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for the planning, condition-based maintenance, failure prediction and infrastructure
resilience. Through creating online, performance-based virtual replicas of physical
objects, such as Digital Twins, it provides a mechanism for real-time monitoring and
predictive analysis that will improve decision making throughout the lifecycle of
infrastructure. The paper proposes an all-round framework which exploits DTs for
proactive condition-based maintenance, facilitating timely interventions and
prolonging the asset life. It also examines the potential of Digital Twin(s) for failure
mode identification and risk-informed resilience planning, with a focus on climate
variability and urbanization pressures. Applications of the approach are illustrated
through case studies and simulation models for various water infrastructure types.
The results of the analysis illustrate that implementation of Digital Twin in LCA offers
a dynamic, adaptive and cost-efficient solution counteracting the challenge of
enhanced performance and sustainability of water infrastructure systems.
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1. Introduction

Pipelines, treatment plants, storage, and distribution networks represent water infrastructure systems,
which are considered as the heart of urban and rural water supply and sanitation. Nevertheless, many
of these systems have been in service for a long time and they are already overloaded, aging and
becoming more susceptible to disruptions caused by different physical impacts, lack of maintenance or
monitoring on-line [1],[2]. Traditional lifecycle assessment (LCA) approaches such as economic and
environmental assessments are limited in their ability to be dynamic in quantifying operational risk,
maintenance management and an onward development of performance degradation over time [3].

In the past few years, Digital Twin (DT) has shown its amazing potential to act as a bridge between
physical infrastructure and digital intelligence. Digital twin can be defined as a real-time, data-based
virtual model of a physical asset, process, or system for the sake of monitoring, simulating or optimizing
(Ib) [4]. DTs, in water management, present novel prospects for improving the life cycle assessment of
infrastructure by incorporating real time sensor data, historical performance information and
predictive analytics in a holistic framework [5].

In the context of LCA, the use of digital twins supports maintenance decisions to switch from predictive
and time-based methods to condition-based maintenance (CBM), where decisions are made based on
the real-time conditions of the components of the infrastructure [6]. This has lead to early fault
detection, preventative maintenance scheduling and risk reduction in order to lower downtime and
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prolong equipment service life [7]. In addition, utilities can use machine learning and artificial
intelligence in the DT space to simulate failure conditions, determine the impact of interventions, as
well as to rapidly evolve with ecosystem and operating conditions changes [8].

This paper highlights the role of digital twins in life cycle assessment of water infrastructure with a
special focus on condition-based maintenance, failure prediction and infrastructure resilience. It is the
main goal of this work to provide a clear framework for DT integration in water asset management
systems, based on lessons learned from recent developments, practical applications and simulation-
based models with a long history of use. By doing so, it bridges important deficiencies in traditional
infrastructure management, and, furthermore, provides practical inputs for utilities, engineers, and
policy-makers in designing smarter and more sustainable water networks [9], [10].

2. Literature Review

Extending the imperative to modernize water infrastructure LCA, there has been a growing emphasis
on the development of dynamic and data-driven models. Conventional static LCA approaches do not
adequately address dynamic in-service operating conditions and asset degradation. In [11], it was
pointed out the shortcoming of applying static LCA to infrastructure models and the need for updating
life cycle inventories to account for data of the operation phase that can improve representing real
performance and degradation of a system. Similarly, in [12] presented model proposed a multi-criteria
decision analysis (MCDA) approach for water infrastructure systems in LCA-based frameworks, while
it did not incorporate real-time operation data.

New digital methods like Building Information Modeling (BIM) and Geographic Information Systems
(GIS) have been investigated as a means to enhance infrastructure data lifecycle management.
Integration of BIM and GIS provides better spatial representation and lifecycle monitoring of water
utilities aiming at better planning and operations decisions [13]. These tools, however, do not really
enable predicting functions or simulating system behavior in near-realtime. Due to this limitation, some
researchers are investigating the Digital Twins (DTs) as a next-generation solution [14].

