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Introduction 

Wire electrical discharge machining (WEDM), also known as the spark erosion process, is utilized to fabricate 
highly detailed and complex shapes on materials that conduct electricity, using a wire. This process involves 
generating sparks between the wire, which acts as an electrode, and the workpiece, both of which are immersed 
in a dielectric fluid. The outstanding surface quality and dimensional accuracy achieved through WEDM are 
essential for applications in the production of dies and molds, as well as in industries such as aerospace, 
medical, surgical, and automotive [1]. Due to the unique properties of WEDM, it is capable of machining 
intricate and precise shapes [2]. In the current study, the WEDM process for SKD11 is both modeled and 
optimized. The findings have the potential to greatly improve manufacturing conditions and the quality of the 
machined workpiece, aligning with the varied needs of manufacturing companies [3]. 
Several studies have focused on modeling and enhancing the efficiency of the WEDM process. Datta and 
Mahapatra utilized Response Surface Methodology to create quadratic mathematical models that illustrate the 
behavior of the WDM operation. Their experiments involved varying six input process variables—dielectric flow 
rate, wire tension, discharge current, pulse frequency, wire speed, and pulse duration—across three different 
levels. Performance metrics such as SR and KW were recorded for each experimental trial[4]. In another study, 
Rao, Ramji, and Satyanarayana optimized process variables for cutting Aluminum-24345 using WEDM and 
RSM. They developed multiple linear regression models to link process parameters with machining 
performance [5]. Rajesh and Anand attempted to model the Material Removal Rate (MRR) and Surface Finish 
(Ra) in the wire EDM process using response surface methodology and a Genetic Algorithm (GA). The working 
current, working voltage, oil pressure, spark gap pulse-on time, and pulse-off time were selected as the input 
parameters [6].  
Ghodsiyeh et al. deliberate the performance of three input process variables during machining of titanium alloy 
on WEDM with 0.25 mm diameter of zinc coated brass wire by use of response surface methodology as a design 
of experiment as well as to perform ANOVA to find significant parameters affecting  MRR, SR and sparking 
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gap (SG) [7]. Sharma, Khanna, and Gupta investigated the effect of input-controlled parameters on the MRR 
for WEDM using high-strength and low-alloy workpieces and brass wire as the electrode. The central composite 
response surface methodology was utilized to create a design matrix for the final experimentations and to 
formulate a mathematical model that correlates the independent process parameters with the desired surface 
roughness and material removal [8]. Lusi et al. [9] proposed a hybrid approach combining fuzzy logic and grey 
relational analysis with the Taguchi technique to predict optimal process parameters—such as open voltage, off 
time, servo voltage, arc-on time, and on time—in the WEDM machining of SKD61 tool steel. The objective was 
to optimize multiple performance characteristics, including surface roughness (SR), kerf width, and material 
removal rate (MRR). Sudhakara and Prasanthi [10]conducted a comprehensive review of various research 
methodologies applied in WEDM studies. They analyzed how different input parameters—such as on time, off 
time, voltage, wire tension, wire feed, dielectric pressure, and current—influence output responses like surface 
finish, material removal rate, dimensional accuracy, and the heat-affected zone (HAZ). 
V. Kumar et al. [11] investigated the influence of machining parameters including peak current (Ip), pulse-on
time (Ton), pulse-off time (Toff), and servo voltage (SV) on cutting speed (CS), surface roughness (SR), and
radial overcut (RoC) during the WEDM of Nimonic-90. Their study employed Design of Experiments (DoE)
using Response Surface Methodology (RSM) and applied a desirability function for multi-objective
optimization. Mohapatra, Satpathy, and Sahoo [12] investigated the influence of WEDM process parameters—
such as wire feed rate, servo voltage, wire tension, and pulse-off time—on achieving minimum surface
roughness (SR) and maximum material removal rate (MRR) during the machining of copper spur gears. They
employed a combination of grey Taguchi technique with desirability function and Taguchi’s quality loss
function to optimize the responses. Chakraborty and Bose [13] applied entropy-based grey relational analysis
to determine the optimal cutting parameters—gap voltage, pulse-on time, corner angle, servo feed, peak
current, and pulse-off time—for enhancing cutting velocity, surface roughness (SR), material removal rate
(MRR), and minimizing corner inaccuracy during the WEDM of Inconel 718. Their experiments were designed
using the Taguchi L27 orthogonal array. Silverman, Eswaramoorthy, and Shanmugham [14] studied the effects
of control parameters—pulse-on time, pulse-off time, and wire tension—on the WEDM performance of
titanium. Using Response Surface Methodology (RSM), they aimed to maximize metal removal rate and
improve surface finish.
Extensive research has been conducted on Wire EDM using various conductive metals. In the present study,
SKD11 steel was selected as the workpiece material for experimentation. SKD11 is of particular interest due to
its higher carbon and chromium content compared to other steels, offering excellent wear resistance, corrosion
resistance, and strength—making it a preferred choice in the tool and die manufacturing industry. Despite its
widespread use, WEDM processes often lack comprehensive operating data specific to each material. This data
gap necessitates performance analysis to determine the optimal set of process parameters that can effectively
balance both productivity and quality.This study focuses on developing mathematical models to establish the
relationship between key WEDM process parameters—pulse-on time (Ton), pulse-off time (Toff), servo voltage
(SV), peak current (IP), wire tension (WT), and wire feed (WF)—and their effects on material removal rate
(MRR) and surface roughness (SR) during the machining of SKD11. The analysis is based on the Response
Surface Methodology (RSM), which enables the creation of empirical models that can assist in selecting the
most efficient combination of machining parameters.

