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1. Introduction 

 

Supply chain resilience and flexibility may require core enhancements at the root of modern logistics engineering. The 

older technologies may have induced capabilities for smooth operations of supply chains but causing certain 

boundaries and constraints making change management a difficult challenge (Gupta et al., 2021). Rapid adjustments 

and changes are required when the demands become highly complex and dynamic in the marketplaces (Abeysekara 

and Wang, 2019). Further, supply chains also need to be resilient systematically and structurally to withstand 

disruptions in the ongoing supply chain operations (Adobor and McMullen, 2018; Ambulkar, Blackhurst, and Grawe, 

2015). Managing disruptions have been handled traditionally through business continuity management, which can be 

enhanced by capabilities supporting rapid changes and adjustments (Crichton, Ramsay, and Kelly, 2009; Denyer, 

2017; Steen, Haug, and Patriaca, 2023). Hence, supply chain resilience is related to the capabilities enabling flexibility. 
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Supply chain resilience and flexibility are among the most critical dynamic capabilities for surviving 

in the modern world of uncertainties and risks arising from unexpected dynamics in global supply 

chain routes and hubs.  Resilience may be viewed as the supply chain capability enabling resistance 

and withstanding power against disruptions and flexibility defines the modern supply chain 

capability to adjust to the disruptions to respond to market dynamics and keep the businesses 

running. Industry 4.0 and Industry 5.0 technologies capabilities can enable the supply chain 

capabilities of resilience and flexibility positively by offering powerful technology-driven enablers. 

This research studied the technology-driven enablers and their contributions to the supply chain 

resilience and flexibility. There were five Industry 4.0 and two Industry 5.0 technology enablers 

found from the literature review to create an initial model. The model was projected to Fuzzy 

Interpretive Structural Modeling (FISM) method in which, eighteen experts were selected working 

in the industrial cities in the Indian states of UP and in MP in logistics engineering having good 

insight about Industry 4.0 and Industry 5.0 technologies. The experts were engaged through a focus 

group discussion in which, a structured questionnaire was presented to them for building Structural 

Self-Interaction Matrix (SSIM) by each expert. The responses collected from each expert were 

analysed through the FISM steps. The output showed a hierarchical model with four levels of driving 

and dependence powers. The IIoT, fog computing, cloud manufacturing, big data analytics, and 

blockchains were found to be having root driving powers in the model. These five variables are 

technology-driven enablers of Industry 4.0, which were found to be driving the two technology-

driven enablers of Industry 5.0: smart robotics and human-centric artificial intelligence. The 

Industry 5.0 variables were found to be driving supply chain flexibility, which in turn had driving 

power over supply chain resilience. The practical validity of this hierarchical model was discussed in 

detail at the end of this article in the context of a flexible and smart manufacturing and logistics 

system connected with digitalised supply chains. The notions of flexibility and resilience were also 

discussed in a cellular manufacturing system that can be configured and re-configured quickly as 

per the demand dynamics. 

Keywords: Industry 4.0, Industry 5.0, Logistics Engineering, Digital Transformation and 

Integration, Resilience in Supply Chain, Flexibility in Supply Chain. 
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As empirically established in the recent studies (as reviewed in the next section), Industry 4.0 and Industry 5.0 

technologies can enable the capabilities supporting supply chain flexibility and hence the resilience.  

This research investigates the common capabilities enabled by Industry 4.0 and Industry 5.0 technologies influencing 

supply chain resilience and flexibility.  

The following research questions were investigated in this research: 

(a) What are the key capabilities with mutual interrelationships related to Industry 4.0 and Industry 5.0 technologies? 

(b) How the key capabilities of Industry 4.0 and Industry 5.0 technologies affect the Resilience and Flexibility of 

supply chains? 

The following highlights were achieved in this research: 

(a) Industry 4.0 and Industry 5.0 frameworks with their technologies and their corresponding capabilities relevant to 

the flexibility and resilience in the modern Supply Chain and its supporting Logistics Engineering have been reviewed 

from literature; 

(b) Experts’ opinions and related rankings related to the effects of Industry 4.0 and Industry 5.0 technological 

capabilities on supply chain resilience and flexibility following the focus group method among selected eighteen 

experts in logistics engineering having good insight about Industry 4.0 and Industry 5.0 technologies; the experts were 

selected from industrial cities in the Indian states of Madhya Pradesh (MP) and Uttar Pradesh (UP) in India; 

(c) The experts’ rankings were investigated for driving and dependency powers using the A fuzzy interpretive 

structural model (FISM) method; the focus group discussion method was followed to evolve a structural construct 

showing the Industry 4.0 and Industry 5.0 technological capabilities and their affects on resilience and flexibility of 

supply chain management and its supporting logistics engineering was achieved; 

(d) A justification on what FISM could achieve in arriving at the finalized relationships and what could be the next 

steps for future research; 

In the next section, the Industry 4.0 and Industry 5.0 technologies and their resulting capabilities for logistics 

engineering are studied with the help of review of literature. 

 

2. Industry 4.0 and Industry 5.0 technological capabilities for Logistics engineering 

Industry 4.0 and Industry 5.0 technologies essentially provide the necessary digital transformation of logistics 

engineering for supporting the supply chain processes with new dynamic flexible capabilities (Bag, Gupta, and Luo, 

2020; Chung, Kim, and Lee, 2018; Conner, 2018). Digital transformation can transform the vision and governance of 

an organisation and also develop a culture of informed and smart decision-making (He et al., 2023). Hence, culture, 

skills, and training of employees are key factors in addition to implementing the digitalisation technologies as in the 

Industry 4.0 and Industry 5.0 frameworks (Nkomo and Kalisz, 2023). The next section presents a wider review of the 

people aspects as they are linked with resilience and flexibility of the organisations. Continuing this section, a review of 

Industry 4.0 and Industry 5.0 technological capabilities is presented as the following. 

The Industry 4.0 and Industry 5.0 frameworks for logistics engineering ride on two core technological innovations: 

digitalisation at the end computing and the cloud computing (Conner, 2018; Daniluk and Holtkamp, 2015; Holtkamp, 

2015; Qu et al., 2016; Wolf and Rahn, 2015). The logistics systems closer to the end customer interfacing on cloud 

computing are termed as the “logistics mall” (Daniluk and Holtkamp, 2015; Holtkamp, 2015) and the ones closer to 

the manufacturers are called “cloud manufacturing” (Lim, Xiong, and Wang, 2021; Qu et al., 2016; Zhong et al., 2016). 

