Journal of Information Systems Engineering and Management
2023, 8(3)
e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

CRM Architecture Deep Dive: Building for Scale on
Salesforce

Ranjith Kumar Kollu

Information Systems Architect (Salesforce)

ARTICLE INFO ABSTRACT

Received: 05 Aug 2023 The author in this paper explains, how CRM could be scaled and could be more

effective with optimized Salesforce architecture, asynchronous processing,

integration design pattern and effective CI/CD administration. The quantitative tests

Accepted: 28 Sept 2023 are performed based on high-volume loads of the data, API traffic, simultaneous user
and deployment pipeline. The findings claim that the stratified CRM plan,
information standardization, modular Lightning elements, and asynchronous Apex
have a defining impact of decreasing the processing time, and system stability. It also
enhances performance in terms of integration, when it comes to REST API, selective
field projection and caching is requested. Systemized processes of CI/CD minimize
failures in deploying and enhances reliability. The results identify the role that
architecture, as well as operational decisions, play in scalable enterprise CRM
settings.

Revised: 20 Sept 2023

Keywords: CRM, Al, Salesforce, ML

I. INTRODUCTION

The modern enterprise CRM systems should be capable of working with high volumes of data, rapid
response time, and high-level reliability. Most of these objectives are based on the level of system design,
integration, and maintenance. The paper is Salesforce environments and concentrates on four key
areas, i.e., CRM architecture, asynchronous processing, API integration behavior, and CI/CD
governance. All the areas influence performance differently particularly when processing millions of
records or big bursts of API calls. The measurement that is used by the research to quantitatively test
the design patterns and automated processes through which the speed, stability, and scalability is
enhanced is through the use of quantitative tests. The findings have been useful in constructing better
CRM systems.

II. RELATED WORKS
Enterprise Scalability

Studies of Salesforce cloud foundations reveal how the multi-tenant CRM systems have transformed
the manner in which organisations handle sales, service and scale operations. This multi-tenant model
plus the elastic infrastructure that Salesforce uses enables the enterprise to expand without a significant
investment in hardware.

Research points out that the architecture enhances flexibility, minimal cost of operation, real-time
decision-making to the teams of the business operating within various departments, including Sales
Cloud, Service Cloud, and Commerce Cloud [1].

Copyright © 2023 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Journal of Information Systems Engineering and Management
2023, 8(3)

e-ISSN: 2468-4376
https://jisem-journal.com/ Research Article

The literature also reports that Salesforce analytics stack and integration capabilities can also allow
organizations to process high amounts of data and provide insights which can be used to support
intricate decision processes. As explained in the previous research, Salesforce deployment can be scaled
effectively with the help of good data governance and structured application layers described in case
studies [1].

One of the other similar themes that are present in published research is the significance of data
architecture in regard to performance. With the size of the systems, the objects, indexes and relationship
structures dictate the extent to which an organization can achieve various transactions daily. One of the
reasons to note is the support of Big Objects, External Objects and use of asynchronous API application
in Salesforce which is frequently cited as the basis of large-scale CRM deployment.

The issues of compliance, data residence, platform governor constraints, etc. still influence the decision-
making of architecture and incentivize the design of high-volume enterprise-scaled CRM frameworks
[4]. These limitations lead to the architects receding into layer designs separating data, logic, and
presentation, which perfectly coincides with the Salesforce suggested enterprise architecture.

Other important points that are essential to the literature are security, reliability, and multi-tenant risk.
The issue of confidentiality, reliability and data isolation are often raised with the shared infrastructure
and storage, particularly during a comparison between SaaS model offered by Salesforce and on-
premises systems [8].

These concerns are minimized and not eliminated by Salesforce controls, encryption, and compliance
mechanisms, and numerous authors advocate that, multi-tenancy needs more robust governance in the
areas of authentication, auditability, and integration security [9][10].

Scalable Application Logic

There is a diversity of available research on scalable development practices of Salesforce and specifically
of Apex, Lightning Web Components (LWC), and integration logic. A lot of focus is directed towards
reusable design patterns like Trigger Handler, Bulkification, Factory, Singleton and Strategy pattern
which are now known to be prerequisite to maintainability in the long run and scalability of the platform
[2]. These patterns enable developers to manage Salesforce governor limits in a better way, minimise
the existing code duplicates, and provide reliability when using bigger volume of transactions.