Digital Twin is an emerging technology, linking physical assets to virtual models by real time data flows,
which has shown promise in civil infrastructure. In the water infrastructure, DTs can be used to simulate
flow dynamics, system pressure and leak detection using the live sensors data [15]. A DT-based case
study showed that they can help for operational decision making, failures mitigation, and for water
distribution system efficiency maximization [16].

One of the most effective use of DTs is moving from time-based to condition-based maintenance (CBM).
Traditional maintenance methods can lead to unnecessary and unexpected maintenance or failed
maintenance. The real-time monitoring data is processed by the DT-based systems of CBM which, in
turn, evaluate the condition of structural components and plan the timing of their maintenance [17].
Urban water supply networks experience reductions in maintenance costs and reliable improvements
by application of such systems [18].

Predictive maintenance is another step beyond CBM, in which the system tries to anticipate failures
before they take place. DTs combined with machine learning methods were applied to historical data
and used to forecast the deterioration of assets. Predictive models incorporated in DT systems can
accurately detect risk zones, failure modes and remaining useful life of pipes or pumping facilities [19].
These functions enable long-term planning, which aids in minimizing customer outages and avoidable
emergency repairs [20].

Towards DTs, infrastructure resilience is additionally supported by realtime simulations and predictive
analytics. It may be used to test system responses and to redesign components in a number of hazard
scenarios (flooding, drought, seismic) and can simulate a range of damage states [21]. P Codes and
Practices Simulating the influences of urban design and building design practices on the UHIE helps
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utilities and city planners to consider a variety of countermeasures and select the most resilient and
adaptive design options for next stress conditions [22].

DTs also enhance regulatory compliance and environmental reporting, in addition to resilience. With
real-time measurements of energy use, water quality and emissions, DTs can thus supply reliable input
data for LCA models based on ISO 14040 [23]. These features provide transparency and enhance trust
in market participants, regulators, and the broader public.

Digital Twins also act as collaborative platforms that allow information to be shared among
stakeholders. With cloud- enabled DT architectures, engineers, asset managers, and policymakers are
able to see the same live and simulated data, which leads to better decision-making and lower risk of
miscommunication in intricate projects [24]. This cooperative use also promotes project coherence,
while facilitating the rollout of smart infrastructure services.

Notwithstanding, challenges exist in the integration of DTs into the conventional infrastructures
operation and management systems. Among these challenges is the integration of infrastructure data
that are fragmented in systems such as SCADA, BIM, and GIS. In [24], middleware solutions and open
standards were suggested to integrate these heterogeneous data streams in single DT framework.
Further, there are serious threats from cyber security and data privacy particularly for critical water
infrastructure. In [25] we can find a blockchain-based design which secure digital twin data against
unauthorized access, as well as offers a method to track every transaction from all system parts.

3. Methodology

In this paper, a holistic approach is presented to evaluate the life cycle of water infrastructure systems
by including Digital Twin (DT) technology, condition-based maintenance (CBM), failure prediction
modeling, and resilience assessment. Towards Dynamic Monitoring, Real-Time Simulation, and
Predictive Decision Making on Water Assets The framework introduced allows for dynamic monitoring,
real-time simulation and predictive decision making of water assets. The approach is composed by 5
interconnected modules, and all the details follow.

A. Digital Twin-Based Lifecycle Framework Architecture
The architecture of the proposed system is presented in Figure 1. It is composed of the following layers:

1. Physical Layer: Includes sensors, meters, SCADA systems, and embedded IoT devices
installed on water pipelines, reservoirs, pumps, and valves.

2. Data Acquisition Layer: Gathers real-time operational data (e.g., pressure, flow rate,
temperature, vibration) from the physical components.

3. Data Processing & Integration Layer: Applies pre-processing, feature extraction, and
fusion of historical and real-time data.

4. Digital Twin Core Layer:

o Simulation Module: Performs hydraulic and structural simulations of water
networks.

o Failure Prediction Module: Uses machine learning algorithms to forecast asset
failure.

o Condition Monitoring Module: Continuously evaluates asset degradation and
health status.

