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1 INTRODUCTION

The technique of redundancy has been used extensively in many industrial systems in order to improve their
performance in terms of reliability and mean life. Repair maintenance is one of the important measures for
increasing the effectiveness of a system. Many authors including [3,8,44,38]have analyzed two unit system
models considering different repair policies viz. two types of repair, inspection, post repair, preparation time
for repair, expert and regular repairman with patience time of regular repairman etc. Therefore, several
research papers have been investigated and analyzed by various authors in this direction under different
repair and operation policies. Vibha Goyal and K. Murari [86] analyzed two unit standby system with two
types of repairman. Keeping in view the fact that the expert repairman takes some time to repair the failed
unit, Gupta et.al. [48] developed a system model with administrative delay in repair and correlated lifetimes.
Pawan Kumar and Neha Kumari [71] analyzed stochastic analysis of a two non-identical unit parallel system
model with preparation time for repair and proviso of rest. Further, Bhatti et.al. [14] have analyzed a system
with inspection and two types of failure. Gopalan and Naidu[39] studied stochastic behavior of a two unit
repairman system subject to inspection. Also, Bashir et.al. [8] developed a two unit system model with repair
and inspection policies. Chander et.al. [17] worked on different types of inspection subject to degradation.

The purpose of the present paper is to analyze a two non identical unit system model consisting of two units A
and B. Unit A is in operative mode and unit B is in standby mode. Two repairmen expert and ordinary are
considered to repair the failed units. Unit A is repaired by expert repairman who is not always available with
the system while unit B is repaired by ordinary repairman which is always available with the system. Expert
repairman takes some significant time to repair the failed unit and after the repair, inspection is carried out
to ascertain whether the repair is perfect or not. If repair is perfect then the repaired units become operative
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otherwise the repair is referred to the expert repairman. The failures of the units are independent and the
failure and repair time distributions of both the units are taken as exponential. All random variables are
statistically independent.

Using semi- Markov process and regenerative point technique, the following measures are obtained-
Transition Probabilities and Mean Sojourn times.

Reliability and Mean time to system failure (MTSF).

Expected uptime and downtime of the system.

Busy period for expert repairman and ordinary repairman.

Expected number of repairs by expert and ordinary repairman.

Expected number of replacement of the unit.

Net expected profit earned by the system during the interval (0,t) and in steady state.

Nowpow P

1.2 MODEL DESCRIPTION AND ASSUMPTIONS

1. The system comprises of two units- A and B. Initially unit-A is in operative mode and unit-B is in standby
mode.

2. Two repairmen are available to repair the failed unit i.e. Expert and ordinary repairman. The expert
repairman repairs the unit-A who takes some significant time (a random variable) to repair the failed
unit while ordinary repairman is always available with the system which repairs the unit-B.

3. Upon the failure of unit A, repairman takes some time (delay time) to reach the system. After repair,
inspection is carried out to ascertain whether the repair is perfect or not. If repair is perfect it goes back
to the operating mode otherwise it is replaced by the expert repairman.

4. However, if unit B fails it is repaired by ordinary repairman who is always available in the system and
after repair the unit becomes operative.

5. During the repair of the unit A by the expert repairman, if the unit B also fails then the repair of the unit-
B is also done by the expert repairman, so the unit B has to wait for the repair until the repair of the unit
A is completed.

6. The failures and repairs of the units are independent and the failure and repair time distributions of the
units are taken as Exponential.

1.3 NOTATIONS AND STATES OF THE SYSTEM
We define the following symbols for generating the various states of the system.
A,/B, @ Unit A /unit B is in operative mode.

Bs : Unit B is in standby mode.

Ay : Unit A under administrative delay for repair.

A,e /B ¢ Unit A/unit B under repair.

Bur : Unit B is waiting for repair.

A;/Ar : Unit A under inspection/ replacement of the unit.

Thus considering the above symbols in view of the assumptions stated, the possible states of the system are as
follows-

Up states:
SO = (AO' BS) Sl = (Ad' Bo) S3 = (Are' Bo)
S+ = (A1, B,) Se = (Ar,Bo) Se = (Ao, Br)

Failed states:
S, = (Ad, Br) S5 = (Arer Bwr) S; = (AI' Bwr)
Sg = (ARr Bwr)
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b) NOTATIONS:
E : Set of regenerative states

= {So; S1; S3, S4: Sﬁ: SQ}
E Set of non — regenerative states

= {S2,Ss, Ss, S7}
04 : Failure rate of unit A.
oy : Inspection Rate of unit A.
as ¢ Repair Rate of unit A.
Y1 : Completion rate of Inspection of unit A.
p/q :  Probability with which unit will get repaired/replaced.
Y2 : Replacement Rate of unit A.
B4 : Failure Rate of unit B.
B2 : Repair Rate of unit B.
TRANSITION DIAGRAM