Materials and methods 

A series of preliminary trials was conducted following the principles of Response Surface Methodology (RSM). 
The subsequent sections provide detailed explanations of the experimental setup, the workpiece material, 
measuring instruments, the design of experiments, and the selection of input process variables along with their 
respective levels[15]. 

Workpiece Material 
The SKD11 steel [16] used for the experimentation was sourced from M/s Bansidhar Steel Corporation, 
Rakhiyal, Ahmedabad. The chemical composition of the SKD11 material is presented in Table 1. For all 
experiments, the workpiece had a constant height of 12 mm, and a brass wire electrode with a diameter of 0.25 
mm was used as the cutting tool. 

Table 1. Chemical composition of SKD11 

Element 
Standard  
(Max Weight) 

Actual 
(Max Weight ) 

C 1.40 – 1.60 % 1.55 % 
Mn 0.60 % max 0.35 % 
Si 0.60 % max 0.25 % 
V 1.10 % max 0.9 % 
Mo 0.7 -1.20 % 0.8 % 
Cr 11.0 -13.0% 12.0 % 
Fe Balance Balance 



3/9 Dr. Sandip S. Patel et al. / J INFORM SYSTEMS ENG, 09(3)

Experimental setup and performance measuring devices 
The experiments were carried out using a 4-axis Electronica Sprint Cut-734 WEDM machine, located at Jay 
Tech Industries, Odhav, Ahmedabad. During the machining process, key input parameters—including pulse-
off time (Toff), pulse-on time (Ton), wire feed (WF), peak current (IP), wire tension (WT), and servo voltage 
(SV)—were varied to examine their influence on material removal rate (MRR) and surface roughness (SR). The 
brass wire electrode was connected to the negative terminal, while the workpiece was connected to the positive 
terminal. The wire diameter was maintained constant throughout all trials. A specialized fixture was employed 
to securely hold the workpiece on the machine table, minimizing any risk of misalignment. Both the electrode 
and the workpiece were submerged in dielectric fluid during machining. MRR, a key indicator of machining 
productivity and cost-effectiveness, was calculated using the following formula [17]. 

MRR (mm3/min) = Average machining rate × thickness of plate × width of cut (1) 

Wheree Width of cut = (X-Y), X = Desired size of work piece = 8 mm, Y = Real size of the work piece obtained 
after machining, which is measured by Mitutoya digital Vernier caliper having one micron least count. The 
dimensions of the workpiece were measured at two random points along each of the sides AB, BC, and CD, and 
the average of these six readings was taken as the actual size of the workpiece. Surface roughness was evaluated 
using the Centre Line Average (CLA) parameter, denoted as Ra. A contact-type Mitutoyo Surftest SJ-410 
roughness tester, with a least count of 0.001 μm, was used for the measurements. The instrument was set with 
a cutoff length of 0.8 mm and an evaluation length of 4 mm. Ra values were recorded at three different locations 
perpendicular to the cutting direction, and the average of these readings was considered as the surface 
roughness (SR). The setup used for surface roughness measurement is illustrated in Fig. 1. 

