LIDAR ROIs onto camera images for enhanced detec-
tion. Fusion methods are categorized as early fusion (e.g., projecting 3D LiDAR onto 2D images) and late
fusion (e.g., merging 2D and 3D bounding boxes post-detection) [19]. Object detection and distance
estimation techniques include camera-based (e.g., Fast R-CNN, YOLO) [20], LiDAR-based (e.g.,
PointRCNN, VoxelNet) [21], and multi- sensor-based methods. While cameras offer rich visuals, they struggle
in poor lighting. LiDAR provides precise 3D data but becomes sparse with distance. Combining sensors enhances
results. Object-centric fusion (using Bird’s Eye View and front view), Point- Painting [22], and radar fusion
(e.g., CenterFusion) help improve robustness, especially in challenging weather conditions. Based on the above
research, our focus is to enhance sensor integration for autonomous driving and improve perception and
localization for accurate object detection and distance estimation. This approach addresses key chal- lenges
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such as sensor misalignment and environmental variability, while also enhancing the accuracy of object
localization and distance measurements. The combination of deep learning and late fusion thus forms a strong
foundation for safer and more efficient autonomous vehicle navigation.

Methodology

1.1 Dataset

The KITTI dataset, collected in Germany’s rural and urban areas, contains six hours of traffic data
captured at 10-100 Hz using a GPS/IMU system, a 64-beam Velodyne LiDAR, and high-resolution
grayscale and color stereo cameras. Data were recorded in daylight and good weather to minimize
illumination effects. The dataset provides raw and processed stereo sequences (0.5 MP, PNG), LiDAR
point clouds ( 100k points/frame), GPS/IMU metadata (location, speed, acceleration), and calibration
files (camera, LiDAR, IMU) for accurate sensor fusion and depth estimation. It also includes 3D object
tracking labels for vehicles, pedestrians, cyclists, and others, along with synchronized timestamps. setup for
sensors on car is shown in Figurei.
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Fig. 1: KITTI dataset data collection platform with multi-sensor setup including stereo cameras, LiDAR,

and GPS/IMU [23]

1.2 Yolo v5 Model

YOLOVvs5 is an efficient object detection model with four variants (small to extra- large) offering a trade-off
between speed and accuracy. Its model variants are shoen in Figure 2. It uses a CSP-Darknet53 backbone with
SPP and PANet for robust feature extraction, and its head predicts bounding boxes, classes, and scores.
Key improve- ments include SiLU activation, BCE and CIoU loss functions, optimized bounding box
equations for edge accuracy, and a Focus Layer that reduces FLOPs and memory use. Implemented in
PyTorch, YOLOv5 achieves high accuracy and speed, making it well-suited for real-time detection.
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Fig. 2: YOLO V5 Performance Comparison with Other models [18]
1.1 Proposed Method

The proposed method is illustrated in Figure 3. We used the KITTI dataset [23], which provides pre-calibrated
LiDAR and camera data along with publicly available calibration files. These files contain the intrinsic and extrinsic
parameters required to transform and project LiDAR points onto image planes, ensuring accurate sensor
alignment. Intrinsic parameters of the camera are obtained using the checkerboard cal- ibration method, while
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extrinsic parameters between LIDAR and camera are estimated with a planar 3D marker. Finally, rigid
transformations (translation and rotation) are applied to align the coordinate systems using equations (1)—(4).
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Fig. 3: Process flow of the algorithm of the proposed method

Rotation Matrix : A rotation matrix R can rotate a point (x,y,z) in 3D space to a new position (x’,y’,z’). It is a 3x3
matrix . where R is 3 x 3 rotational matrix.
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Translation Vector : Translation involves moving the coordinate system by a vector t = [tx, ty, tz]T . If (x, y, z) is a
point in 3D space, the translated point (x’, y’, z’) is given by:

x' X+ tx (3)
[y’ =R|y +ty
7' zZ+tz
The translational vector t is :
tx 4)
t=|ty
tz

Homogeneous Transformation: Rotation and translation are often combined into a single 4 x 4 homogeneous
transformation matrix T, which includes both components:

S

Projection onto Image Plane: The overall transformation matrix from the LiDAR frame to the rectified camera
frame projects 3D LiDAR points (X, Y,Z) onto the 2D image plane (u, v) as:

u X ©)
[U] =KR=+|Y|+T)
1 Z

where K is the 3 x 3 intrinsic camera matrix, R is the 3 x 3 rotation matrix, T is the 3 x 1 translation
vector, and (X, Y, Z) are the 3D LiDAR points. The fused data is processed using YOLOv5, which
applies confidence and IoU thresholds to detect objects with bounding boxes, class labels, and confidence
scores. Each detection is then associated with the nearest LiDAR point cloud, enabling calculation of the
Euclidean distance (Equation 7.) between the object’s 3D coordinates (xp, Yp, Zp) and the ego vehicle’s
reference coordinates (X, Ye, Z.). This ensures accurate object detection and distance estimation.
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1.3 Evaluation Metrics

An evaluation matrix is vital for assessing the performance and effectiveness of a model or system. They
provide quantitative measures to determine how well the system meets its objectives.