B2
Sg S, Sy SSIJ(
Y B Y
AR Bo ; AI Bo : AI BWr ; AR BWr
Y2 P *2 Y Y2
1
71 p
S3 So
Ao BS < Ad Bo = Are Bo 2 Ao Eﬁ
So Sy
B4 B2 B1
S, Ss *
%3
Ad Br Are BWr I
B2
O : Operative State I:l: Down-State X: Non-Regenerative
Fig 1.1

1.4 TRANSITION PROBABLITIES

Let X,, denotes the state visited at epoch T,+ just after the transition at T,,, where Ty, T, ... represents the
regenerative epochs, then{X,, T;,} constitute a Markov-Renewal process with state space E and

Qij(t) = P[Xn+1 =) Thyr — T < t1X, = i]

is the semi Markov kernel over E.

Then the transition probability matrix of the embedded Markov chain is

P = pj; = Qj(0) = Q(o0)

(a) The various transition probabilities may be obtained as follows:

Qo1() = o4 fot e%ldy=1-—e %t

Similarly,
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= Ca—Br+ag)u gy = P a-(Br+ag)t
QlZ (t) Bl fg e 14 du (B1+a3) s ]

1
3
B2

[1-
Q:(0) = ag fot e-(@3+Bu gy = (B::%)[ — e~ (Brrar)t]
Q1 (1) =B, fot e~(@s+p2)u gy = Boten) [ (Bz+a3)t]
Q,s(t) = as fot e~ (@3 +B)U gy = = is%)[ — e~(Bz+aa)t]
Qz,(0) = fot a-(@+Bu gy = (BaT) [1— e~ (Bita)]
Quo(®) = v;p fyeive™Prt du = VB [1 — e(rathun]
Qus(t) = v1q [ e V1%e P1 du = (yrr;l) [1— e=(ra+BoX]

Q57(t) =y fot e ®2Udyu=1- e—azt

= t a—v2ug—Bou —_ Y2 [1_ a~(2tB2)t
QGO(t) Y2 fO € € du (y2+B2) [1 e ]

Q7s(t) = v1p fot e Viidu = p(1 — e 1t)

Q9(t) = qufot e V1 du = q(1 — e 1Y)

Qgo() = v, fot e Y2u du = 1 — e~ Y2t

Qoo(t) = B, [y e Pole1" du = (leizal) [1— e~(Batan)]

The indirect transition probabilities are as follows:
Q7 ® = Blazf e Priemoan duf e~ %2("Wdy = q, [f e %2V dv—f e~ (a2 +B1)v dV]
(7)(t) Blquf e Biu —yﬂlduf e~ V1(v-Wdy = Y19 [f e Ylvdv—f e—(81+y1)vdv]
Q5 (®) —vlp[f e V1¥dy — [ e—(ﬁ1+V1)vdV]
Q1) = v,B, f, e PeieTv2 du — [[e 2 Wdy =y, [[e V2V dv — [ e~ V2+P2Vdy
(2)(t) — 0(1(x3f el —Bzuf e~ 3(v=w) g=B2(v-u)

&f —(a3+Bz)vdV_f o~(@+B2)V gy

(a;-a3) 0
(2)(0 = (Xlﬁ f e~ %1u —Bzuf e—Bz(V u)e—a3(v w)
al_BzI e(CatBvgy — [Fe-(@tbav gy

(a1-a3) 70

(b) STEADY STATE PROBABILITIES
The steady state transition probabilities are given by:

pij = lim Qi (®© = yj(s)ls = 0 and p” = limQ{° (® = P ()Is = 0
Thus,

Po1 = oy [e™%du=1

P12 = By [ e Pt idu = P

(B1+ az)
— a3
P13 = (B1+ a3)
_ B
P21 = B2+ a3)
— a3
P25 = (B2+ a3)
— %2
P3a = (az+B1)
= —(y1+B1)u —_YiP
Pso=ViP [ € du V146D
— Y19
Pas = (y1+B1)
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p57 = azfe_azudu = 1

_ Y2
Peo = (v2+B2)

prg =vip e Y"du=p
P7o = v:1q ) e V"du = q
Pgo =Yz [e7¥2du =1

_ B2
Poo = (a1 +B2)
The indirect transition probability may be obtained as follows:
p(5) 1 __ % __B
37 (az+B1)  (az+B1)
Similarly,
D _q__vVa _ _Bia_
Pag q (v1+B1)  (v1+B1)
D _,__vap _ _Bip
Pyo =P (v1+B1)  (y1+B1)
(8) Y2 B2
= 1 —_ =
Pso 282 (r2+B2)
l3(2) _ B2 i1 ] — ®1B2
91 (ag—az) L(Ba+az)  (B2+aq) (B2+ az)(Bz+ aq)
(2) — oq03 1 _ 1 ] — aq03
Pos = (ar—az) [(Bar am) ~ (Bata)] (Bt an)(Bat ap)