Fig. 1. Set up for Surface roughness measurement 

Level of input process parameters selection 
In the present study, the influence of various input process parameters—pulse-on time (Ton), pulse-off time 
(Toff), servo voltage (SV), peak current (IP), wire tension (WT), and wire feed (WF)—on performance measures 
such as surface roughness and MRR has been thoroughly examined. The selection of these parameters and 
their respective levels was based on preliminary screening experiments, machine capability, a detailed 
literature review, and guidelines from the manufacturer’s manual[18]. The chosen parameters were varied 
systematically to analyze their effects, and both actual and coded values of the input variables are summarized 
in Table 2. 

Table 2. Process variables and their ranges[19] 

Coded Factors 
Real 
Factors 

Parameters 
Levels 
-α -1 0 +1 +α

A Ton Pulse on Time 110 112 115 118 120 
B Toff Pulse off Time 50 52 54 56 58 
C IP Peak Current 160 170 180 190 200 
D SV Spark Gap Set Voltage 10 20 30 40 50 
E WF Wire Feed Rate 4 6 7 8 10 
F WT Wire Tension 4 6 7 8 10 

Design of Experiments 
In this study, the Response Surface Methodology (RSM) was employed to design the experiments and carry out 
the optimization process using Design Expert 7.0 software. RSM was utilized to develop a second-order 
regression model that establishes the relationship between the process variables and the response 
characteristics [20]. This approach, combined with regression analysis, allows for effective modelling of the 
desired responses based on multiple input parameters. The experimental design facilitates the evaluation of 
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interaction and quadratic effects, providing valuable insights into the shape and behaviour of the response 
surface. 
A total of 52 experimental runs were conducted using a Central Composite Design (CCD) with half replication 
for six input parameters, where the axial distance (α) was set to 1.565 (α = k^1/4), also referred to as practical 
α. This value is particularly advantageous when working with more than five variables [21]. The design 
comprises 32 factorial points (runs 1 to 32), 12 axial points (runs 33 to 44) used to estimate curvature, and 8 
centre points (runs 45 to 52) at the zero level for replication and pure error estimation. The corresponding 
performance measures for Material Removal Rate (MRR) and Surface Roughness (SR) are summarized in 
Table 3. 

Table 3. Performance measure 

Std 
order 

Run 
order 

Response I Response II 
MRR 
mm3/min 

Surface Roughness 
μm 

1 15 4.428 2.627 
2 40 8.7348 3.312 
3 26 4.0656 2.683 
4 9 8.2584 3.215 
5 31 6.498 3.09 
6 38 10.44 3.564 
7 8 5.1642 3.038 
8 45 8.2764 3.493 
9 34 3.996 2.642 
10 30 6.948 2.907 
11 51 3.3108 2.254 
12 14 5.7096 3.085 
13 33 5.256 2.922 
14 27 8.28 3.176 
15 11 4.347 2.644 
16 36 6.8076 3.08 
17 20 4.5936 2.655 
18 35 6.9552 2.931 
19 24 3.6288 2.368 
20 6 6.0876 2.79 
21 47 5.1072 2.586 
22 12 8.4216 2.968 
23 46 3.975 2.512 
24 28 6.6864 2.755 
25 13 3.696 1.991 
26 1 5.6448 2.522 
27 18 2.772 1.835 
28 48 4.6032 2.502 
29 37 3.564 2.084 
30 4 6.3684 2.62 
31 44 3.42 1.89 
32 22 5.4912 2.386 
33 32 3.06 1.491 
34 41 6.048 2.624 
35 3 5.22 2.49 
36 10 4.026 2.131 
37 39 4.536 2.308 
38 42 5.112 2.432 
39 7 4.8048 2.737 
40 49 3.7422 1.702 
41 5 5.487 2.4 
42 16 5.184 2.433 
43 25 5.1642 2.571 
44 43 5.673 2.432 
45 19 5.4984 2.484 
46 21 5.7462 2.542 
47 17 5.664 2.46 
48 52 5.394 2.395 
49 50 5.796 2.475 
50 29 5.724 2.539 
51 2 5.5998 2.29 
52 23 6.1236 2.38 
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Results and discussion 

The Analysis of Variance (ANOVA) was conducted to evaluate the adequacy of the fitted model and to support 
both regression and graphical analysis. 