The digitalisation is carried out using Industrial Internet of Things (IIoT) (Conner, 2018). The digitalisation domain 

incorporates ordering, inventory, production, and delivery logistics are digitalized for effective integration of 

information combining the data (Sakhri, 2024). The combined data is used for generating analytical charts in real time 

that enables quick decision making thus ensuring the right products produced and delivered to the right customers at 

the right times. The digitalisation-enabled logistics enhancements realised in logistics are speed, flexibility, 

connectivity, real-time intelligence, transparency, cost-effectiveness, proactive approach, and sustainability 

(Christopher, 2023; Sakhri, 2024). Such enhancements in logistics support the operational capabilities of a 

synchronous supply chain. 

The digitalisation of logistics engineering using the Industry 4.0 and Industry 5.0 technologies comprises of Cyber 

Physical Systems (CPS), Industrial Internet of Things (IIoT), Cloud Computing, Big Data Analytics (BDA), Artificial 

Intelligence (AI), Blockchain (BC), Unmanned Aerial Vehicles (UAV), and mobile computing (MC) (Najafi and Atighi, 
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2024; Sakhri, 2024; Vaseei, 2024). The IIoT is at the root of digitalisation as it is attached to the logistics equipment 

and machines for providing an interface for data collection and communications. Machines and equipment fitted with 

sensors of variables crucial to process operations and the IIoT for consolidating and transmission of sensory data are 

called the cyber physical systems (CPS). At the receiving side of data, cloud computing platform is commissioned for 

hosting the BDA, AI, and the BC. The BDA, AI, and the BC have advanced higher layer roles in modern digitalised 

logistics engineering. As these systems are deployed on the cloud computing, they constitute a remote management 

system conducting two tasks: data analytics and decision-making. In modern logistics, all the software systems 

traditionally deployed in self-managed and controlled data centres are deployed on cloud computing (Wolf and Rahn, 

2015). The BDA and AI capabilities are integrated with the running operating platforms such as enterprise resources 

planning (ERP), manufacturing execution systems (MES), materials requirements planning (MRP), and warehouse 

and transport management systems (WTMS) (Michlowicz, 2021). Hence, the analytics are also integrated with them 

producing the operating curves for the desired operations: transportation, logistics systems, warehousing, and 

production. 

Modern manufacturing, logistics, and supply chain operations are controlled through cloud-hosted operating 

platforms that collectively constitute the cloud manufacturing system (Abdmeziem, Tandjaoui, Romdhani, 2016; 

Bartodziej, 2017; Ghomi, Rahmani, Qader, 2019; Lim, Xiong, and Wang, 2021; Qu et al., 2016). In cloud 

manufacturing, the logistics engineering applications are primarily deployed on cloud computing with some support 

from edge computing. In industrial systems interfaced with cloud manufacturing, the industrial programmable logic 

controllers are transformed into cyber physical devices capable of collecting and consolidating data from the running 

processes in edge computing servers and transmitting the data to cloud computing systems. The data transmission to 

cloud computing and data stored in smart contracts blockchains are facilitated through application programmable 

interfaces created in the backend cloud-based database layers forming the building blocks of big data systems (Barenji 

and Montreuil, 2022; Bartodziej, 2017; Henzel & Herzwurm, 2018; Unal et al., 2021). The physical layer comprising of 

industrial machines and power systems and their controllers need to be fully integrated with the digitalised 

programmable logic controllers such that all the process execution data can be transmitted to the cloud-based big data 

systems. The data is used by the logistics monitoring and control software on the cloud computing accessible through 

field edge devices for accepting commands and sending status reports. The data is also used to generate as-is as well as 

analytical reporting. At the highest layer, artificial intelligence is used for predictive analytics. The entire framework is 

shown in Figure 1. 

 

 
Figure 1: Digitalisation and cloud manufacturing (based on theoretical review of Barenji and 

Montreuil, 2022; Bartodziej, 2017; Culot, 2021; Lim, Xiong, and Wang, 2021; Samad et al., 2023; 

Santhi and Muthuswamy, 2022; Unal et al., 2021) 
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The framework shown in Figure 1 is based on Industry 4.0 technologies serving as the foundation for Industry 5.0 

technologies (Rahmaty, 2024). The Industry 4.0 capabilities are distributed among the five layers shown in the Figure 

1 and are integrated through vertical integration of a technology stack (Bartodziej, 2017; Culot, 2021). Industry 5.0 

framework is built on the foundation of these technologies albeit at a much higher maturity level ensuring a “human 

centric” approach allowing human operators to monitor and control a large swarm of distributed machines and robots 

following commands from artificial intelligence (Boz and Pinto, 2024; Nozari, 2024). One may view the system as 

several artificial intelligence systems following the commands of human beings but making their own low-level 

operational decisions. The robotics and machines deployed are smart and multi-tasking capable following the 

instructions issued by the artificial intelligence systems. With such a possibility, the technological capabilities of 

Industry 4.0 and Industry 5.0 framework for logistics engineering are reviewed the following: 

(a) Industrial Internet of Things (interfacing physical and digital layers) (Bartodziej, 2017; Lim, Xiong, and Wang, 

2021; Qu et al., 2016): The IIoT is at the core of digitalisation in the Industry 4.0 era. It can collect data directly from 

the running industrial processes as it can be established as the layer above the programmable logic controllers. It 

serves as the primary interfacing between the physical and virtual realms as it can build and continuously update the 

perception of the physical layer in the digital layer. 

(b) Fog Computing (consolidating physical layer data) (Elaraby, 2021; Kaya, Paksoy, and Garza-Reyes, 2021; 

Tarneberg, 2019): Fog (edge) computing is deployed for networking all the IIoT-enabled data sources in Industry 4.0 

processes to transfer their data streams to the edge servers closest to them for consolidating their data. The edge 

servers transmit the consolidated IIoT data to big data systems on the cloud computing. 

(c) Cloud manufacturing (for smart and distributed manufacturing systems) (Abdmeziem, Tandjaoui, Romdhani, 

2016; Bartodziej, 2017; Lim, Xiong, and Wang, 2021; Qu et al., 2016; Unal et al., 2021): Cloud manufacturing is a 

smart and distributed manufacturing Industry 4.0 framework in which, the manufacturing monitoring and control 

processes are distributed to several physical manufacturing plants controlled by software systems running on partially 

cloud computing and partially on the fog computing systems. The manufacturing machines and robots are also 

transformed to smart devices using the cyber-physical and IIoT digitalization. The machines and robots are assigned 

some form of “awareness” using machine learning abilities embedded in them and controlled by centralized artificial 

intelligence on the cloud computing. 