It can be easily verified that

5
piz+piz=1 P21+ ps =1 P3s t p§7) =1

Pao + Pas T+ pi? + pffg) =1 Po1 = Ps7 = Pgo = 1
2
Peo + Pes =1 p7g + Pro =1 Poo + pgzl) + pgs) =1

A) Mean sojourn times:

The mean sojourn time in state S; denoted by p; is defined as the expected time taken by the system in state S;
before transiting to any other state. To obtain mean sojourn timey;, in state S;, we observe that as long as the
system is in state S;, there is no transition from S; to any other state. If T; denotes the sojourn time in state S;
then mean sojourn time ; in state S; is:

w = E[T] = [ P(T; > t)dt

Therefore,
= —agt = i = 1 = L
Ho f € de ag He (az+B1) Ha (az+B2)
= 1 = 1 = i
Hs = (B1+az) Ha (y1+B1) Hs az
__1 -1 -t
He = (y2+B2) H7 Y1 He Y2
1
Ho = tgoran)

. 1.5 ANALYSIS OF RELIABILITY AND MTSF
Let the random variable T; denotes the time to system failure when system starts up from state S; € E. Then
the reliability of the system is given by
R;(t) = P[T; > t]
As an illustrations,R, (t) is the sum of the following contingencies-
1) The system remains up in states S, without making transition to any other state up to time t, the
probability of this contingency is:

Zo(t) = e~t
2)  The system transits from state S, to state S; during (u,u + du),u < t and then starting from S, at epoch
u, it remains up continuously during the remaining time (t — u),the probability of this contingency is:
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Jy do1 (W)duR (t = 1) = qo; (DOR (©)
Therefore, R,(t) becomes
Ry () = Zo () + qo1 (DOR, (D)
Similarly,
R1(©) = Z1(t) + q13(OR3(t)
R3(t) = Z3(0) + q34(OR4(D)
Ry (0) = Z4(0) + quo(DOR (1) + qus(DOR4 (D)
Rg(8) = Zg (1) + q6o (D OR, (D) (1.5.1-1.5.5)
Taking Laplace Transforms of relations (1.5.1-1.5.5), we get
R5(s) = Z5(s) + qo1(S)R1(s)
Ri(s) = Z1(s) + q13(s)R3(s)
R3(s) = Z3(s) + q34(s)RL(s)
R4(s) = Z3(s) + Q4o (S)RG(S) + qae(SIRE(S)
RE(s) = Zg(s) + q50(S)RG(s)

where,
Zo(t) = e %t Zl(t) = e~ (az+py)t Zz(t) = e~ (@3+p2)t
Z5(t) = e~ (Brtaz)t Zo(t) = e~ r2*B2)t
The solution for Rj(s) can be written in the matrix form as below:
1 —-qy O 0 0 [|R,| | M,
0 1 —g, 0 0 [|R| |M
0 0 1 -q 0 |[R|=|M;
g 001 g ||R| | M
-q% O 0 0 1 || Ry | M,

For brevity the argument’s’ is omitted from g;;(s), Z; (s) and Rj(s).
Solving for R} (s), we have

* — Nl(s)
Ry(s) = —Dl(s)(1.5.6)
Where
Ni(s) = Zg + doa[Z1 + q15(Z5 + a34(Z3 + 936 Z8))]
D1(s) = (1 — 951933954 (Q30 + Qi6T50))

Taking the inverse Laplace Transform of (1.5.6), one can get the reliability of the system when it

starts from state S,,.
To get MTSF, we use the well known formula

E(To) = [ Ro(D)dt = lim Ry (s) = N, (0)/D,(0)
where,

N;(0) = po + p01[u1 + p13(ll3 + p3a(py + p46H6))]

D;(0) =1 — po1P13P34(Ps0 + PasPso)
Since, we have q;;(0) = p;; and lir% Z:(s) = [ Zy(Hdt =
S—

1.6 AVAILABILITY ANALYSIS

Let A;(t) be the probability that the system is in operative mode at epoch t, when it initially starts from S; € E.
To obtain recurrence relations among different pointwise availabilities we use the simple probabilistic
arguments.

