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Introduction 

 

Autonomous driving systems rely critically on computer vision capabilities to perceive and interpret the driving 

environment. These perception systems must operate in real-time while maintaining high accuracy across varied 

environmental conditions, presenting a significant engineering challenge. While deep learning has dramatically 

improved the capabilities of these systems, deploying such models in resource-constrained vehicles remains 

challenging due to latency requirements and power limitations. 

Current approaches often prioritize either accuracy or efficiency, creating a fundamental trade-off in system design. 

High-performance models like Mask R-CNN offer exceptional accuracy but operate below real-time thresholds. 

Conversely, lightweight models sacrifice detection quality for speed. Additionally, most existing frameworks process 

all frames uniformly regardless of scene complexity, leading to inefficient resource utilization. 

 

This paper introduces DVNet-R, a real-time vision framework for autonomous vehicles that addresses these challenges 

through several key innovations: 

• An integrated architecture combining optimized object detection and lane perception modules 

• A novel adaptive processing technique that dynamically allocates computational resources based on scene 

complexity 

• A hybrid lane detection approach combining traditional computer vision with deep learning capabilities 

• A comprehensive evaluation methodology across diverse environmental conditions 

 

DVNet-R builds upon prevailing research in efficient neural architectures, knowledge distillation, and hardware 

acceleration, while introducing novel optimizations for the autonomous driving context. Our framework achieves 

28.35 FPS on commodity hardware while maintaining 87.2% mAP@0.5 for object detection and 93.5% accuracy for 

lane detection. 

The remainder of this paper is organized as follows: Section 2 surveys related work. Section 3 details our system 

architecture. Section 4 covers implementation details. Section 5 presents our experimental evaluation. Section 6 

analyzes the results. Section 7 discusses implications and limitations, and Section 8 concludes with future directions. 
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Real-time perception systems for autonomous vehicles remain challenging due to the inherent 

trade-off between accuracy and computational efficiency. This paper presents DVNet-R, a real-time 

computer vision framework for autonomous vehicles incorporating optimized object detection and 

lane perception modules. The multi-stage architecture achieves 28.35 FPS on commodity hardware 

while maintaining high accuracy across diverse environmental conditions. Our system integrates a 

YOLOv8-based object detector with an 87.2% mAP@0.5 and a hybrid lane detection pipeline with 

adaptive region-of-interest selection achieving 93.5% accuracy. We contribute a novel adaptive 

processing technique that dynamically allocates computational resources based on scene 

complexity. Comprehensive evaluation across five environmental conditions demonstrates robust 

performance, particularly in variable lighting and weather scenarios. The modular design allows for 

targeted optimizations, as validated through our ablation studies. DVNet-R’s differential processing 

approach reduces computational overhead by 23% compared to baseline methods while maintaining 

competitive accuracy. This research advances the state of the art in efficient perception systems for 

autonomous driving. 
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Related Work 

Object Detection for Autonomous Driving 

Object detection in autonomous vehicles has evolved from traditional computer vision methods to deep learning 

approaches. Early systems relied on histogram of oriented gradients (HOG) and deformable part models, which were 

effective but limited in complex environments. The KITTI benchmark accelerated progress by providing standardized 

datasets and evaluation metrics. 

The integration of deep learning began with R-CNN, which achieved higher accuracy at the expense of computational 

efficiency. Fast R-CNN and Faster R-CNN improved speed through region proposal networks, but still struggled to 

achieve real-time performance. SSD and YOLO architectures marked an important shift toward single-stage detection, 

prioritizing inference speed. 

Recent developments focus on balancing accuracy and efficiency. Efficient Det introduced compound scaling to 

optimize this trade-off. YOLOv5 and YOLOv8 enhanced the YOLO architecture with improved backbone networks and 

augmentation strategies. Specialized architectures for autonomous driving include ComplexYOLO and SECOND, 

which extend detection to 3D space. 

Our approach builds upon YOLOv8 with domain-specific optimizations for autonomous driving scenarios, including 

attention mechanisms that focus computational resources on regions of interest. 

 

Lane Detection Systems 

Lane detection has traditionally relied on classical computer vision techniques. The Hough transform has been widely 

used to detect lane markings, often combined with Canny edge detection and color-based segmentation. RANSAC-

based methods improved robustness against noise and outliers. These approaches perform well in controlled 

environments but struggle with varying road conditions, shadows, and occlusions. 

The transition to learning-based methods began with CNNs employed for pixel-wise segmentation of lane markings. 