Copyright © 2023 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 3
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.



Journal of Information Systems Engineering and Management
2023, 8(2)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

5. Decision Support Layer: Supports planners and engineers with actionable insights for
maintenance scheduling, risk mitigation, and long-term resilience planning.

Physical Layer
(Sensors, SCADA, loT)

Data Acquisition
Layer

Data Processing &
Integration Layer

!

= ——— v =
Simulation Condition Monitoring Failure Prediction
Module Module Module
Digital Twin Core
¥
Decision Support
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Figure 1: Architecture of Digital Twin-Enabled Lifecycle Assessment for Water Infrastructure
B. Lifecycle Assessment Model

The lifecycle performance of each water asset is evaluated across its operational time T, taking into
account environmental impact, cost, and performance degradation. The dynamic lifecycle cost (LCC)
function is given by:

LOCE) = Gt + [ [Conm () + Coper(®) + Come(1)]
0 (1
Where:
e  Cinit: Initial capital cost
e Cmaint(t): Time-varying maintenance cost (condition-based)
e  Coper(t): Operational cost
e  Crisk(t): Risk cost from predicted failures

This model is dynamically updated using real-time data from the digital twin and adjusted for asset
condition.

C. Condition-Based Maintenance (CBM) Strategy

The DT uses threshold-based condition monitoring and real-time sensor analytics to trigger
maintenance only when degradation exceeds defined limits.

Let H(t) represent the health index of a component (normalized between 0 and 1). Maintenance is
triggered when:
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Where:

e  Hecrit: Critical threshold indicating impending failure
e H(t): Calculated using sensor-based indicators and historical degradation trends

CBM planning optimizes maintenance frequency and cost using a utility maximization function:

_ Expected Service Life Extension

U=

Maintenance Cost 3)

This helps prioritize which components should be maintained first based on utility.
D. Failure Prediction Using Machine Learning

To predict failure, the system employs a supervised learning model such as a Random Forest (RF) or
XGBoost, trained on historical failure data. The input features include:

e Age of component

e Vibration frequency

e Pressure variation

e  Water quality indicators (e.g., turbidity, pH)
e Historical failure rates

The probability of failure Pf(t) is computed as:

Pf(t) = f(mls L2, "'13:’,?1)
(4)

Where x1,x2,...,xn are sensor inputs at time t, and f is the trained model.

The Remaining Useful Life (RUL) is estimated as:

RUL = Tf — 1 =)

Where Tf is the predicted failure time, and t is the current time.
E. Infrastructure Resilience Analysis

The resilience of the infrastructure is evaluated by simulating disturbance scenarios (e.g., pipe bursts,
flood inundation, drought). Resilience RRR is computed as:

R — Qrccovcrcd
Qtotal (6)

Where:

e Qrecovered: Quantity of service restored after disruption
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e Qtotal: Total service before disruption

Simulation models within the DT allow virtual testing of multiple contingency strategies (e.g., valve
isolation, alternate routing, emergency pumping).

F. Data Sources and Tools
e SCADA & IoT platforms: Real-time operational data acquisition
e Python/Matlab: Machine learning model training and analysis
¢ EPANET & WaterGEMS: Hydraulic simulation for pipeline modeling

¢ Cloud platforms (e.g., Azure Digital Twins): Hosting and synchronization of digital twin
instances

¢ QGIS or ArcGIS: Spatial visualization of assets and risks

4. Results And Discussion

In order to evaluate the proposed outfit, a simulated water system dataset was employed consisting of
sensor readings, historic failures, maintenance logs, and resilience scenarios. The models were
implemented in an mid-scale urban water distribution network by means of Digtial Twin-based
monitoring and prediction systems. the findings are presented via six analytical graphs which range
from the tracking of asset condition, Prognosis of failure, CBM cost savings, Lifecycle cost dynamics
and disruption resilience scores. These visualizations demonstrate the merits of combining online
analytics and simulation for sustainable infrastructure management.