(d) Big data analytics (analysis of multi-layer multi-location information collected from IIoT) (Najafi and Atighi, 2024; 

Sakhri, 2024; Vaseei, 2024): Big data is characterized by velocity (rapid data transmissions), variety (supporting 

hundreds of variables), volume (massive scales of data storage), and veracity (relevance, correctness and accuracy of 

data), and value (usefulness of the data). Big data analytics consolidates multi-location multi-layered multi-variable 

data for deep visualization and advanced statistical and machine learning enabled analysis. Big data analytics is the 

backbone of all the modern logistics capabilities projected by the academic researchers in Industry 4.0 literature. 

(e) Smart contracts in blockchains (Barenji and Montreuil, 2022; Kayikci, 2021; Samad et al., 2023; Santhi and 

Muthuswamy, 2022; Tiwari et al., 2023; Vaseei, 2024): Blockchains can store encrypted smart contracts broken in 

blocks integrated through hash functions. Smart contracts are transparent and irrefutable. They ensure formalizing 

involvement, engagement, and accountability of logistics actors in Industry 4.0 cloud manufacturing. 

(f) Smart multi-tasking robotics (Alim and Kesen, 2021; Woschank, Rauch, and Zsifkovits, 2020): Smart multi-tasking 

robots are controlled through machine learning embedded in their firmware interacting with cloud-hosted artificial 

intelligence for conducting multi-tasking with cognitive, environmental, and neighborhood awareness. They can 

operate in large swarms conducting multitasking operational tasks following human-generated commands to the 

cloud-hosted artificial intelligence. They are the core innovations in Industry 5.0. 

(g) Artificial intelligence (Human-Centric) (Demir and Paksoy, 2021; DHL, 2018; Liu et al., 2023; Oh, 2019; 

Woschank, Rauch, and Zsifkovits, 2020): Operational level artificial intelligence evolved in the Industry 4.0 paradigm. 

At this level, automation and predictive analytics are the key capabilities developed in logistics helping in relatively 

accurate planning and execution. However, handling swarms of robots and machines requires human-centric artificial 

intelligence, which is a feature proposed in the Industry 5.0 paradigm. Human centricity can allow a few individual 

managing massive scale productions, logistics and supply chain operations. Innovations like automatic driving trucks 

and connected vehicles can add to the capabilities centered at human centricity. 
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The influence of modern capabilities induced by Industry 4.0 and 5.0 technologies relevant to logistics engineering can 

have profound effects on supply chain flexibility and resilience. Digital transformation can influence flexibility and 

resilience and their mutual relationship in logistics. The capabilities of Industry 4.0 and industry 5.0 technologies may 

have varying influences on flexibility and resilience depending upon the industrial setting and its business 

environment. The next section presents specific review of literature about organisational flexibility and resilience 

achievable through digital transformation.  

 

3. Supply chain flexibility, resilience, and their interrelationship through digital transformation 

The primary objective of logistics engineering is to orchestrate large number of assets for meeting the production and 

supply chain operations objective functions (targets and goals) (Christopher, 2022; Harrison, van Hoek, and 

Skipworth, 2015; Stadtler, 2015). The orchestration of logistics assets is carried out using the advanced planning and 

scheduling system, which was conceptualised to make optimised allocation of resources to meet the volumes and 

timelines at the lowest possible costs. Logistics engineering performance has been measured traditionally through its 

ability to respond flexibly to the market and demand dynamics. Increasing the degrees of freedom allowed in a highly 

constrained operational framework having tightly coupled bounds has always been the dream of logistics engineers. 

This was possible through dynamic designs (such as cellular manufacturing, vendor-managed inventory, and 

collaborative forecasting, planning, and replenishments). The bottlenecks were felt in the older technological 

capabilities causing hard coded processes in the ERP, MES, MRP, and WTMS systems.  

Supply chain integration of processes and resources have been advocated for gaining flexibilities in procurements, 

operations, timelines, costs, materials, resources, and other influencing variables (Chaudhuri, Boer, and Taran, 2018; 

Irfan, Wang, and Akhtar, 2020; Li et al., 2020; Ralston and Blackhurst, 2020; Shukor et al., 2021). Through 

integration, the logistics operations managers gain wider choices to make their planning, scheduling, and routing with 

increasing flexibility. Multi-party collaboration improves flexibility in the variables of interest for logistics operational 

efficiency. Industry 4.0 and Industry 5.0 technological capabilities for digital integration of processes and resources 

are viewed as modern enhancements essential to the technology support infrastructure of logistics engineering. To 

deliver flexibilities in logistics and supply chain, the desired technological flexibilities are essential (Han, Wang, and 

Naim, 2017). Digital transformation ensures that all the four dimensions of flexibility (people cultures and skills, 

organisational processes, technologies, and organisational strategy and direction) can be covered (Nkomo and Kalisz, 

2023). Flexibility achieved through multi-dimensional integration can ensure resilience against supply chain 

disruptions (Shekarian, Nooraie, and Parast, 2020). The absorptive capacity and rapid learning by an organisation are 

key determinants for surviving in a dynamic business environment (Rojo et al., 2018). Industry 4.0 becomes a positive 

enabler for flexibility and resilience because it helps in collecting and analysing data about the metrics that matter and 

enable smart and self-adjusting systems (Ralston and Blackhurst, 2020). 

In the next section, the methodology planned and executed for the primary research part of this study is explained. 

4. Research Methodology: 

 

An interpretive philosophical approach with inductive learning approach was followed in this research to execute a 

qualitative research methodology called fuzzy interpretive structural modelling (FISM) (Saunders, Lewis, and 

Thornhill, 2009). The FISM helps in evolving new structural models for theory building by evolving a structural 

construct based on the rankings of relationships provided by subject matter experts of the subject being studied. 