The results of empirical analysis of healthcare and financial CRM implementation reveal that the usage
of structured patterns can significantly lower the rate of processing and errors. Indicatively, a study
found a 79 percent decrease in the batch execution time, a 90 percent decrease in trigger related failures,
and high percentage enhancement in the speed of deployment cycle upon application of systematic
design patterns in a large scale [2]. These results guide the current CRM architecture practice that has
logic centralization, modularization, and testability that are perceived to be mandatory, not
discretionary.

Other literature discusses the programming best practices like discrete layers of services, utility classes
that can be reused and adhering to the bulk processing guidelines strictly. These factors can be used to
provide a streamlined logic when running different processes in business such as claims, quotes,
customer onboarding, and case resolution. According to researchers, prevention of pitfalls like SOQL-
inside-loops, hard coded IDs, and inefficiency of recursion patterns will have a direct positive impact
on system reliability and operational risk decrease [6].

Asynchronous executions are necessary with increasing scale of systems. Future Methods, Queueable
Apex, Scheduled Apex, and Batch Apex are noted as asynchronous processing tools offered by Salesforce
that enable offloading of heavy processes in the organization to remain responsive to the load at UT [4].

Copyright © 2023 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Journal of Information Systems Engineering and Management
2023, 8(3)

e-ISSN: 2468-4376
https://jisem-journal.com/ Research Article

These methods are a direct reflection of the architecture of architectural ideas of multi-tier logic parting
and high-volume management of transactions which are the basis of CRM platforms of enterprise scale.

Hybrid Scheduling Architectures

Contemporary CRM businesses usually need heaps of automatic background segmentation, which
information streams, scheduled functions and integration pipelines are required to work in a
foreseeable and well-organized way. Research indicates that Batch Apex is among the most important
features of Salesforce to only scale operations that have high volumes, like data cleansing, reporting,
document generation, and intricate logic assessment [3]. Organizations are, however, progressively
implementing Batch Apex with external Shell schedulers that are either implemented in ETL, data
motion or operations at the system level.

According to authors, combined operation of those two types of scheduling may produce unpredictable
patterns of load, conflicts in concurrency, and pressure on barriers may exist when not synchronized
[3]. It has been stressed out in research that, the integrated load testing and orchestration controls and
job sequencing and pipeline dependency management are critical in ensuring that systems are not
slowed down or partial data failure occurs. Literature gives specific strategies on how to simulate
parallel processes, bottlenecks, and cross-system resource utilization in peak load processes.

These results can be compared with the rest of the literature on scaling Salesforce transactions
according to which asynchronous processing, dynamic queueing, and appropriate API throttling are the
key strategies to consider [4]. The insights also demonstrate the fact that the hybrid automation
frameworks contribute to the more powerful enterprise workflow only in case of the support by robust
monitoring habits, optimization customs, and the persistent analysis of the performance gaps [3][4].

Secure Multi-Tenant Operations

Studies also point to the fact that scalability in Salesforce environments is not merely pertinent to code
and data design, but also regards governance, release management, pipeline automation. With the
evolution of enterprises becoming multi-clouds or hybrid cloud implementations such as the
integration of Salesforce with other platforms such as Red Hat, secure deployment pipelines and
governance will be necessary [5]. Such studies include best practices like using policy-as-code,
application of secure secrets management, OAuth flow setup, as well as the implementation of container
image scanning in CI/CD processes.

A body of literature speaks about Copado as a Salesforce-native DevOps and CI/CD vendor,
demonstrating the speed of pipeline integration and automated testing-cycle acceleration to improve
the development, as well as minimize the error rate of the release [7]. Its results indicate that automated
deployment checks and metadata management that are version-controlled offer organizations a more
predictable release and a higher level of compliance.

Multi-tenancy is an issue that has been brought up by the DevOps literature. Various articles also
suggest that whereas multi-tenancy enhances cost efficiency, it also poses risk such as isolation,
observability, and shared usage of the compute [8][9][10]. These issues directly affect the CRM
architecture because they determine the way the organizations implement logging, monitoring,
auditing, and performance baselines in the shared cloud environments.