As an illustrations, A, (t) is the sum of the following mutual exclusive contingencies-
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1) The system remains up in states S, without making transition to any other state up to time t, the
probability of this contingency is:
Zo(t) = e~ut
2) The system transits from state S, to state S; during (u,u + du),u < t and then starting from S, at
epoch u, it remains up continuously during the remaining time (t — u),the probability of this contingency is:
Jy do1 (W)duRy (t = 1) = qo; (DOR (©)

Therefore, A, (t) becomes

Ap(D) = Zo(t) + 401 (DO Ay (D)

By similar arguments, we have

A1 (D) =Z1(0) + q12(DO© Ax(D) + q13(DO A3(D)

Az (1) = 421 (DO AL (D) + q25(DO A (D)

As(1) = Z5(0) + 32D A4(D) + 45 (DO A, (V)

Aa(®) = Z4(1) + Qa0 (DO Ag (D) + 4us (DO A (1) + q57 (DO Ag(t) + q55 (O Aqg(©)
As(t) = q57(DO© A4 (V)

As(t) = Zs(t) + do(D)O Ag(t) + qle (DO Aq (D)

A; (1) = g75(D© Ag(t) + q70(DO© Ag(t)

Ag(t) = qgo(D© Ag(t)

Ag(8) = Zo(t) + qoo (DO A (D) + qP (DO A (D) + 2 (DO As(D) (1.6.1-1.6.10)
where,
Zo(t) = et Z,(t) = e~ (@s+B1)t Z5(t) = e~ Brrar
Z,(0) = e~ (va+B1)t Zs(t) = e~ (rz+B2)t Zo(t) = e~ (a1+B2)t
Taking Laplace Transforms of relations (1.6.1-1.6.10), we get
Ab(s) = Z5(s) + qo1(s)AL(s)
A1(s) = Z{(s) + q12(s)A3(s) + qi3(s)A5(s)
A3(s) = q31(8)AL(S) + qz5(s)A5(s)
A5(5) = Z3(5) + @34 (S)A5(8) + a5 (5)A5(s)
A4(5) = Zi(s) + Qas ()A5(S) + 30 (8)AG(S) + aly ()A5(s) + qfg (S)A5(s)
A5(s) = q57(s)A5(s)

5(8) = Z5(9) + Qo (S)A5(8) + a5y ()AS(S)

A7(s) = q75(s)A5(S) + q79(s)A5(s)

A5(s) = qgo(s)A5(s)

5(5) = Z5(5) + 430 (A4 (5) + q57" (AL(S) + aSe” (5)A5(s)

Solving the resultant set of equations and simplifying for Aj(s), we have

A5 (s) = Np(s)/D,(s)(1.6.11)
Where

N2(s) = 25 [(1 — 052" a5 (aadso + a79)) (1 — a32031) — {01534 (036050 + 4" do + a5 )y +

013057 (Qhalsn + A79)A57 " + 032035057 (50080 + 050)a57 " }] + abs (1 — 4% 457 (a30G30 + a30) ) 127 +
* * * * * * * * * * * * * ok * * * 5)* * * * *
q13(Z3 + q34Z; + q34926Z5)] + %1[%3‘134((146(12%) + qug) Jgo + qgja) )q(921) + Q13Qg7) (978980 + Q79)q5321) +

052055957 (Q5eT0 + 50)a5y ] 25
and

D2(s) = (1 - a5 a5, (@%eds + a5) ) (1 — 41205:) — {ais054(qh6a%” + 055" b0 + a%5") + qizq5y " (@%edio +

Qo) + 032035057 (A3edh0 + 50D }aS7 " — b (1 — 652" a3 (Aredas + a9)) [41(A3aak0 + A3a0iss0)] +

Q5105352 (@560 + 058 a0 + a597) + 41305 (A5sbe + o) + Q5235957 (A5sq80 + A50)]d50
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(1.6.12)
The steady state availability is given by
0
Ay, = 11m Ay(p) = hm sAL(s) = N2(0)
D, (0)

(1.6.13)
As we know that, qg;;(t)is the pdf of the time of transition from state S; to S; and q;;(t)dt is the probability of

transition from state S; to S; during the interval (t, t + dt), thus
lSi_r)r(} Z{(s) = [ Z;()dt = p; and q5;(s) = q;;(0) = p;; , we get
Therefore,

N, (0) = py [(1 - pf(azs)p57(p78p89 + p79)) (1 = p12P21) — P12P25Ps7(P78Pss + p79)p§21) + p13p34(p46pg¢?

pz(g;)pS‘) + pi?)pgzl) + p13p37 (p78p89 + p79)p91 ] + Po1 (1 - pgs p57(p78p89 + p79)) (M1 + p13(U3 + Paabs +

P3aPashe)] + p01[p12p25p57(p78p89 + P7o) + p13p34(p46p69 pz(;;)p89 (7)) + p13p37 (p78p89 + p79)]ll9