Eighteen logistics engineering specialists studying the role of Industry 4.0 and 5.0 technologies for the future of their 

industrial domains in the Indian states of MP and UP were selected for the FISM. The expert profiles are presented as 

the following: 

Experts 1 to 8: The Experts 1 to 8 are experienced in the processes following digital manufacturing. They have been 

operating digitalised supervisory control systems communicating with digital programmable logic controllers having 

analogue to digital converters for channelizing the industrial signals generated by process sensors. They primarily use 

Intranet communications with IPv6 protocol but have proposed plans to implement Internet communication channels 

using MQTT (message queuing telemetry transport) protocol for integrating control systems of multiple 

manufacturing plants of the same company. 
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Experts 9 to 12: These experts work for data centres in digitalised manufacturing companies. They are already working 

on Industry 4.0 pilot systems with big data at the core. They are also testing artificial intelligence for automation. They 

have knowledge about the future of human centricity following Industry 5.0 framework of technologies. 

Experts: 13 to 16: These experts are consultant hired by the sampled digitalised manufacturing plants for their 

Industry 4.0 and Industry 5.0 migration plans for cloud-based manufacturing systems and integrating all their 

production houses. 

Experts 17 and 18: These experts are the owners of the sampled manufacturing plants digitalised. 

The focus group method was adopted in this research. It involves conducting an in-depth group discussion with 

experts selected related to the research domain and requesting them to provide data from their practical fields (Yin, 

2011). As explained in the book by Yin (2011), focus group results in expert knowledge provided by experts with very 

deep insight. This research used structured questionnaire for building Structural Self-Interaction Matrix (SSIM) by 

each expert. Hence, the responses collected in this research are measurable. There were 18 SSIMs built each separately 

by the 18 experts. The final SSIM was compiled by calculating MODE of each cells of the individual SSIMs. This 

research followed the FISM steps (as explained by Khatwani et al., 2015; Mohanty and Shankar, 2017; Tyagi, Sharma, 

and Shukla, 2019) as the following: 

Step 1: Identifying the factors for which, the experts shall generate their individual SSIMs. The factors in this study are 

technological capabilities of Industry 4 + 5 frameworks influencing the supply chain flexibility and resilience. 

Step 2: The experts are requested to generate their SSIMs. In the SSIM, the row headers are presented as “i” and 

headers are presented as “j”.  The influences of “i” factor variables on “j” factor variables are forward influences and 

the same of “j” factor variables on “i” are reverse influencers. There may be bidirectional influences, as well. The 

relationships by the experts may be defined as V (i → j), A (j → i), X (i → j), or O (N; no relationships). The strengths 

are recorded within brackets for all the relationships. Fundamentally, there are five strength levels presented as 

perfect (P), strong (S), moderate (M), and weak (W), and no strength (N). The absolute influence of unity may be 

defined as the sixth level. Normally, it shall be the self-influencing strength of a variable but experts may decide on 

absolute mutual relationships, as well.  

Step 3: The SSIMs collected from the experts comprise of linguistic equivalents of relationships. The unidirectional 

and bi-directional relationships are defined following the Table 1 (Das, Azmi, and James, 2020; Tyagi, Sharma, and 

Shukla, 2019). Some examples as per Table 1 are: V (P): a perfect forward relationship, A (S): a strong reverse 

relationship, and X (S, P): A bidirectional relationship having strong in the forward direction and perfect in the reverse 

direction. Following the same conventions, there can be six unidirectional and nine bidirectional relationships. No 

relationship can be only one denoted by O (N). 

Step 4: In this step, the SSIM is transformed by replacing the linguistic values by their corresponding fuzzy values. The 

Table 1 shows the five levels of strengths and their fuzzy values. The fuzzy values have been taken as per the five levels 

defined in the research by Tyagi, Sharma, and Shukla, (2019). As the fuzzy numbers are triangular, they have been 

represented as three numbers within brackets. Triangular Fuzzy behaviour indicates variation of the value of a factor 

variable among three numbers at a specific level on a scale. 
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Table 1: The levels and names of the scale with their corresponding triangular fuzzy values 

 
 

The Equation (1) presents the triangular fuzzy number µA(X) defined in the research studies by Elizabeth and Sujatha 

(2013) and their later study in Elizabeth and Sujatha (2015). Figure 1 shows the plotting of the triangular fuzzy 

number. 

 

 Equation (1) 

 
Figure 2: Plotting of the Triangular fuzzy number using the magnitude method by Elizabeth and 

Sujatha (2013) and Elizabeth and Sujatha (2015) 

 

Step 5: In this step, the SSIM is transformed (again) by entering the defuzzified values of each of the fuzzy values. 

There are several methods for defuzzification of triangular fuzzy numbers. In this research, the “the formula of 

magnitude measure” proposed by Elizabeth and Sujatha (2013) and Elizabeth and Sujatha (2015) was used. The 

formula is replicated in Equation (2): 

Magnitude of 𝜇𝐴(𝑋) =  
𝑎+7𝑏+𝑐

12
  Equation (2) 

By applying the formula shown in the Equation (2), the defuzzified magnitudes of the triangular fuzzy numbers are 

tabulated in the Table 2: 
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Table 2: Defuzzification table (Elizabeth and Sujatha, 2013; Elizabeth and Sujatha, 2015): 

 
 

Step 6: In this step, the defuzzified data of all the SSIMs generated by the experts is consolidated in an aggregated 

defuzzified SSIM table (Khatwani et al., 2014). For this purpose the MODE method (value having highest frequency in 

the data set) was followed (Mohanty and Shankar, 2017). MODE is the most preferred method of aggregating SSIMs of 

all experts in the FISM literature (Das et al., 2020) because it represents the majority voting approach (Jain and Soni, 

2019). 

Step 7: After aggregating the SSIMs in a final SSIM, all defuzzified values are converted back to their linguistic 

equivalents. This SSIM represents the combined opinion of the experts following the majority voting approach. 

Step 8: The linguistic equivalents helped in arriving at the initial reachability matrix. In this step, only the 

relationships perceived as significant for the research are retained and shown as unity after the steps of fuzzification, 

defuzzification and aggregation have been completed. The relationships retained were the unidirectional relationships 

with Perfect and Strong strength levels or the bidirectional relationships having at least one of these strength levels. All 

other relationships were dropped out of the SSIM because they were perceived as insignificant for the research. This 

reachability matrix is called “initial” as it shows only the direct relationships. 

Step 9: The next step was to create the final reachability matrix, which involves direct and indirect relationships shown 

for all possibilities at the perfect and strong levels. The direct relationships have been taken from the initial 

reachability matrix and the indirect relationships are extracted from the transitivity relationships such that all missing 

gaps can be filled. These relationships are marked as “*” to differentiate them from the direct relationships.  