These researches reveal that scalable CRM systems demand, in addition to robust technical
architecture, that the system should have mature governance levels and automated validation as well as
end-to-end observability across multiple cloud and infrastructure levels [5][7][10]. When maintaining
the enterprise level uptime and consistency of the system, reliability, compliance, and all these release
cycles are still in the limelight.

Copyright © 2023 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Journal of Information Systems Engineering and Management
2023, 8(3)

e-ISSN: 2468-4376
https://jisem-journal.com/ Research Article

III. METHODOLOGY

The proposed research paper is quantitative research with the aim of studying how Salesforce CRM
architecture can be used to address large-scale and enterprise operations. The objective of the
researches is to quantify the effects of architectural patterns, data models, asynchronous processing,
and CI/CD governance on the system performance, reliability and scalability. The methodology is
geared in such a way as to offer quantifiable results instead of being opinionated hence all actions are
based on numerical values, performance variables, and testable testing.

The research is a structured experimental study which measures various architectural elements of
Salesforce. The former is to develop controlled test environment using Salesforce sandbox replication
of actual enterprise data volumes. They have high volumes of datasets in Sales Cloud, Service Cloud,
and Commerce Cloud to simulate business environment.

Every environment has objects of high volume, integration flows, and asynchronous jobs, as well as
Lightning applications. The tests are done with different sizes of data, 50,000 records, 200,000 records,
and 1 million records to determine the response of various architectures with varied loads.

The second one is to ensure the measurement of performance metrics in the various system
architectures. Some of the key variables are the batch processing time, trigger execution time, API
throughput, user interface response time, job concurrency, and marginally the system uptime. The
paper makes the comparison of the traditional Salesforce setups with the optimized setups, using
Trigger Handler patterns, Bulkification, multi-tier object normalization and modular Lightning
components.

Numerical data are collected with the help of performance tools that are present in Salesforce, such as
Event Monitoring, Debug Logs, and Performance Charts. These tools give platform-native consistent
measurements making it possible to make objective comparisons between design approaches.

In order to examine the effect of asynchronous processing, the methodology incorporates the controlled
tests of Batch Apex, Queueable Apex, Future Methods, and Scheduled Apex. Both tests put a
measurement of time spent executing, resources used, and records per second in which it can perform.
Further readings are made in the case of external Shell schedulers and they are used to build hybrid
automation situations.

The load-testing utilities are used to re-create parallels executions to detect any bottlenecks, constraint
of the governor limits, or job queuing delays. Statistically to ascertain reliability of the result, the work
load is repeated several times. The average of the results is taken and the extremes are eliminated so as
to eliminate bias.

The other section of the methodology deals with integration performance. Fix payload sizes are used in
testing between the REST and SOAP API calls with an aim of testing response time, rate of errors, and
throughput. Different middleware tools cause a set of repeated API calls to be made at different
frequencies to mimic the peak load conditions seen in real-life scenarios. All those are numerically
measured to measure the effect of patterns of architecture like caching, data partitioning, and field
selective retrieval on enhancing the system behavior.

To measure CI/CD, the study will apply the deployment success rates, percentage of rollback,
percentage of test coverage, and average deployment time. The metrics are gathered on the tools of
CI/CD like Copado pipelines and Salesforce Metadata API deployment. The objective will be to track
the reliability enhancement and errors in production compared to governance and automated testing.
All the values are in the form of the numerical dataset.

Copyright © 2023 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Journal of Information Systems Engineering and Management
2023, 8(3)

e-ISSN: 2468-4376
https://jisem-journal.com/ Research Article

The statistical analysis is used to define trends, relationships and performance improvement.
Comparisons of architectural approaches are done using descriptive statistics like mean, variance and
percentage change. The findings and the recommendations that will be made in this paper are based on
the results.