(1.6.14)
and

D,(0) = (1 - pf(azs)p57(p78ps9 + p79)) (1 = p12p21) — [p12p25p57(p78p89 + p79)p91 + p13p34(p46p69 + pa(;?pzw

pi?)pgzl) + p13p37 (p78p89 + p79)p91 ] Po1 (1 - p95 p57(p78p89 + p79)) [P13P34 (P40 + PasPeo)] —

p01[p12p25p57(p78p89 + pro) + p13p34(p46p29 + pE}Zx)pBQ + p49)) + p13p37 (p78p89 + p79)]p90

Now,

D,(0) = (1 — p&psy( +pre)) (1 — - ( +p,0)p®@ + (p2ep® + p)
2 Pgs Ps7{P78Pg9 T P79 P12P21 P12P25P57(P78Pg9 T P79 p91 P13P34 p4-6p69 Psg Pgo +

pi?)pgzl) + p13p37 (p78p89 + p79)p91 ] Po1 (1 - p95 p57(p78p89 + p79)) [P13P34(P4so + P4sPeo)] —

pOl[p12p25p57(p78p89 + pyo) + p13p34(p46pé9 + pi;)pgg + p49)) + p13p37 (p78p89 + p79)]p90

= (1= pSZPs) (L — P12P21) — [P12D2sPs7 + PraPaa(Pashly + D5 + DY) + Piap$y |pS? = pos (1-
p95 p57(p78p89 + p79)) [P13P34(P4o + PasPso)] — p13p34(p46p69 + Pm + P49)) Poo t P12P25P57P90 + p13p37 Poo

= (1 - p(()?pm)(l — P12P21) — [p12p25p57 + p13p34(p4—6p69 + pi? + p%)) + p13p(5)] (p(z) + p90) — Po1 (1 -

pc()?p57(p7gpgg + p79)) [P13P34(P4o + PasPeo)]
= (1 - p(()?pm)(l — P12P21) — [p12p25p57 + P13P34(1 — P40 — PasPeo) + P13P37
Pa6Pso)

= (1 - pgs))(l = P12P21) — [p12P25P57 + P13P34 — P13P34P40 — P13P34P16Peo T P13P37] - (1 pz(g?)(p13p34p4o +
P13P34P46P60)

= (1 - pgs))[l P12P21 — P12P25 — P13P34 + P13P34P40 + P13P34P16Pso — p13p§57) — P13P34P40 — p13p34p46p60]
= (1 - pgs))[l P12P21 — P12P25 — P13P34 — p13p37)]
= (1 - pgs))[l P12(P21 + P2s) — p13(p34 + p(s))] (1 - pgzs))[l — P12 — P13]

= (1-p55)[1 = (Pr2 + P1)] = (1 = p5g)[1 ~ 1] = 0
The steady state probability that the system will be up in the long run is given by

* SNZ(S) —
Ay = llm Ao(t) = llm sAy(s) = 11m e llmNz(s) £1£% DZ(S)

o (1 - pé?)plgpm(mo +

(1.6.15)
As s— 0, D,(s) becomes zero. Thus (1.6.15) becomes indeterminate form.
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Therefore, by L’ Hospital’s rule,A, becomes
Ay = N;(0)/D3(0)

(1.6.16)
To obtain D5(0) , we note that

. K
ql](O) = —Imj and q(k) 0)=- '(')
Now we collect the coefficient of mj;s in D3(0) as follows

Coefficient of my; = p13p34(Pao + p46p60)p91 + P13P3sa + (p13p§57) + p12p25)p90 =A

Coefficient of m;, =1 — pffs) =B

Coefficient of my3 = 1 — p.(;zs)
Coefficient ofm,; = p;,(1 — pg?) =C
Coefficient of mys = py,(1 — (2))
Coefficient of m34 =pys(1— p(z)) =D
Coefficient of m$) = p;5(1 — p$

Coefficient of myy = py3p3a(1 — p925)) =E

Coefficient of myg = py3psa(1l — (2))

Coefficient of mi? = p13paa(l — p95 )

Coefficient of mf}? = p13paa(l — p95 )

Coefficient of mg, = pg?pls(l — P34(Pao + PasPeo)) + P12P2s = F

Coefficient of mgo = P13P3aPas(l — (25)) =G

Coefficient of mg;? = P13P34Pas(1 — p95 )

Coefficient of m,g = pc(f:,)(l — P12P21 — P13P34(Pao + PasPeo)) + (p13p§57) + P12P2s)(1 - p95)) H
Coefficient of m,q = p(()?(l — P12P21 — P13P3a(Pao + PasPeo)) + (p13p§57) + Przpas) (1 - p95 )
Coefficient of mgq = p‘(;zs) [P78(1 — P12P21) — P13P32(Pao + PasPeo)] + (1 - p‘gzs))