Step 10: Conduct the MICMAC analysis: MICMAC (abbreviation for Matrix impact-cross multiplication applied to 

classification) represents plotting of driving and dependence powers of all the factor variables in four quadrants called: 

autonomous, dependent, independent, and linkage. In this plotting, some of the factor variables may be pushed to the 

edge of independent variables (factor variables rarely influenced by any other in the model) and the edge of dependent 

variables (variables that rarely influence any other variable). Some of the variables are caught in between that can be 

both influencing and influenced. The driving power represents the “level of independence” of a factor variable and the 

dependence power represents the “level of dependence” of an influenced variable. In real world, there is no variable 

with absolute independence and absolute dependence. Hence, the driving and dependency powers are estimated 

within a group of variables forming a boundary of a construct studied in a specific research. 

Step 11: The level partitioning table is generated for analysing it. This step shows the level partitions showing the 

reachability, antecedents, and intersections. 

Step 12: In this step, the driver and dependence powers were shown numerically in the conical matrix. It also shows 

the variables with transitivity power, called the mediators or moderators depending upon their natures (that is, they 

exist to cause the other relationships in the model). 

Step 13: In this step, the path diagram was drawn showing the relationships and the levels of the variables. This is 

different from the diagraph as it only shows the direct relationships. The diagraph shows all the direct, indirect, and 

transient relationships those are not useful for this research. 
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Step 14: The finalised FISM model was drawn as the research output. The theoretical reflections of the finalised FISM 

model were discussed by linking back with literature review outcomes. The statistical validity of the FISM model can 

be studied further in the future studies following advanced multivariate methods. 

 

In FISM, there is no statistical validity conducted using multivariate methods as it is a structured estimation of 

collective opinions of the subject matter experts conducted primarily using matrices. Hence, the FISM may be followed 

to create a construct for further statistical analysis using advanced methods. It may be considered as a good qualitative 

method with initial quantitative indicators. It may be noted that different experts have varying opinions, as is reflected 

in this study as well.  Hence, using FISM for validation will require much larger sampling (like 100 or more experts). 

However, FISM becomes highly tedious at such large sample sizes. Hence, this research used FISM in a small sample 

size of 18 respondents only. Empirical confirmation shall require deductive approach such as the advanced 

multivariate statistical analysis methods that are globally accepted to be generating empirically established results 

(Sekaran, 2003). The sample sizes in such methods are much larger than the FISM method. The next section presents 

the results of FISM and discussion on them. 

5. Results and Discussion: 

 

The steps explained in the previous section were executed to achieve the intermediate FISM results and the finalised 

FISM model. This section presents and discusses the results of the steps taken. The first step of determining the factor 

variables to be studied was carried out with the help of literature review presented in the Sections 2 and 3. The factor 

variables learnt from the literature review are shown in the Table 3.  

 

Table 3: Variables derived from literature review 

Factors Names 

F1 Industrial Internet Of Things for interfacing physical and digital layers 

F2 Fog Computing for consolidating physical layer data 

F3 Cloud Manufacturing for smart and distributed manufacturing systems 

F4 Big Data Analytics for analysis of multi-layer multi-location information collected from IIoT 

F5 Smart Contracts In Blockchains 

F6 Smart Multi-tasking Robotics 

F7 Human-Centric Artificial Intelligence 

F8 Supply chain flexibility  

F9 Supply chain resilience 

 

The FISM steps helped in learning about the interrelationships among the factor variables F 1to F9. To achieve this, 

the factor variables shown in the Table 3 were discussed with the team of experts’ team in a focus group discussion 

session. The experts were coded from E1 to E18. The SSIM matrix templates were shared with each of the experts and 

were requested to assign all the relationships an appropriate coding from the list comprising the codes in the SSIM 

matrix template. These codes were described in the previous section. The same description was shared with the panel 

of experts. The experts were given a time of 30 minutes to fill in their respective SSIM matrix templates. The templates 

were entered in eighteen tabs named as E1 to E18 (for easy mapping with the experts) of a shared Excel sheet and each 

expert was requested to fill in their respective tabs online. Majority of the experts could fill the template in less than 30 

minutes. After filling the templates, the experts were requested to view responses made by the others in the focus 

group. Thereafter, the experts were requested to make any changes they deem fit in their response sheets if they feel as 

necessary. In this research, the experts did not make any changes. 

 

The SSIMs were constructed in separate of an Excel sheet. Their transformed matrices with fuzzifed and defuzzified 

values were also entered in the same respective tabs based on their individual responses. In the excel sheet, a 

nineteenth tab was created for consolidation in which, the mode of the responses were calculated and provided in the 
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SSIM aggregated. The Table 4 below shows the finalized aggregated SSIM comprising of the modes of defuzzified 

responses made by the experts. 

Table 4:  Mode values of the defuzzified responses as consolidated in the final SSIM 

 
 

The defuzzified values in the Table 4 show strong preference for the perfect relationship (P value as 0.729) and no 

relationships (N value as 0.0208). There is only one strong relationship (S value as 0.5625) and a few moderate 

relationships (M value as 0.375) There are no weak relationships (W value as 0.1875). The corresponding fuzzy values 

of the finalised SSIM are as shown in Table 5.  

 

Table 5: SSIM with Fuzzy values 

 
 

Finally, the finalised SSIM with linguistic equivalents of defuzzified values are presented in the table serving as the 

final SSIM outcome. This outcome is shown in the Table 6: 

 

Table 5: SSIM with Linguistic Equivalents 

 
 



Journal of Information Systems Engineering and Management 
2024, 9(3) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  
 

11 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

From this point forward, the relationships X (W, M), X (M, M), X (M, W), V (W), V (M), O (N) were dropped as they 

undesirable levels of strengths and the others were retained. Ahmad and Ayman (2021) provided a web-enabled tool 

that was used to generate the initial reachability matrix in which, the retained relationships were entered as X (if 

bidirectional) and V (if unidirectional in forward direction). There were no reverse unidirectional relationships. The 

relationships dropped were treated as “O (no relationship)” in subsequent steps. The inputs made to the web-enabled 

tool by Ahmad and Ayman (2021) is shown in the Figure 3 below. The variable names have been shortened than those 

shown in the Table 3 for simplifying the display. 

 
Figure 3: Relationships entered in the tool by Ahmad and Ayman (2021) after eliminating the 

undesirable ones 

 

In the SSIMs allocated to the experts, their opinions were entered on the relationships as well as about their strengths. 