IV. RESULTS
Optimized CRM Architecture

The Salesforce test environment analysis demonstrates that there are significant benefits in terms of
the system performance whenever layered and structured CRM architecture is adopted. The
experiments involved the comparisons of traditional settings with optimized settings that included the
usage of multi-tier data normalization, Trigger Handler patterns, modular Lightning applications, and
the usage of asynchronous Apex processing. In all datasets, the optimized architecture was found to
have lower processing time, increased stability, and resource usage uniformity.

During the experiments of 200,000 records, it was found that the traditional model had slow query
response and an increased CPU time. With normalization and selective indexing process, data retrieval
process was faster and predictable. The final optimized model took an average object query time that
was 37% shorter.

This was enhanced due to the fact that data and logic were separated, this made the relationships
between the objects visible and there was no need to scan the unwanted fields. The findings prove the
fact that scalable CRM architecture is very reliant on the quality of data structure and elimination of
redundancy of the fields or relations.

Uptime stability was also another area where there was a significant improvement. Although Salesforce
currently has a robust offering of availability due to the existence of a multi-tenant infrastructure, its
internal CRM module shapes influence local performance. Lightning applications became smoother in
the new architecture and the count of errors at the component level reduced. Peak load testing of 1000+
users at the same time made the UI more stable. These findings confirm the conception that modular
front-end design is significant to the extent of scalability of enterprise CRM.

Table 1. Performance Comparison

Metric (Avg.) Traditional Optimized %
V8- Architecture Architecture Improvement
Query Time (ms) 420 265 37%
Trigger Execution Time 188 7o 62%
(ms)
Bat'ch Processing Time 46 8 61%
(min)
UI Load Time (ms) 910 520 43%

These findings indicate that an effective architecture enhances back-end and front-end components,
which are leading to a stable and scalable CRM environment in general.

Copyright © 2023 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Journal of Information Systems Engineering and Management
2023, 8(3)
e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

Architecture Performance Comparison

800

600 [

400

200

e

RN e
quett geet gare ™ w\e

Asynchronous and Batch Processing

This paper has also discussed the role of asynchronous Apex methods and Batch Apex in improving the
performance in a highly-workload environment. Tests were completed with Future Methods, Queueable
jobs and regular Batch Apex and growing volumes of data. Through the results, it is easy to see that
asynchronous processing has the benefit of reducing the strain on synchronous transactions, enhancing
Ul response time, and enabling the system to work with high volume without achieving the governor
limit.

In specific, Batch Apex exhibited a good scaling behavior. With 1 million records they could not use the
synchronous processing as there was a limitation and Batch Apex successfully did the task in several
controlled tasks. Queueable Apex was good with medium level workloads but would delay when a large
number of simultaneous jobs were activated. Future Methods worked well with small operations but
failed with large operations.

Availing Batch Apex with Shell schedulers was mixed with some results. Although the end-to-end
automation offered by the combination workflows occurred at the price, they also brought some
resource contention in the occurrence of certain peak windows. This validates the fact that hybrid
scheduling must be well coordinated so as not to have overlapping workloads.

Table 2. Asynchronous Processing Efficiency

Processing Max Records Successfully Avg Processing Failure
Method Processed Time Rate
Future Method 20,000 2.4 sec 12%
Queueable Apex 250,000 8.1sec 5%
Batch Apex 1,000,000+ 22.5 min 0%
Batch + Shell 1,000,000+ 27.9 min %
Scheduler ’ ’ 79 37%

Copyright © 2023 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Journal of Information Systems Engineering and Management
2023, 8(3)
e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

The findings indicate that Batch Apex is the most reliable and scalable alternative particularly where
the enterprise datasets continue to increase with time.

1e6 Asynchronous Processing Scaling
1.0t

0.81

0.6}

0.4}

0.2}

0.01

Futlure Queuleable Ba'ltch Batch+5lcheduler
API Scaling Behavior

Another factor of CRM that is significant in its scalability is integration performance. Those
measurements in the study were REST and SOAP API behaviors at various loads. There were a number
of patterns found in the quantitative data. Firstly, the REST APIs had always generated low latency and
high throughput than the SOAP. Second, API response time would be reduced by 28% on average when
the selection of fields was optimized (e.g. selective SOQL, project desired fields only).