Analysis of material removal rate 
To assess the adequacy of the model for surface roughness, three statistical tests were performed: model 
summary statistics, sequential model sum of squares, and the lack-of-fit test. Based on these evaluations, the 
quadratic model was found to be the most appropriate and was selected for further analysis. 
Table 4 presents the ANOVA results for the quadratic model at a 95% confidence level. The model's F-value of 
81.88 and corresponding p-value of less than 0.0001 indicate that the model is statistically significant. There 
is only a 0.01% probability that such a large F-value could be due to random noise. Additionally, the lack-of-fit 
F-value of 7.43 further suggests that the lack of fit is also statistically significant, with only a 0.01% chance of
such a result occurring due to noise. This confirms the relevance of the quadratic model at the 95% confidence
level.
The model's coefficient of determination (R²) approaching unity implies a strong fit to the actual data,
reflecting minimal variation between predicted and observed values. The predicted R² value of 0.8812 is in
close agreement with the adjusted R² value of 0.8963, further validating the model's accuracy. Figure 2
illustrates the normal probability plot of residuals for surface roughness, showing that the residuals are
normally distributed, as most points lie close to the straight line.

Table 4. Analysis of Variance for the Quadratic Model of Material Removal Rate 

Source SS df MS 
F 
Value 

p-value
Prob > F

Model 226.88 11 20.62 81.88 < 0.0001 significant 
A-TON 134.17 1 134.17 532.72 < 0.0001 significant 
B-TOFF 19.08 1 19.08 75.77 < 0.0001 significant 
C-IP 13.89 1 13.89 55.17 < 0.0001 significant 
D-SV 26.95 1 26.95 107.00 < 0.0001 significant 
E-WF 19.57 1 19.57 77.72 < 0.0001 significant 
F-WT 0.24 1 0.24 0.98 0.3245 
AD 1.97 1 1.97 7.82 0.0063 
AE 3.38 1 3.38 13.45 0.0004 significant 
D^2 1.87 1 1.87 7.45 0.0076 
E^2 2.27 1 2.27 9.03 0.0034 significant 
F^2 3.39 1 3.39 13.49 0.0004 significant 
Residual 23.17 92 0.25 
Lack of Fit 18.67 33 0.56 7.427 < 0.0001 significant 
Pure Error 4.49 59 0.07 
Cor Total 250.0 103 

Fig. 2. Normal probability plot for MRR Fig. 3. Combine effect of TON and TOFF 
on MRR 

Based on the developed second-order polynomial model, the influence of input process variables on the 
material removal rate (MRR) was analyzed using Design Expert 7.0. A regression equation in terms of actual 
(real) factors was derived from the experimental data to represent the MRR. Insignificant factors, identified 
through statistical analysis, were excluded from the final quadratic equation to enhance model accuracy and 
simplicity. 
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Material removal rate  =  -88.78042 +1.16180 * TON -0.25428 * TOFF
+0.043395  * IP +0.76260 * SV +4.44255 * WF - 4.77725  * WT - 5.84948E-003
* TON * SV - 0.076693 * TON * WF - 2.50575E-003  * SV2 + 0.27586 * WF2 +
0.33710  * WT2

(2) 

The quadratic terms of wire feed (WF) and wire tension (WT) have a significant influence on the material 
removal rate (MRR) and can be effectively used to predict MRR within the specified range of controlled 
variables. In this analysis, the model terms A, B, C, D, E, AD, AE, D², E², and F² were found to be statistically 
significant, as indicated in Table 4. Model terms with a p-value (Prob > F) greater than 0.1000 are considered 
insignificant and do not have a meaningful impact on the response. 