This gesture helped in rejecting the weak relationships and retaining the unidirectional relationships of P and S 

strengths only and the bidirectional relationships having at least unidirectional P or S. Generally, every relationship 

may be having some influence on the construct. However, considering weak or moderate relationships will make the 

model complex and difficult to evaluate. Hence, to build a bigger and prominent picture, the weak or moderate 

relationships may be eliminated. 

 

The tool by Ahmad and Ayman (2021) operates automatically once the button names “Calculate ISM Results” shown 

in the screenshot of Figure 3 is pressed. All the remaining reports are generated automatically. The relationships 

retained are all shown as “1” indicating existence of a relationship (but not indicating absolute strength of the 

relationship).  

The initial reachability matrix is presented in the next table (Table 6): 
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Table 6: Initial Reachability Matrix 

 
 

The direct relationships among the factors and their driving and dependence powers are evident in the initial 

reachability matrix. As evident in Table 6, F1 and F2 have the highest driving powers followed by F3. F4 to F8 have 

moderate driving powers and F9 has the least driving power. However, these are not the final driving and dependence 

powers. The final values of these powers are estimated in the final reachability matrix adding the indirect 

relationships. It is shown in the Table 8. The powers have changed after accounting for the indirect relationships, as 

well. In the final reachability matrix, the driving powers of F1 to F5 are now at 9, the driving powers of F6 and F7 and 

at 3, the driving power of F8 is at 2, and the driving power of F9 is at 1. This matrix also shows that variables F1 to F5 

have moderate dependence powers at 5, F6 and F7 have dependence powers at 6, F8 has a dependence power of 8, and 

F9 has the dependence power at 9. The final matrix of dependencies is shown in Table 7 where relationships with the 

“*” identification are transient or indirect relationships and others are direct relationships. 

 

Table 7: Final Reachability Matrix 

 
 

The Matrix impact-cross multiplication applied to classification, abbreviated as MICMAC, chart shows the distribution 

of driving, dependency, and transient (linkage) statuses of all the variables. The MICMAC plot is shown in Figure 4 

generated by the tool by Ahmed and Ayman (2021). 
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Figure 4: MICMAC chart 

The MICMAC chart in the Figure 4 presents the factor variables F1 to F5 as having equal driving powers than the 

factor variables F6 to F9. The factor variables F1 to F5 have the same driving power of 9 and the dependence power of 

5 indicating their mutual predecessor – successor relationships, as well. The predecessor – successor relationships are 

shown in the level partitioning table in Table 8. The variables having the lowest driving powers are F8 and F9. F8 has a 

driving power of 2 and F9 has a driving power of 1. Hence, F8 is a predecessor of F9 indicating a causal relationship 

even at the far end of dependencies plotting in the MICMAC diagram as shown in the Table 8. The F6 and F7 variables 

have moderate driving power of 3 each. Such a construct may be considered as hierarchical as is evident in the final 

FISM model. 

Table 8: Level Partitioning Matrix 

 
 



Journal of Information Systems Engineering and Management 
2024, 9(3) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  
 

14 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

All the antecedents, intersections, and reachability relationships at four levels of partitioning are presented in the level 

partitioning matrix (Table 8). The partitions are formed based on the driving/dependency powers of the factor 

variables and the antecedents, intersections, and reachability relationships represent the relationships’ chaining that 

has been traced in the final traceability matrix. The level partitioning matrix shows the hierarchical structure of the 

relationships with four levels in the hierarchy. The variables F1 to F5 are at the level 4 because of their highest driving 

power of 9 in the model. The variables F6 and F7 are at the level 3 because of their moderate driving power of 3. The 

variable F8 is at the level 2 because of its driving power of 2 and the variable F9 is at level 1 because of its driving 

power of 1. 

 

Table 9: Conical Matrix 

 
 

In the Table 9 the final determination the reachability and the relationships’ powers (driving and dependence) are 

shown. It is called the conical matrix. It is the summary table of the FISM output. The picture of the output model is 

shown in Figure 5 to be discussed theoretically. The reachability relationships defining the dependency powers of the 

variables F1 to F5 create complexities for further theoretical analysis. Hence, they were removed from the final model 

discussed theoretically in this study. The finalised model, shown in Figure 6, has been created by eliminating all the 

transient (indirect) relationships. This means that all mutual antecedents and reachability relations within the levels 

were dropped. The finalised model presented in Figure 6 is the FISM output for theoretical analysis. 

 
Figure 5: Construct created in Smart ISM application by Ahmed and Ayman (2021) [redrawn in 

colour] 

 

It may be noted that both Figures 5 and 6 have an intrinsic colour coding in which, the darkness of colours represent 

increase in driving powers prevailing at those levels. Further, it may be noted that the interrelationships within the 
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four levels have been eliminated in the Figure 6. Only the inter-level relationships have been retained for the 

theoretical model. This has been done to simplify the model for theoretical analysis of hierarchical integration and not 

integrations within the levels that may add too many relationships for multivariate analysis. The multivariate methods 

if used in future may recover some of those relationships if they support higher model fitment when tested for 

multivariate statistical validity. 

 
Figure 6: Final Model created in Smart ISM application by Ahmed and Ayman (2021) [Redrawn in 

colour] 

Hence, the final model of this research is the Figure 6 that is now analysed theoretically to justify the relationships 

learnt through the FISM efforts. Al though not proven for empirical validity by FISM, the relationships carry empirical 

significance that may motivate future researchers to study them further and attempt to establish their empirical 

validity. The first aspect to keep in mind is that the finalised model has four levels in a hierarchy. This reflects a 

hierarchical existence within the technologies studied in the Industry 4.0 and Industry 5.0 frameworks. The factors F1 

to F5 form the foundation for both Industry 4 and Industry 5 frameworks. They enable the effectiveness of factors F6 

and F7. The factors F1 to F7 collectively influence the dependent variables, but again there is a hierarchy between the 

two as F8 influences the F9. 

The factors F1 to F5 have the highest driving powers and also have mutual dependencies. This is because while they 

form the foundation of the Industry 4.0 framework, they are also influencing mutually. They may be having varying 

driving powers mutually. For example, a CPU may have higher driving power than memory and hard disk drive. 