It was also tested, as to what effect middleware and caching has on performance. When the caching is
enabled, the frequency of repeated API calls dropped by close to forty percent and peak loads were
managed more effectively. This establishes the fact that architectural choices at the middleware like
adoption of caching layers or asynchronous APIs enhance resilience in the entire load balancing
scenario.

Even when the system was tested with extreme loads of 500 API calls per second, the system was stable
but experienced a slow increment in the latency. Nevertheless, with the use of optimized integration
design patterns, the general redundancy rates lessened, time-outs became uncommon. On Apex API
calls outs also failed better when named credentials and simplified payloads were applied.

Table 3. API Performance Metrics

Metric REST API | SOAP API | With Optimization
Avg Latency (ms) 118 196 85

Throughput (calls/sec) | 510 320 610

Error Rate 3.1% 6.4% 1.2%

Timeout Incidents 9 21 3

Copyright © 2023 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Journal of Information Systems Engineering and Management
2023, 8(3)

e-ISSN: 2468-4376
https://jisem-journal.com/ Research Article

Such findings validate the fact that designed patterns of integration, up-selective payloads and caches
in middlewares contribute largely to optimal CRM performance in integrated enterprise settings.

CI/CD Governance

Another important insight of the findings is that scalability is not primarily a technical feature but it
relies on governance, CI/CD process, and the maturity of deployment, in large part. Automated pipeline
tests revealed that organizations that applied CI/CD in a structured way experienced less failure in
production, deployment took shorter periods to complete and had more frequent quality of code.

In the platforms like Copado and Metal Data API deployment, the study equated Deployment success
rate, Rollback frequency, and code coverage. When automated validation steps had been added,
deployment success went up to 93% as compared to 74%. There were less rollbacks that took place since
the possible mistakes had been identified at the earlier stages of the pipeline. These findings indicate a
strong governance enhances reliability and scalable CRM practices since the risks of the critical system
plunge are lower.

APl Performance Comparison

600

500¢F

400

300¢F

200

1001

REST SOAP Optimized

CI/CD pipelines also assisted the teams in controlling modular code and having multiple streams of
development. Very small and simple problems such as SOQL, not tested, and inefficient patterns were
previously identified through automation of the analysis of the code. This helped in facilitation of
performance in all environments.

The results also indicate that secrets, OAuth authentication, and container image scanning constitute
the secure DevOps practices to enhance the security of CSS-scaling CRM environments. The practices
minimize security risks, misconfigurations, and assist the organization to keep all systems at scale big.

Scalable architectural CRM, as demonstrated in the paper, will be based on Salesforce will need a good
data architecture, modular logic, asynchronous processing, consumption of logical API, and more
advanced CI/CD management. The two aspects partially improve system performance, system stability,
system performance reduction, and reliability system in the businesses.

8
Copyright © 2023 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Journal of Information Systems Engineering and Management
2023, 8(3)

e-ISSN: 2468-4376
https://jisem-journal.com/ Research Article

These findings concur with a top-down CRM architecture design where information, business logic, and
display are decoupled and this enables companies to handle in millions of records and deliver thousands
of transactions a day with high efficiency and other provisions of the system.

V. CONCLUSION

Apparently, the findings seem to reflect successfully that scaling performance of CRM is appearing on
the technical architecture at the same time that it is on operational maturity. The data structure is
enhanced; the modules parts are combined and processed asynchronously so that to minimise the
delays with the aim of enabling the system to create a high workload. Integrations based on cache and
REST are more efficient in using selective payloads to improve the performance of APIs. CI/CD
governance is also influential considerably since it minimizes mistakes in deployment and enhances
reliability. A combination of these results proves that a layered architecture, with the help of automation
and good governance, produces a CRM environment that is more predictable and faster and is more
CRM environment-appropriate and enterprise-scale operation. The research provides a definite way on
how to make improvements.