Fig. 4. Combine effect of 
TON and SV on MRR 

Fig. 5. Combine effect of 
TON and WF on MRR 

Fig. 6. Combine effect of 
TOFF and WF on MRR 

As shown in Fig. 3, the material removal rate (MRR) increased from 2.811 mm³/min to 6.10 mm³/min with an 
increase in pulse-on time from 112 μs to 118 μs and a simultaneous decrease in pulse-off time from 56 μs to 52 
μs. This is attributed to the longer duration of discharge energy at higher pulse-on times, which results in rapid 
melting and evaporation of the material, thereby increasing MRR.Fig. 4 illustrates a similar trend, where MRR 
increased from 2.811 mm³/min to 6.10 mm³/min as the pulse-on time was increased from 112 μs to 118 μs and 
the servo voltage was reduced from 40 V to 20 V. A lower servo voltage narrows the spark gap, leading to more 
frequent discharges and higher MRR. Conversely, a higher spark gap reduces discharge frequency, slowing the 
machining process and decreasing MRR.As observed in Fig. 5, MRR increases with an increase in pulse-on 
time and a decrease in wire feed rate. Fig. 6 further shows that MRR increased from 3.4 mm³/min to 5.7 
mm³/min when pulse-off time decreased from 56 μs to 52 μs and wire feed rate decreased from 8 m/min to 6 
m/min. A shorter pulse-off time increases the number of discharges per unit time, thus enhancing the energy 
delivered to the workpiece and raising the MRR. In contrast, longer pulse-off durations reduce the discharge 
frequency and, consequently, the rate of material erosion. 

Analysis of Surface Roughness 
To assess the adequacy of the model for surface roughness, three statistical tests were conducted: model 
summary statistics, sequential model sum of squares, and the lack-of-fit test. Based on these evaluations, the 
quadratic model was found to be the most suitable and was selected for further analysis. 
Table 5 presents the ANOVA results for the quadratic model at a 95% confidence level. The model's F-value of 
42.88, with a corresponding p-value of less than 0.0001, indicates that the model is statistically significant. 
There is only a 0.01% probability that such a high F-value could occur due to random noise. Additionally, the 
lack-of-fit F-value of 7.76 confirms that the lack of fit is also statistically significant, with just a 0.01% chance 
that such a result is due to noise. This confirms the reliability and significance of the quadratic model at the 
95% confidence level. Furthermore, the coefficient of determination (R²) is close to unity, indicating that the 
model fits the experimental data well and reflects minimal variation between actual and predicted values. The 
predicted R² value of 0.7804 is in good agreement with the adjusted R² value of 0.8173, with a difference of 
less than 0.03—further validating the model’s accuracy. Figure 7 shows the normal probability plot of residuals 
for surface roughness, which clearly demonstrates that the residuals are approximately normally distributed, 
as most points lie close to the straight line. 

Table 5. ANOVA for Quadratic Model of surface roughness 

Source SS df MS 
F 
Value 

p-value 
Prob > F

Model 16.19 11 1.47 42.88 < 0.0001 significant 
A-TON 5.26 1 5.26 153.43 < 0.0001 significant 
B-TOFF 0.13 1 0.13 4.02 0.0478 significant 
C-IP 0.18 1 0.18 5.26 0.0241 significant 
D-SV 2.95 1 2.95 86.16 < 0.0001 significant 
E-WF 3.71 1 3.71 108.2 < 0.0001 significant 
CE 0.18 1 0.18 5.21 0.0237 significant 
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DE 0.30 1 0.30 8.89 0.0037 significant 
B^2 0.12 1 0.12 3.58 0.0616 
C^2 0.26 1 0.26 7.85 0.0062 
E^2 0.35 1 0.35 10.30 0.0018 significant 
F^2 0.74 1 0.74 21.85 < 0.0001 significant 
Residual 3.15 92 0.03 
Lack of Fit 2.56 33 0.07 7.76 < 0.0001 significant 
Pure Error 0.59 59 0.010 
Cor Total 19.34 103 

Fig.  7. Normal probability plot 
for SR 

Fig.  8. Iteration effect of the 
wire feed and peak current on 
surface roughness 

Fig.  9. Iteration effect of servo 
voltage and wire feed rate on 
surface roughness 

Based on the developed second-order polynomial model, the effects of the input process variables on surface 
roughness (SR) were analyzed using Design Expert software. A regression equation, expressed in terms of 
actual values of the six input variables, was formulated from the experimental data to represent SR. The 
equation is provided below. 