However, from value generation perspective the full computer is considered. Similarly, the full Industry 4.0 system 

comprising the factors F1 to F5 drives the value generation irrespective of the mutual driving powers of the individual 

components. Thus, all the components are equally essential. The roles of F1 to F5 are well defined in the literature 

reviewed in this study (such as, Abdmeziem, Tandjaoui, Romdhani, 2016; Bartodziej, 2017; Ghomi, Rahmani, Qader, 

2019; Lim, Xiong, and Wang, 2021; Michlowicz, 2021; Najafi and Atighi, 2024; Sakhri, 2024; Vaseei, 2024). The 

digital transformation carried out by these components is analysed in a simple language from the perspective of the 

authors as described below: 

(a) IIoT for interfacing the physical and digital layers: The IIoT sensors should be deployed in every active system in 

digitally transformed manufacturing, logistics, and supply chain setting, such as machines, robots, production 

controllers, internal and external transport systems, pickup, retrieval, and pallet transfer systems, etc. IIoT 

connections can free up all such devices from any cabling attachments thus making them freely configurable as 

cellular/modular manufacturing system. Manufacturing assembly lines and all support and delivery systems can be 

customised dynamically as per the orders received by the organisation. 
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(b) Fog computing for consolidating the physical layer data: Fog computing is the wireless network of all IIoT-enabled 

manufacturing, logistics, and supply chain setting. Devices and their controllers can communicate seamlessly on local 

wireless networks, such as Wi-Fi and 5G networks. 5G may be more preferred as it supports several localised cells with 

uplinks and downlinks at high bandwidths and data speeds. The concept of dynamic cellular/modular manufacturing 

can be effectively enabled by the fog computing networks deployed in operational settings. 

(c) Cloud manufacturing for smart and distributed manufacturing systems: While fog computing can facilitate 

dynamic capabilities within localised premises (such as production plants, warehouses, and depots), cloud computing 

can integrate all such facilities to form a complete digitalised supply chain. As described by multiple research studies 

(Lim, Xiong, and Wang, 2021; Qu et al., 2016; Zhong et al., 2016), integrated manufacturing and their supporting 

facilities through cloud computing forms a cloud manufacturing system. 

(d) Big data analytics for multi-layer multi-location information collection: As reviewed, big data analytics may be 

viewed as a technology for integrating the real time events happening in multiple locations for synchronising their 

operations. For example, machines integrated as assembly line in one location may be viewed in real time for 

preparing their deliveries in a warehouse at another location. The customers may be provided real time visualisation of 

all the activities happening for their deliveries to offer them better trust and transparency. 

(e) Smart contracts using blockchains: Blockchains may be used to tie up all client deliveries with smart contracts for 

fixing accountabilities. As smart contracts can get direct updates on execution activities (Barenji and Montreuil, 2022; 

Bartodziej, 2017; Henzel & Herzwurm, 2018; Unal et al., 2021), customers may be provided interfaces to view 

execution of their orders in real time. 

With these five technologies in place, the Industry 5.0 capabilities of smart robotics and human-centric AI can be 

activated. Smart robotics take commands from artificial intelligence but conduct their localised operations smartly by 

remaining process, environment, and cognitively aware, and operate individually as well as in groups (Boz and Pinto, 

2024; Najafi and Atighi, 2024; Nozari, 2024; Sakhri, 2024; Vaseei, 2024). Smart rbots may be tasked to complete 

several sequences of process steps autonomously without needing human intervention. The human operators no 

longer talk to the robots for issuing commands; instead they command the artificial intelligence that in turn 

commands the smart robots. This is the human-centric concept of artificial intelligence. With these layers in place, the 

supply chain operations can have flexibility given the modularity and cellular assembly structure and smart robots in 

action capable of making quick self changes and operational environment changes. With Industry 4.0 and 5.0 

capabilities in place, flexibility is possible in production, plant operations, interplant logistics, plant to 

warehousing/distribution logistics, retail logistics, and in the customer delivery logistics. Riding on the flexibilities is 

resilience that protects the business operations from unforeseen events. Flexibility in supply chain can ensure rapid 

readjustments when a supply chain risk is evident. The human centric AI concept can allow human operators to make 

quick and valuable readjustments based on the situational awareness applying their experiences and wisdom. 

 

6. Conclusion 

 

The Industry 4.0 and Industry 5.0 capabilities in a cloud manufacturing setting were reviewed in this research. The 

cloud manufacturing stack studied in this research revealed a mechanism of physical perception in a production, 

logistics, and supply chain setting getting digitalised and transmitted to the digital world from where, the physical 

world can be monitored and controlled through the digitalised perception layer. The exact replica of the digitalised 

perception can be formed in digital twins with the help of big data systems that receive data continuously from the 

digitalised perception layer. The synchronous information exchange between the perception layer and the digital twin 

representation of the physical layer can be used for invoking smart capabilities in machines, robots, and other systems. 

If the information exchange is fully controlled by AI, then human centric AI operations can be carried out. On simple 

human commands, AI can execute highly complex operations. The digitalisation of the physical layer ensures that all 

machines and robots can be controlled in bigger groups with high levels of modularity. The orchestration among 

various agencies owning the machines, robots, and other systems can be executed through smart contracts in a 

blockchain. Thus, the digitalised framework is friendly to flexible/cellular manufacturing and logistics operations. 

With flexibility, resilience can be built into the system as the human operators can have flexibility to moderate or 

modify the operational specifications based on demand changes by instructing the smart robots. For example, a 
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running modular assembly line in the cellular construct may be changed or completely reorganised by the robots on 

the instructions of their human instructors. The foundational factors of this level of maturity comprises the IIoTs, fog 

computing, cloud manufacturing, and big data analytics, and blockchains. This was the final output of the FISM 

method followed in this research. 

References: 

 

[1] Abeysekara, N., Wang, H., Kuruppuarachchi, D. 2019. Effect of supply-chain resilience on firm performance and 

competitive advantage: A study of the Sri Lankan apparel industry. Business Process Management Journal, 25 

(7): 1673-1695 [Emerald] 

[2] Adobor, H. and McMullen, R. S. 2018. Supply chain resilience: a dynamic and multidimensional approach. The 

International Journal of Logistics Management, 29 (4): 1451-1471 [Emerald] 

[3] Ahmad, N. And Ayman, Q. 2021. "SmartISM: Implementation And Assessment of Interpretive Structural 

Modeling" Sustainability, 13 (16): 8801 [MDPI] 

[4] Ambulkar, S., Blackhurst, J., Grawe, S. 2015. Firm’s resilience to supply chain disruptions: Scale development 

and empirical examination. Journal of Operations Management, 33–34: 111–122 [Elsevier] 

[5] Carlsson, O. 2017. Engineering of IoT Automation Systems. Published PHD Thesis in Industrial Electronics, 

Lulea University of Technology. 