[p13 (P34p(7) (5)p78)] + P12P2sP7s =1
Coefficient of mgy = (1 — p12P21) — P13P34(Pao + P4sPso)

Coefficient of m<(321) = (1 — p12P21) — P13P34(P40 + PasPso) =]

Coefficient of mf,? = (1 — p12P21) — P13P34(P40 + P4sPso)
Therefore,

D5(0) = myy (A) + (my, + my3)(B) + (myy + mys)(C) + (myy + mSY)(D) + (myg + mye + mSy +mY))(E) +

(ms7)(F) + (mgo + mP)(G) + (myg + mye) (H) + (mgo) (D) + (mgp + m$? + mP)())
Using the relation };m;; =

D3(0) = Ho{p13p34(p40 + p4—6p60)p'(921) + P13P34 T (p13p§57) + p12p25)p90} + (1 - pgzs)) { + uzp1z + H3pis +
H4P13P34 + HeP13P34Pa6} + Hs{pn(azs)pls(l —P34(Pao + p4—6p60)) + p12p25} + u7{p((325)(1 — P12P21 — P13P34(Pa0 +
p4-6p60)) + (p13p§57) + p12p25)(1 - p(Z))} Hs{pg?[pm(l — P12P21) — P13P34(Pa0 + PasPeo)] + (1 -

5))[1313 (P34p(7) (5)p78)] + P12P25P78 } + Uo{(1 — p12P21) — P13P34(Pao + PasPeo)}
(1.6.17)

Using the results (1.6.14) and (1.6.17) in (1.6.16), we get the expression for A,.
The expected up (operative) time of the system during (o,t] is given by
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Mup(®) = f; Ao (Wdu
so that,

* AY(s)
Hup (s) = OS

And expected down time of the system during (0,t] is given by
t
Han(®) = t= [ Ao (Wdu
so that
1
S

ll:in(s) =27 Hﬁp (s)

1.7 BUSY PERIOD ANALYSIS
a) FOR EXPERT REPAIRMAN
Let Bf (t) be the probability that the expert repairman is busy in the repair of failed unit at epoch t, when the

system initially starts operation from state S; € E. The expression for B§(t) can be written by the following
mutually exclusive contingencies-

1) The system transits from state S, to S; during(u,u + du),u < t and then repairman may be found
busy at epoch (t — u) starting from S,. The probability of this event is

[ dor (WduBf (t—u) = goy(t) © BS()

(1.7.1a)

Therefore, B§(t) becomes

B§(t) = qg1(t) © BF(t)

Similarly,

B (t) = q1,(D©BZ (V) + q,3(H© B3(t)

BS(D) = qp1 (D@BS (1) + g5 (HOBE(D)

BS(t) = Z3(1) + a4 (DO@BS(V) + 57 (DOBS (D)

BS(t) = quo()OBE(L) + qag(DOBE() + 417 (HOBE(L) + 457 (HOBS(Y)
BE(H) = Zs(t) + qs7 () ©BE(D)

BE(H) = qgo(DOBS(D) + 4% (DOBS(D)

BE() = q75(OBS(Y) + 470 (©B(D)

BS(t) = qge (OB (1)

BS(1) = qop (DOBS () + 57 (DOBS (V) + g5 (HOBE()

(1.7.2a-1.7.10a)

where,

Z; = e~ (B1+az)t Zs = e~ %zt

Taking L.T of (1.7.1a-1.77.10a), we get

Bg"(s) = gy (5)BS"(s)

BS™(s) = q5,(5)BS(S) + q32(S)BS™(5)

BS'(s) = q51($)BE™(s) + q55(s)BE" ()

BS'(s) = Z3(s) + q34()BS"(5) + 452" (5)BE (s)

BS™(5) = q30(S)BE"(S) + Qe (5)BE(5) + 99" (5B () + 99 (5)BS" (5)
BE' (1) = Z£(s) + g5, () ©BS'(s)

BET(D) = a3 ()BS () + 92" (s)BS" (5)

BS™(0) = q3(S)BS"(5) + Q30()BS"(s)

BE' (1) = q30(s)BS"(5)

BS™(Y) = q30(S)BS"(5) + 52" ()BS™(5) + +q52” (5)BE" (5)

10
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Solving the resultant set of equations and simplifying for B§*(s), we have
BG"(s) = N3(s)/D,(s)

(1.7.11a)
Where,
(8)* (7)* _x (7)*

NS(s) = qpa [(1 — a52" 457 (@3edas + B3o) ) [a1205s + Aisa3e(Qheqby” + ale" ddo + A
U5o) + Q2035057 (@atlae + D501 23] + ads (1 — a$2"a3; (36050 + a59)) A1aZ3
and D, (s) is same as given by (1.6.12).