SCNN introduced message passing between adjacent pixels for structured lane prediction. More recent approaches 

include LaneNet, which uses instance segmentation, and Ultra Fast Lane Detection, which reformulates lane detection 

as a row-wise classification problem. 

Self-attention mechanisms have further enhanced lane detection. Lane-former applies a transformer-based 

architecture to capture global context. RESA employs recurrent feature aggregation to improve feature representation. 

Hybrid approaches combining classical techniques with deep learning have shown promise. These systems benefit 

from the interpretability of traditional methods while leveraging the robustness of learning-based approaches. 

Our work extends this hybrid paradigm through an adaptive region-of-interest selection mechanism and temporal 

consistency constraints, addressing key challenges in diverse environmental conditions. 

 

Real-time Vision Systems 

Developing real-time vision systems requires addressing the latency-accuracy trade-off. Model compression 

techniques, including pruning, quantization, and low-rank factorization, reduce computational requirements while 

preserving accuracy. Knowledge distillation transfers knowledge from larger "teacher" models to more efficient 

"student" models. 

Hardware acceleration through GPUs, FPGAs, and specialized ASICs has enabled significant speedups. TensorRT and 

OpenVINO optimize model deployment across hardware platforms. Edge computing approaches distribute processing 

between the vehicle and infrastructure. 

Adaptive computing frameworks dynamically allocate resources based on scene complexity. AdaScale adjusts input 

resolution, while BranchyNet enables early exit from neural networks. Frame skipping and key-frame selection 

techniques reduce redundant processing in video sequences. 

Cross-modal approaches leverage multiple sensor types, such as cameras, LiDAR, and radar. Sensor fusion strategies 

range from early fusion (raw data integration) to late fusion (decision-level integration). 

Our DVNet-R framework contributes to this domain by introducing a differential processing pipeline that dynamically 

allocates computational resources based on frame complexity, while maintaining high accuracy across diverse 

conditions. 
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Methodology 

System Architecture Overview 

DVNet-R employs a modular architecture organized into four primary components: preprocessing, object detection, 

lane perception, and post-processing visualization. Figure 1 illustrates this structure. 

The preprocessing module performs camera calibration, image normalization, and adaptive region-of-interest (ROI) 

selection. The object detection component utilizes a modified YOLOv8 architecture with attention mechanisms to 

identify and track road users and infrastructure. The lane perception module combines traditional computer vision 

techniques with deep learning components. Finally, the post-processing stage fuses detection results and implements 

temporal consistency constraints. 

 
 

Processing time breakdown of DVNet-R components. Preprocessing and visualization stages are optimized for 

minimal overhead, allowing maximum computational resources for the detection tasks. 

 

Optimized Object Detection 

Our object detection module builds upon YOLOv8 with domain-specific optimizations. The mathematical formulation 

for object detection can be expressed as: 

ŷ=f
θ
(x)={bi,ci,pi}i=1

N
 

 

where x is the input image, ŷ is the set of predictions, bi=(xi,yi,wi,hi) represents bounding box coordinates, ci denotes 

the object class, p
i
 is the confidence score, and θ represents the model parameters. 

The loss function L combines localization error, classification error, and confidence error: 

L=λlocLloc+λclsLcls+λconfLconf 

 

where λloc, λcls, and λconf are weighting coefficients. 

We introduce an attention-guided head pruning technique to reduce computational overhead. For each convolutional 

layer l with k channels, we compute an importance score: 

I(l,k)=∑∑ |

W

j=1

H

i=1

Al,k(i,j)| 
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where Al,k is the activation map for channel k in layer l, and H×W is the spatial dimension. Channels with importance 

scores below a threshold τ are pruned during inference: 

Âl,k= {
Al,k, ifI(l,k)≥τ

0, otherwise
 

 

This adaptive pruning mechanism dynamically adjusts model complexity based on scene characteristics, contributing 

to our framework’s efficiency. 

 

Hybrid Lane Detection Pipeline 

Our lane detection approach combines classical computer vision techniques with learning-based components. The 

pipeline consists of the following stages: 

1. Edge detection using Canny operator with adaptive thresholding 

2. Region of interest selection through a trapezoidal mask 

3. Line detection using probabilistic Hough transform 

4. Line filtering and grouping based on slope and position 

5. Polynomial fitting to generate lane boundaries 

6. Temporal consistency enforcement through Kalman filtering 

 

For edge detection, we employ an adaptive Canny algorithm with thresholds determined by image characteristics: 

Tlow=max(0.1,μ-0.5σ),Thigh=min(0.9,μ+2σ) 

 

where μ and σ are the mean and standard deviation of the gradient magnitude. 