1.3.1 Evaluation Metrics for Object Detection

To assess and compare the predictive capabilities of the different object detection models, it’s essential to
rely on some standardized quantitative measures. Among the most prevalent evaluation metrics are the
Intersection over Union (IoU) and the Average Precision (AP).

loU = Area of Overlap (3)
oY= Area of Union
. TP (9)
precision = W
TP (10)
recall = TP-I-—FN
Where, TP = True Positive
FP = False Positive
TN = True negative
1.3.2 Evolution matrix for Distance Estimation

Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) are common metrics for evaluating
prediction accuracy. MAE measures the average absolute differ- ence between predicted and actual values,
while RMSE squares errors before averaging, giving more weight to large discrepancies and penalizing
outliers.

_ i —yp)l (11)
B n

(i — yp)? (12)
s = |37 0L

Where, y; = actual value, y”; = predicted value, and n = number of observations.

MAE

Results

This section presents visualizations, GPU usage, and model performance. The model utilized only 26% GPU
memory, showing efficient processing, and achieved a maximum accuracy of 81.82% with detailed distance
error analysis across scenarios. These results confirm its robustness and real-world applicability.

4.2 Visualization Results

The visual results for 3 different visual scenarios are shown in the following Figure 4, which includes
results for a) 3D point cloud projected on 2D camera image, b) Yolo Object detection with IoU score, c)
Detection and Distance Estimation with the proposed method, and d) Bird’s Eye View with surrounding
vehicles.

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution
License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Journal of Information Systems Engineering and Management
2024, 9(3)
e-ISSN: 2468-4376

https://www .jisem-journal.com/ Research Article

3D point cloud projected on 2D camera image

Yolo Object detection with ToU score

Dy 1 d Distance Estimation wit apos ¢ . i
Detection and Distance Estimation with praposed method Bird's Eye View with surrounding vechicles

Fig. 4: Results for scenario 1 Highway Road

Figure 5 shows a combined image of LIDAR + camera view together with detection and distance for a road
scenario on the highway.

Fig. 5: LIDAR+Camera+BEV together on a single frame for highway road Figures 6 and 7 show a
combined image of LIDAR + Camera View together with Detection and Distance for a traffic road scenario
and a Residential Road, respectively.
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Fig. 6: LIDAR+Camera+BEV together on a single frame for a traffic road scenario
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Fig. 7: LIDAR+Camera+BEV together on single frame Residential Road scenario
4.3 Performance Result

The proposed system achieves a frame rate of 10, as illustrated in Figure 8. The results for different scenarios
are listed in Table 1.

Table 1: Performance results for different scenarios

Sr. Scenario MAE RMSE Model
No. (meters) (meters) | Accuracy (%)
1 Highway Road 0.7852 0.9773 81.82
2 Traffic Signal 0.7264 0.8996 77.27
Road
3 Residential 0.8434 1.0570 72.73
Road

cam2_fps = 1/np.median(np.diff(cam2_total_seconds))

cam2_fps

9.661498202849517

Fig. 8: FPS for Proposed model

We have run our model on both CPU and cloud GPU. CPU is an INTEL I-5 7th Gen Processor. GPU
details are in Figure 9. We have observed that the GPU utilization of my model is around 26

Total GPU Memory (Bytes): 24116480@

Used GPU Memory (Bytes): 62798848

(a) GPU score (b) Memory utilization
Fig. 9: GPU score and Memory utilization of system
Conclusion

In this research work, we comprehensively reviewed the deep learning-based sensor fusion approach by
integrating the early fusion of LiDAR and Camera information. We used the Coordinates transformation at
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the early stage of projecting the 3D point cloud onto 2D image and then transferred the data to the YOLO v5
object detection block and got the bounding box predictions. We have got box prediction along with the LiDAR
point cloud information inside. We have x, y, z coordinates of the point cloud. We then used IMU data,
which was earlier used during sensor calibration, provided by the DATASET author, to localize the EGO
vehicle and measure the distance of the EGO vehicle from the other objects using the nearest point cloud
information. We have performed out model in both CPU and Cloud GPU. We have worked on different scenarios
like highway roads, residential roads, traffic signals etc. The proposed method achieved an accuracy of 82%,
with a mean absolute error of 4.69 and an RMSE of 5.863 on the highway road scenario, demonstrating the
effectiveness of sensor fusion in enhancing autonomous vehicle perception.

Future Scope

The field of autonomous driving is growing day by day. There is a wide range of research opportunities. The
proposed method can be further improved by working with different large datasets and under different
weather conditions. We can develop a vehicle tracking application and a navigation application, and improve
the perception.

We can also impart the fusion of RADAR data, thereby improving the object distance estimation.
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