In the long run, the expected fraction of time for which the expert server is busy in the repair of
failed unit is given by

)+ 4305y (aahe +

e _ 1 e 1 ex _ N5
Bg = tlg}}o Bg (O = lsl_{I(}S B (s) = DL(0)
(1.7.12a)
where
N$(0) = poy [(1 - pf(azs)p57(p7sp89 + p79)) (p12p25 + P12P25Ps7(P78Pso + P7o) + p13p34(p46pg¢? + pz(;?pw +

pffg)) + p13p§57) (p78Pgo + p79)) #5] + Po1 (1 - pt(gzs)p57(p78p89 + p79)) P13Hs3

(1.7.13a)
and D5 (0) is same as given by (1.6.17).
Thus using (1.7.13a) and (1.6.17) in (1.7.12a), we get the expression for Bf.
The expected busy period of expert repairman due to repair of failed unit during the time interval
(o,t] is given by
uE () = f, BS (w)du
So that

* B§'(s)
ug(s) = 28

b) FOR ORDINARY REPAIRMAN

Let B{"(t) be the probability that the ordinary repairman is busy in the repair of failed unit at epoch t, when
the system initially starts operation from state S; € E.

Therefore, BJ" (t) becomes

B3 (1) = qo1() © BY'(D)

(1.7.1b)

Similarly,

BY™ (1) = g1, (DOBYT(Y) + q43(H© B (1)

BY"(0) = Z, () + Q21 (DOBYT (1) + 5 (OB (1)

BS" (1) = 93, (DOBY (V) + ¢ (HOBL'(©)

BY" (1) = Qa0 (DOBET (1) + 446 (DOBE (D) + q¥5 (DOBY(Y) + q57 (D OB (1)
BY"(t) = qs7 (OB (V)

BE"(1) = g0 (DOBYT(H) + 4 (D OB (1)

Bgr(t) = q78(t)©B(8)r(t) + Q79(t)©Bgr(t)

Bg'(t) = qgo(t)© BJ"(t)

BS"(t) = Z3(s) + doo(DOBET (1) + g2 (OB (D) + 92 (DOB ()

11
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(1.7.2b-1.7.10b)

where

Z, = e~ (Bz+az)t 7o = e~ (Bz+ay)t

Taking L.T of (1.7.1b-1.7.10b), we get

B3 (s) = qp1(s)BY™(s)

BY™(s) = q12(s)B2™(s) + q12(s)B37 ()

B2 (s) = Z3(s) + q51(s)BY"(s) + q35(s)Bs™"(s)

BS™ () = q34(S)BS™(5) + q5; " ()BS™ (s)

BS™(5) = q30(S)BE™ () + q36(S)BE™ () + a5y ()BG™ () + qf5 " (s)BS™ (s)
Bs™ (1) = q57(s)©B7™(s)

BY™ (1) = q50(s)BS™(s) + iy (5)BS™ (s)

B7™ () = q75(s)Bg""(s) + q79(s)B3™"(s)

Bg™(t) = qgo(s)B3™ (s)

BS™ (1) = Z3(s) + q30(S)B™ () + 57" (S)BY™ () + g5 (5)BY™ (s)
Solving the resultant set of equations and simplifying for By™(s), we have
B3 (s) = N3"(s)/D,(s)

(1.7.11b)
where,

NT(s) = d01 01z (1 — 45457 (@adso + A7) Z5 + A5 [01a 054 (Qiedoe + a5e Qoo + A"

d79) + 912925957 (d78980 + q;9)]Z;
and D, (s) is same as given by (1.6.12).
In the long run, the probability that the ordinary repairman will be busy is given by

BS" = lim BY' (t) = lim sB™ (s) = 25
tooo s—0 D4(0)

) + Q13q(5) (978980 +

(1.7.12b)

where
N27(0) = p12Po1 [(1 - p(()?p57(p78p89 + p79)) llz] + Po1 [(p12p25p57(p78p89 + pyo) + p13p34(p46pé?3) + p‘(;?pgg +

p%)) + p13p§57) (p7sPso + p79))] Ho
(1.7.13b)
and D5 (0) is same as given by (1.6.17).
Then using (1.7.13b) and (1.6.17) in (1.7.12b), we get the expression for BJ".
The expected busy period of ordinary repairman during the time interval (0, t] is given by
ug"(t) = J; B (wdu
So that
Bor*(s)

b (s) = 20

1.8) EXPECTED NUMBER OF REPLACEMENTS BY EXPERT SERVER

Let VR(t) be the expected number of replacements made by the expert server in (0,t] given that the system
starts from the regenerative state S; at t=0. Using the definition of VR®(t), the recursive relations among VR(t)
are given by

Ve () = Qo1 (D® V(D)

VE(® = Q2 (D®VF () + Q13(t) ® V(D)