Surface roughness  = +78.61910 + 0.089044  * TON  - 1.78728  * TOFF -0.30636  * IP 
+ 0.028325  * SV  - 0.61146  * WF - 2.24411 * WT - 5.32500E-003 * IP * WF - 6.90625E-
003 * SV * WF + 0.016349 * TOFF2 + 9.68293E-004 * IP2 +0.11091  * WF2+0.16154
*WT2 (3) 

The quadratic terms of peak current (IP), wire feed (WF), pulse-off time (Toff), and wire tension (WT) have a 
significant influence on surface roughness (SR) and can be effectively used to predict SR within the defined 
range of control variables. Among the main effects, pulse-on time (Ton), pulse-off time (Toff), peak current 
(IP), servo voltage (SV), and wire feed (WF), along with the interaction effects of WF with IP and WF with SV, 
were found to be statistically significant. The corresponding interaction plots are shown in Figs. 8 and 9. 
As illustrated in Fig. 8, lower values of peak current (170–190 A) combined with higher wire feed rates (6–8 
m/min) result in reduced surface roughness. This is because higher IP increases discharge energy, which leads 
to excessive melting and evaporation, forming large craters on the machined surface. The depth and diameter 
of these craters grow with increasing IP, resulting in a rougher finish. In contrast, a higher wire feed rate helps 
dissipate excess heat from the machining zone, thereby reducing material removal and improving surface 
finish. Similarly, Fig. 9 shows that higher values of servo voltage (20–40 V) along with increased wire feed rates 
(6–8 m/min) yield lower surface roughness. This combination helps maintain a more stable spark gap and 
efficient cooling, leading to better surface quality. 

Multi-Objective Optimization Using Desirability Approach 
Derringer and Suich (1980) introduced a multi-response optimization technique known as the desirability 
approach, which is widely adopted in industry for solving problems involving multiple quality characteristics. 
This method employs an objective function, D(X), referred to as the desirability function. The overall 
desirability is calculated as the geometric mean of the individual desirability values corresponding to each 
transformed response [21]: 

    (4)

Desirability is an objective function that ranges from zero (completely undesirable) to one (fully desirable), 
reflecting how well a particular solution meets the set goals. Statistical optimization aims to identify the point 
that maximizes this desirability function. In the present study, the optimization module in Design-Expert 
software was used to determine the optimal combination of input process parameters—namely, wire feed rate, 
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pulse-off time, peak current, pulse-on time, servo voltage, and wire tension—that meet the specified criteria for 
each response and parameter. The optimization process was carried out with the goal of maximizing the 
material removal rate (MRR) while minimizing surface roughness (SR). The constraints applied to each 
response and input parameter are listed in Table 6. Using Design-Expert, the most favourable operating 
conditions for the process variables and their corresponding performance measures were determined and are 
presented in Table 7. To validate the optimization results, confirmatory experiments were conducted. The 
experimental outcomes (Table 7) closely matched the predicted values, demonstrating the reliability and 
accuracy of the optimized model. 

TABLE 6. Range of input parameters and responses for desirability (CR, SR and MRR) 
Process 
parameters 

Goal 
Lower 
Bound 

Upper 
Bound 

Lower 
Weight 

Upper 
Weight 

Importance 

TON is in range 112 118 1 1 3 
TOFF is in range 52 56 1 1 3 
IP is in range 170 190 1 1 3 
SV is in range 20 40 1 1 3 
WF is in range 6 8 1 1 3 
WT is in range 6 8 1 1 3 
MRR maximize 2.772 10.44 1 1 5 
SR minimize 1.431 3.606 1 1 3 

TABLE 7. Optimum Process parameters for multi-objective optimizations and confirmation 
experiment results 

Optimum Process Parameters Response 
Predicted 

Response 
Experimental 

Desirability 

Ton Toff IP SV WF WT MRR SR MRR SR 
118 52.08 182.29 20 6.17 6.92 8.582 3.098 8.520 3.127 0.5816 

Conclusions 

In this paper influence of process parameters on MRR and SR were investigated. The parameters and their 
combinations affecting the process were obtained using ANOVA. 
1. The blanking die material SKD 11 can be machined effectively byWEDMas higher MRR (10.44 mm3/min)

and lower SR  (1.491 μm) are acknowledged during cutting.
2. Machining parameters such asTon, Toff, IP, SV and WF are the significant parameters for obtaining

maximum MRR. The combine effect of  Ton x WF also show their considerable effect on maximum MRR.
3. Machining parametrs like Ton, Toff, IP, SV and WF are most significant parametrs for obtaining

mimimum surface roughness. The combine effect of  WF and IP, and WF and SV are found to be
statistically important for minimum SR

4. The quadratic models for MRR and SR will provide guidelines for forecast of MRR and SR in advance.
confirmation test outcome show that models are reasonably fit with the experimental trial outcome.
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