Line segments from the Hough transform are filtered and grouped based on their slope m and y-intercept b: 

 

d((m1,b1),(m2,b2))=|m1-m2|+λ|b1-b2| 

 

where λ is a weighting factor balancing the importance of slope and position. 

For challenging scenarios, we supplement this approach with a lightweight segmentation network Sϕ that produces a 

lane probability map: 

Plane=Sϕ(x)∈[0,1]
H×W

 

 

The final lane detection combines both approaches through a weighted fusion: 

Lfinal=αLcv+(1-α)Ldl 

 

where Lcv and Ldl are lane detections from classical computer vision and deep learning respectively, and α is a 

confidence-based weighting factor. 

 

Adaptive Processing Framework 

A core innovation in DVNet-R is our adaptive processing framework that dynamically allocates computational 

resources based on scene complexity. We define a complexity measure C(xt) for frame xt at time t: 

C(xt)=β1Nobj(xt)+β2Vego(t)+β3Dprev(xt-1) 

 

where Nobj is the estimated number of objects, Vego is ego-vehicle velocity, Dprev is a measure of deviation from 

previous predictions, and β
i
 are weighting coefficients. 

 

Based on this complexity measure, we adjust processing parameters: 

• Input resolution scaling: R(xt)=Rbase⋅γ(C(xt)) 

• Model complexity: Select between full and pruned versions 

• ROI size adaptation: ROI(xt)=f(C(xt)) 
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Where γ and f are monotonically increasing functions mapping complexity to resource allocation. This adaptive 

approach ensures efficient resource utilization while maintaining detection performance. 

 

Implementation Details 

Dataset and Training Methodology 

We trained our system on a combination of publicly available datasets: BDD100K, KITTI, and Cityscapes. This diverse 

dataset encompasses various driving scenarios, lighting conditions, and geographical regions, enhancing the 

generalizability of our models. 

For object detection, we fine-tuned a pre-trained YOLOv8 model using the following augmentation strategy: 

• Random scaling (0.8-1.2) 

• Random translation (±15%) 

• Random horizontal flipping 

• Random HSV augmentation 

• Mosaic augmentation 

• Cutmix augmentation 

 

Training employed the AdamW optimizer with an initial learning rate of 10-3, weight decay of 5×10-4, and a cosine 

annealing schedule over 100 epochs. Batch size was set to 64, and training was performed on 4 NVIDIA V100 GPUs. 

 

For lane detection, we employed a combination of synthetic data generation and real-world annotations. The 

segmentation network was trained using a weighted cross-entropy loss with class weights inversely proportional to 

pixel frequency. 

 

 Software Implementation 

DVNet-R was implemented using Py Torch 1.11 for model definition and training. For deployment and inference, we 

utilized Torch Script and ONNX to optimize runtime performance. The codebase follows a modular design pattern, 

facilitating component reuse and modification. 

 

Key software optimizations include: 

• Memory mapping for efficient data loading 

• Asynchronous preprocessing pipeline 

• Custom CUDA kernels for critical operations 

• Half-precision inference (FP16) 

• Batch processing of detection and tracking operations 

 

The system interfaces with the Robot Operating System (ROS) for integration with broader autonomous driving 

stacks, and supports standardized input formats including camera streams and recorded videos. 

 

Hardware Configuration 

Experiments were conducted on an embedded platform representative of automotive-grade hardware: an NVIDIA 

Jetson AGX Xavier with 32GB RAM and 512-core Volta GPU with Tensor cores. This platform provides 32 TOPS of 

compute performance within a 30W power envelope, reflecting realistic constraints for vehicular deployment. 

 

Additional optimizations for the target hardware include: 

• TensorRT acceleration with INT8 quantization 

• CUDA graph optimization for repetitive workloads 

• Power management profiles for thermal efficiency 

• Memory access pattern optimization for Xavier architecture 
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Experimental Evaluation 

Evaluation Metrics and Methodology 

We evaluated DVNet-R using standard metrics for object detection and lane perception: 

• Mean Average Precision (mAP@0.5) for object detection 

• F1-score, precision, and recall for object detection 

• Accuracy, success rate, and average deviation for lane detection 

• Frames per second (FPS) for overall system performance 

• Processing time breakdown for component analysis 

 

To ensure comprehensive evaluation, we assessed performance across five environmental conditions: clear, rainy, 

foggy, night, and snowy conditions. Each condition included at least 1,000 frames from real-world driving scenarios. 