Health Index vs. Time for Condition-Based Maintenance

Asset Health Index
——- Critical Threshold

1.0

Health Index

T
o] 5 10 15 20
Time (Months)

Fig 2: Health Index vs. Time

This graph of figure 2 tracks the degradation of an asset over 24 months. The health index, starting from
1, declines exponentially due to wear and usage. When it crosses the red critical threshold (0.4), it
signals the need for maintenance. This is the key trigger in condition-based maintenance scheduling.
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Predicted Remaining Useful Life of Critical Assets
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Fig 3: Remaining Useful Life (RUL) Prediction per Asset

This bar chart figure 3 shows the predicted RUL of five critical components in the network. The Digital
Twin combined with ML algorithms estimates these lifespans based on real-time condition monitoring

and historical failure patterns. Shorter RUL values (e.g., Pipe A) are prioritized for immediate
maintenance.

Failure Probability by Component Type
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Fig 4: Failure Probability Distribution across Assets

This chart of figure 4 highlights which component types are more failure-prone. Pipes show the highest
probability (30%), making them the most vulnerable. Such insights help asset managers apply targeted
maintenance and allocate budget accordingly.
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Maintenance Cost: Condition-Based vs. Time-Based
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Fig 5: Maintenance Cost vs. Time (CBM vs. Time-based)

This comparison illustrates how CBM, while variable, results in lower average costs over 12 months
compared to scheduled time-based maintenance is shown in figure 5. CBM avoids unnecessary
maintenance when conditions are optimal and only triggers interventions when needed.

Lifecycle Cost Breakdown for Water Infrastructure
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Fig 6: Lifecycle Cost Components

This pie chart figure 6 breaks down the total lifecycle cost of a water infrastructure asset. Capital cost
dominates, but maintenance and risk costs combined account for over one-third of total expenditure—
areas where Digital Twin applications offer significant savings and mitigation strategies.
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Fig 7: Resilience Index under Simulated Hazard Events

This graph figure 7 evaluates infrastructure resilience using the Digital Twin’s ability to simulate stress
scenarios. Resilience drops sharply in cyber-attack and pipe burst events, highlighting the need for
redundancy and cybersecurity protocols as part of smart water infrastructure planning.

Conclusion and Future Work

The work also provides a novel model to generate Digital Twin technology and predictive maintenance,
failure analysis and resilience modeling for the lifecycle assessment of water infrastructure. The key
contributions of this paper are the development of an integrated digital twin architecture which enables
real-time condition based maintenance (CBM) and risk reduction for aging water infrastructure
systems. Unlike conventional LCA techniques which tend to be based on static, time-oriented
evaluations, our approach pro-actively integrates current sensor data, maintenance analytics and ML-
based predictions to monitor the dynamic health of assets and optimize intervention decisions.

This research has shown that Digital Twins can not only be employed for predictive maintenance
purposes, but also be used for simulating failure scenarios, identifying assets to prioritize for
rehabilitation, and enabling long-term infrastructure sustainability by studying the proposed
architecture and simulation results. The primary innovation is in the unification of lifecycle-
environmental-economical-operational data in a single digital environment, to support intelligent
decision-making by utilities and allow them to increase life span of their infrastructures, lower costs,
and minimize environmental footprint.

Future Work and Analysis

Further work needs to do on improving the scalability and interoperability of these digital twin data
models for various infrastructure (e.g. sewage, drainage and storm water systems). There is also ample
room for leveraging blockchain for secure data exchange processing, edge computing for real-time
analytics on field, and Al-based optimization algorithms for autonomous process control. Furthermore,
adding climate change projections and sustainable indicators into digital twins could prove beneficial
for planning climate-resilient water infrastructure.

Pilot projects in real municipalities and/or urban-utilities would provide opportunities to validate the
effectiveness of the framework under different operational conditions. Moreover, cross-domain digital
twins of water infrastructure with energy and transportation systems can be further investigated for
integrated smart city ecosystems with enhanced resilience and resource efficiency.
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Overall, this work lays the foundation for a data-driven, intelligent future of asset management—how
we evaluate, maintain, and secure critical water infrastructure.
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