References

[1] Ranjan, S. (2023). A COMPREHENSIVE STUDY OF SALESFORCE’S CLOUD-BASED
INFRASTRUCTURE AND ITS IMPACT ON SCALABLE BUSINESS OPERATIONS [Journal-
article]. International Journal of Computer Science and Engineering Research and Development
(IJCSERD), 16—26.
https://www.researchgate.net/publication/383977801_A_COMPREHENSIVE_STUDY_OF_SAL
ESFORCE'S_CLOUD-
BASED_INFRASTRUCTURE_AND_ITS_IMPACT_ON_SCALABLE_BUSINESS_OPERATIONS

[2] Pratelli, A., Brocchini, L., Souleyrette, R. R., Teng, W., & Petri, M. (2022). International Journal of
Innovative Research in Engineering & Multidisciplinary Physical Sciences. International Journal of
Innovative = Research in Engineering & Multidisciplinary =~ Physical = Sciences.
https://doi.org/10.37082/ijirmps

[3] Ramachandra, K., Chavan, M., Guravannavar, R., & Sudarshan, S. (2014). Program transformations
for asynchronous and batched query submission. arXiv (Cornell
University). https://doi.org/10.48550/arxiv.1402.5781

[4] Swathi, P. (2021). Architecture and key features of Salesforce Platform.SSRN Electronic
Journal. https://doi.org/10.2139/ssrn.4284500

[5] Paul, D., Sudharsanam, S. R., & Surampudi, Y. (2021, March 2). Implementing continuous
integration and continuous deployment pipelines in hybrid cloud environments: challenges and
solutions. Journal of Science & Technology. https://thesciencebrigade.com/jst/article/view/378

[6] Muse, B. A., Rahman, M. M., Nagy, C., Cleve, A., Khomh, F., & Antoniol, G. (2022). On the
Prevalence, Impact, and Evolution of SQL Code Smells in Data-Intensive Systems. arXiv (Cornell
University). https://doi.org/10.48550/arxiv.2201.02215

[7]1 Guduru, V. S. (2023). The Future of DevOps in Salesforce: Implementing CI/CD with COPADO.
Journal of Artificial Intelligence Machine Learning and Data Science, 1(2), 1253-1256.
https://doi.org/10.51219/jaimld /venkat-sumanth-guduru/286

[8] Goyal, N., Pandey, A. K., Gupta, S. K., & Pandey, R. (2019). Suppleness of Multi-Tenancy in cloud
Computing: advantages, privacy issues and risk factors. SSRN Electronic Journal.
https://doi.org/10.2139/ssrn.3358249

Copyright © 2023 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

https://www.researchgate.net/publication/383977801_A_COMPREHENSIVE_STUDY_OF_SALESFORCE'S_CLOUD-BASED_INFRASTRUCTURE_AND_ITS_IMPACT_ON_SCALABLE_BUSINESS_OPERATIONS
https://www.researchgate.net/publication/383977801_A_COMPREHENSIVE_STUDY_OF_SALESFORCE'S_CLOUD-BASED_INFRASTRUCTURE_AND_ITS_IMPACT_ON_SCALABLE_BUSINESS_OPERATIONS
https://www.researchgate.net/publication/383977801_A_COMPREHENSIVE_STUDY_OF_SALESFORCE'S_CLOUD-BASED_INFRASTRUCTURE_AND_ITS_IMPACT_ON_SCALABLE_BUSINESS_OPERATIONS
https://doi.org/10.37082/ijirmps
https://doi.org/10.48550/arxiv.1402.5781
https://doi.org/10.2139/ssrn.4284500
https://thesciencebrigade.com/jst/article/view/378
https://doi.org/10.48550/arxiv.2201.02215
https://doi.org/10.51219/jaimld/venkat-sumanth-guduru/286
https://doi.org/10.2139/ssrn.3358249

Journal of Information Systems Engineering and Management
2023, 8(3)
e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

[o] Kanade, S., & Manza, R. (2019). A Comprehensive study on multi tenancy in SAAS applications.
International Journal of Computer Applications, 181(44), 25-27.
https://doi.org/10.5120/ijca2019918531

[10]Kabbedijk, J., Bezemer, C., Jansen, S., & Zaidman, A. (2014). Defining multi-tenancy: A systematic
mapping study on the academic and the industrial perspective. Journal of Systems and
Software, 100, 139—148. https://doi.org/10.1016/j.jss.2014.10.034

10

Copyright © 2023 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

https://doi.org/10.5120/ijca2019918531
https://doi.org/10.1016/j.jss.2014.10.034