Comparative Analysis 

We compared DVNet-R against several state-of-the-art frameworks: 

• YOLOv5 as a baseline object detector 

• Faster R-CNN as a high-accuracy benchmark 

• SSD as an alternative single-stage detector 

• SCNN for lane detection comparison 

• UFLD as a lightweight lane detector 

 

Comparisons were performed under identical hardware conditions and evaluation datasets to ensure fair assessment. 

 

Ablation Studies 

To validate our design decisions, we conducted extensive ablation studies: 

• Impact of adaptive ROI selection 

• Contribution of edge enhancement techniques 

• Effect of line filtering algorithms 

• Value of temporal smoothing mechanisms 

 

Each component was systematically disabled to measure its contribution to overall system performance. 

 

Results 

Overall System Performance 

DVNet-R achieved an average processing rate of 28.35 FPS, with a mean processing time of 35.27 ms per frame. The 

95th percentile latency was 42.18 ms, demonstrating consistent real-time performance. Figure 2 illustrates the 

system’s processing rate across frames. 
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Processing frame rate of DVNet-R across the evaluation sequence. The system maintains consistent performance 

above the 20 FPS threshold required for real-time operation in autonomous driving. 

The processing time breakdown (Figure 1) shows that object detection consumes the majority (28 ms) of the 

computational budget, followed by lane detection (12 ms), preprocessing (5 ms), fusion (3 ms), and visualization (7 

ms). 

Object Detection Performance 

Our object detection module achieved an mAP@0.5 of 0.872, with class-specific performance shown in Table 1. 

Performance varied by object class, with larger objects like cars and buses detected more accurately than smaller 

objects like traffic lights. 

 

Object Detection Performance by Class 

 

Class Precision Recall F1 Score Count 

Car 0.95 0.93 0.94 423 

Person 0.92 0.85 0.88 287 

Truck 0.93 0.87 0.90 142 

Bus 0.96 0.91 0.93 53 

Traffic Light 0.95 0.83 0.89 195 

Average 0.94 0.88 0.91 1100 

 

The confusion matrix (Figure 3) reveals that most misclassifications occur between related categories (e.g., car vs. 

truck). The precision-recall curves (Figure 4) demonstrate strong performance across detection confidence thresholds. 
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Confusion matrix for object detection. Most misclassifications occur between semantically similar classes such as 

cars and trucks, or pedestrians and traffic lights due to similar spatial dimensions. 

 

 
 

Precision-recall curves for major object classes. The car class achieves the highest area under the curve (AUC) at 

0.93, while pedestrians present the most challenging detection task with an AUC of 0.88. 
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Figure 5 shows the distribution of detection confidence scores, with a mean confidence of 0.72 for true positives. The 

detection performance degraded with distance (Figure 6), with accuracy dropping below 60% at distances beyond 80 

meters. 

 
 

Distribution of confidence scores for object detections. The threshold of 0.35 (vertical red line) effectively separates 

most  true positives from false positives. 

 

 
 

Object detection performance vs. distance. Detection accuracy decreases with distance, particularly for smaller 

objects like traffic signs and pedestrians. 
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Lane Detection Performance 

Our lane detection system achieved 93.5% accuracy and an 87.6% success rate. The average deviation from ground 

truth was 5.2 pixels. Figure 7 shows the lane detection performance across the evaluation sequence. 

 
 

Lane detection success rate across frames. The moving average (purple line) demonstrates improved stability 

through temporal consistency constraints. Occasional drops correspond to challenging scenarios such as lane 

merges or poorly marked roads. 

Performance varied significantly across environmental conditions, as shown in Figure 8. Clear conditions yielded 

94.2% accuracy, while performance degraded to 72.5% in snowy conditions. 

 

 
 

Lane detection performance under different environmental conditions. The hybrid approach (purple) consistently 

outperforms both traditional computer vision (blue) and pure deep learning methods (green) across all conditions. 
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Ablation Study Results 

Our ablation study (Figure 9) confirmed the value of each system component. Removing edge enhancement reduced 

accuracy by 3%, while disabling ROI selection caused a substantial 12% accuracy drop. Line filtering and temporal 

smoothing contributed 15% and 8% to overall accuracy, respectively. 

 
 

Ablation study results showing the contribution of each component to lane detection accuracy. ROI selection and line 

filtering provide the most significant improvements. 

The impact of ROI selection strategies is visualized in Figure 10, demonstrating the trade-off between coverage area 

and processing efficiency. 