[6] Chaudhuri, A. and Boer, H. and Taran, Y. 2018. Supply chain integration, risk management and manufacturing 

?exibility. International journal of operations and production management, 38 (3): 690-712 [Emerald] 

[7] Christopher, M. 2023. Logistics and Supply Chain Management, 6th edition [London: NY: Financial Times 

Publishing] 

[8] Crichton, M. T., Ramsay, C. G., Kelly, T. 2009. Enhancing Organizational Resilience Through Emergency 

Planning: Learnings from Cross-Sectoral Lessons. Journal of Contingencies and Crisis Management, 17 (1): 24-

37 [Blackwell] 

[9] Culot, G. 2021. Industry 4.0 and the future of manufacturing: Theoretical base and empirical analyses. 

Published PHD Thesis, [University of Udine] 

[10] Denyer, D. 2017. Organizational Resilience: A summary of academic evidence, business insights and new 

thinking. Joint Academic Research by BSI and Cranfield University, 1-54 [Cranfield University and British 

Standards Institution] 

[11] Elizabeth, S. and Sujatha, L. 2013. Critical Path Problem under Fuzzy Environment. International Journal of 

Computer Applications, 75 (1): 7-11. 

[12] Elizabeth, S. and Sujatha, L. 2015. Project Scheduling Method Using Triangular Intuitionistic Fuzzy Numbers 

and Triangular Fuzzy Numbers. Applied Mathematical Sciences, 9 (4): 185-198 [Hikari] 

[13] Gupta, S., Modgil, S., Meissonierc, R., Dwivedi, Y. K. 2021. Artificial Intelligence and Information System 

Resilience to cope with Supply Chain Disruption.  IEEE Transactions on Engineering Management, 71: 10496-

10506 [IEEE] 

[14] Han, J. H., Wang, Y., Naim, M. 2017. Reconceptualization of information technology flexibility for supply chain 

management: An empirical study. International Journal of Production Economics, 187: 196–215 [Elsevier] 

[15] He, Z., Huang, H., Choi, H., Biligihan, A. 2023. Building organizational resilience with digital transformation. 

Journal of Service Management, 34 (1): 147-171 [Emerald ] 

[16] Irfan, M., Wang, M., Akhtar, N. 2020. Enabling supply chain agility through process integration and supply 

flexibility. Asia Pacific Journal of Marketing and Logistics, 32 (2): 519-547 [Emerald] 

[17] Jain, V. and Soni, V. K. 2019. Modeling and analysis of FMS performance variables by fuzzy TISM. Journal of 

Modelling in Management, 14 (1): 2-30 [Emerald] 

[18] Khatwani, G., Singh, S. P., Trivedi, A., Chauhan, A. 2015. Fuzzy-TISM: A Fuzzy Extension of TISM for Group 

Decision Making. Global Journal of Flexible Systems Management, 16: 97-112 [Springer] 

[19] Li, C., Wong, C. W. Y., Yang, C., Shang, K., Lirn, T. 2020. Value of supply chain resilience: roles of culture, 

flexibility, and integration. International Journal of Physical Distribution & Logistics Management, 50 (1): 80-

100 [Emerald] 



Journal of Information Systems Engineering and Management 
2024, 9(3) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  
 

18 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

[20] Lim, M., Xiong, W. and Wang, C. 2021. Cloud manufacturing architecture: a critical.analysis of its development, 

characteristics and.future agenda to support its.adoption, Industrial Management and Data Systems, 121 (10): 

2143-2180 [Emerald] 

[21] Mohanty, M. and Shankar, R. 2017. Modelling uncertainty in sustainable integrated logistics using Fuzzy-TISM. 

Transportation Research Part D, 53: 471–491 [Elsevier] 

[22] Najafi, E. and Atighi, I. 2024. Employing AI in the Sustainability of Smart Commerce and Supply Chain. In H. 

Nozari (Ed.) Information Logistics for Organizational Empowerment and Effective Supply Chain management. 

139-149 [PA, USA: IGI Global] 

[23] Nkomo, L. and Kalisz, D. 2023. Establishing organisational resilience through developing a strategic framework 

for digital transformation. Digital Transformation and Society, 2 (4): 403-426 [Emerald] 

[24] Ralston, P. and Blackhurst, J. 2020. Industry 4.0 and resilience in the supply chain: a driver of capability 

enhancement or capability loss?, International Journal of Production Research, 58 (16): 5006-5019 [Taylor & 

Francis] 

[25] Rojo, A., Stevenson, M., Llorens-Montes, J., Perez-Arostegui, M. N. 2018. Supply Chain Flexibility in Dynamic 

Environments: The Enabling Role of Operational Absorptive Capacity and Organisational Learning. 

International Journal of Operations & Production Management, 38 (3): 636-666 [Emerald] 

[26] Sakhri, M. S. A. 2024. Leveraging Digital Data for Optimizing Supply Chain Performance. In H. Nozari (Ed.) 

Information Logistics for Organizational Empowerment and Effective Supply Chain management. 185-200 [PA, 

USA: IGI Global] 

[27] Sekaran, U. 2003. Research methods for business: A skill building approach. 4th edition [NY: Wiley] 

[28] Shekarian, M., Nooraie, S. V. R. and Parast, M. M. 2020. An Examination of the Impact of Flexibility and Agility 

on Mitigating Supply Chain Disruptions. International Journal of Production Economics, 220: 107438 

[Elsevier] 

[29] Shukor, A. A. A., Newaz, M. S., Rahman, M. K., Taha, A. Z. 2021. Supply chain integration and its impact on 

supply chain agility and organizational flexibility in manufacturing firms. International Journal of Emerging 

Markets, 16 (8): 1721-1744 [Emerald] 

[30] Steen, R., Haug, O. J., Patriarca, R. 2023. Business continuity and resilience management: A conceptual 

framework. Journal of Contingencies and Crisis Management, 32 (e12501): 1-13 [Wiley] 

[31] Vaseei, M. 2024. A Conceptual Framework for Blockchain-Based, Intelligent, and Agile Supply Chain. In H. 

Nozari (Ed.) Information Logistics for Organizational Empowerment and Effective Supply Chain management. 

150-162 [PA, USA: IGI Global] 

 

 