 
 

Impact of different Region of Interest (ROI) selection strategies. The medium ROI (center) provides optimal balance 

between computational efficiency and detection range. 

 

Comparative Results 

DVNet-R compared favorably with existing frameworks across multiple metrics. Figure 11 shows a comparison with 

other object detection models, illustrating our architecture’s balanced accuracy-speed trade-off. 
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Comparison of object detection models. DVNet-R’s YOLOv8-based detector (leftmost) achieves the best balance of 

accuracy (blue) and inference speed (green). 

The radar chart in Figure 12 provides a multidimensional comparison of system performance, demonstrating DVNet-

R’s balanced capabilities across metrics. 

 
Performance comparison of different vision systems across multiple metrics. Our system (blue) achieves balanced 

performance across all evaluated dimensions. 

Discussion 

 

Key Findings 

Our experiments demonstrate that DVNet-R achieves a favorable balance between accuracy and computational 

efficiency. Several key findings emerge from our analysis: 

• Real-time performance (28.35 FPS) is maintained while achieving competitive accuracy (87.2% mAP, 93.5% lane 

accuracy) 

• Adaptive processing significantly reduces computational requirements without compromising accuracy in most 

scenarios 

• The hybrid approach to lane detection provides robust performance across environmental conditions 

• Component-level optimizations collectively contribute to system efficiency 

 

The object detection results confirm that our modified YOLOv8 architecture effectively identifies relevant road objects. 

The confusion matrix (Figure 3) reveals that most errors occur between visually similar classes, suggesting that 

additional context information could further improve classification. 



Journal of Information Systems Engineering and Management 
2023, 8(1) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 13 

 
Copyright © 2023 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 

cited. 

 

Lane detection performance demonstrates the value of combining traditional computer vision with learning-based 

approaches. As shown in Figure 8, our hybrid approach consistently outperforms pure computer vision or pure deep 

learning methods across all conditions. 

The ablation study (Figure 9) validates our design decisions, with ROI selection and line filtering providing the most 

substantial contributions to accuracy. This suggests that focusing computational resources on relevant image regions 

and filtering noisy detections are particularly effective strategies for real-time performance. 

 

Limitations 

Despite promising results, our approach has several limitations: 

• Performance degrades in extreme weather conditions, particularly in snow (72.5% lane accuracy) 

• Object detection at distances beyond 80 meters remains challenging 

• The current implementation requires GPU acceleration 

• The adaptive framework introduces additional complexity in system validation 

 

Additionally, our evaluation was limited to daytime and nighttime conditions with relatively clear visibility. 

Performance in extreme conditions like heavy rain, dense fog, or glaring sunlight requires further investigation. 

 

Practical Implications 

DVNet-R’s balanced performance profile makes it suitable for deployment in production autonomous driving systems 

with mid-range hardware capabilities. The modular architecture allows for component-level upgrades as new 

techniques emerge. 

The efficiency gains from adaptive processing are particularly valuable for electric vehicles, where power consumption 

directly impacts range. By dynamically adjusting computational load based on scene complexity, our system can 

reduce energy consumption during less demanding driving scenarios. 

 

Conclusion and Future Work 

This paper presented DVNet-R, a real-time computer vision framework for autonomous vehicles that balances 

accuracy and computational efficiency. Through careful system design, component-level optimizations, and an 

adaptive processing framework, we achieved 28.35 FPS operation while maintaining high accuracy across diverse 

environmental conditions. 

 

Key contributions include: 

• A novel adaptive processing framework that dynamically allocates computational resources 

• A hybrid lane detection pipeline combining classical computer vision with deep learning 

• Comprehensive evaluation across diverse environmental conditions 

• Ablation studies validating design decisions 

 

Future work will focus on several directions: 

Multi-modal fusion: Integrating camera data with LiDAR and radar to improve robustness in adverse conditions. 

Temporal modeling: Enhancing object tracking through more sophisticated temporal models that leverage long-

term dependencies. 

Uncertainty estimation: Incorporating explicit uncertainty modeling to improve system reliability and safety. 

Domain adaptation: Developing techniques for rapid adaptation to new geographical regions and road conditions. 

End-to-end optimization: Exploring joint optimization of detection and planning components for more efficient 

overall system performance. 

DVNet-R represents an important step toward practical, efficient computer vision systems for autonomous vehicles. 

By addressing the fundamental trade-off between accuracy and computational efficiency, our work contributes to 

advancing autonomous driving capabilities within realistic computational constraints. 
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