V() = Qa1()) ® V(1) + Qa5 (t) ® V5'()

12
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VR(D) = Qss(D® VR(®) + Q57 (D® VR (t)

VR(D) = Qo) ® VE(®) + Qus HB®VE(®) + QY (1) ® VR(®) + Q% () ® VR (D)
VR(t) = Q57 (D®VR(Y)

VE® = Qeo(® ® (1+ VE®) + Q% (® ® VR(®)

VR(®) = Q;6(D®VY + Q,o(D®VE(D)

VE® = Qe(®® (1 + VE®)

VR = Qoo (D® VR + QP (1) ® VR(®) + QP (1) ® VR(®)

(1.8.1-1.8.10)
Taking the Laplace Stieltjes Transform of relations (1.8.1-1.8.10), we get

TR(s) = Qi (5)VR(s)

le(S) = le(S)V (s) + Q13(S)V (s)

VR(s) = Qa1(s) VR(s) + Qus(8)VR(5)

VR(s) = Qaa(5)VR(s) + Q) () VR ()

VE(s) = QuoTRES) + Qi (HTR(S) + QL (TR(S) + QT ()VR(s)
VR(s) = Q57 (5)VR(s)

VR(S) = Qo)1+ VRE)] + Q% )TR(s)

TR(s) = Qrs(5)VR(5) + Qro(s)VR(s)

UR(s) = Qgo(s)[1 + VR(3)]

VR(s) = Qoo()VRE) + QX ®VR() + AR ()VR(s)

The solution for V}(s) can be written in the following form:

NE(s)
V) =52

(1.8.11)
where,
NE(s) = Qoy ( - 65325)657(678689 + 679)) (612625657678 + 613(634646 + 6(357)678)) + [601(612625657 +

Q15Q57) (@760 + Q7o) + QusQsa(QusQiy + Ty Qoo + T59) Qoo
and D, (s) is same as given by (1.6.12).
In steady-state per-unit of time expected number of replacements by expert server is given by

VEM® _ 1 TR (o) — NSO
Vo = lim =7 = 1lim sV (s) = D}(0)

(1.8.12)

Ng = Po1 (1 - pgzs)pm(pmpsg + p79)) (p12p25p57p78 + p13(p34—p46 + p§.57)p78)) + [p01(p12p25p57 +
p13p37 )(p78p89 + pro) + p13p34(p46p(8) E}?pBQ + p4 )p90]

(1.8.13)

and D) (0) is same as given by (1.6.17).
Here we have used Q;(0) = p;
Thus using (1.8.13) and (1.6.17) in (1.8.12), we get the expression for VX.

1
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a) EXPECTED NUMBER OF REPAIRS BY EXPERT REPAIRMAN
Let V¢ (t)be the expected number of repairs by the expert repairman in (0,t] given that the system starts from
the regenerative state S; at t=0. The recursive relation for V¢(t) are given by

Vs (® = Qo1 (D® V(D)

Vle (t) = Q12 (t)®vze (t) + le(t) ® V?? (t)

V5 (1) = Quu () ® VE(D) + Qus(t) ® VE(Y)

VE(1) = Qa(D®(1 + VE®) + Q5 (H® VE(t)

VE (1) = Quo(D® VS (D) + Qus (DB VE®) + QL (1) ® VE(®) + Q5 () ® V(D)
VE(D) = Q57 (D®(1 + VE(D)

VE(D) = Qeo(d) ®VS(D + QT (1) ® VE(®)

VE(1) = Qr(D®VE (1) + Qre(D®VS (D)

VE (1) = Qao(DB®VS (D)

V5(1) = Qoo(D® Vg (1) + QP () ® VE(D) + QP (1) ® VE(D)

(1.8.1a-1.8.10a)
Taking the Laplace Stieltjes Transform of relations (1.8.1a-1.8.10a),we get

Vs (s) = Qoa (5)VE(s)

Ue(s) = Qu2(5)V5(s) + Qus(s) V5 (s)

Us(s) = Qua(5)VE(S) + Qus(8)TE(s)

U5(s) = Qa1+ T5(s)] + Q57 )V (s)

V() = Quo)VEGS) + Q46(s>v6 () + AW T (s) + QL VS (5)
Vs (s) = Q57(5) [1 + V7 (S)]

Ve(s) = Qoo Vs (5) + Q5 ()T (s)

V7 (s) = Q78(S)V8 (s) + Q79(5)V9 (s)

U5 (5) = Qoo (5)VS ()

Us(5) = Qoo ($)VE(s) + QAR (s)VE(s) + QR (s)VE(s)

The solution for V¢(s) can be written in the following form:

Te(s) = NE®
V) =5,

(1.8.11a)

where,

Ng(s) = (612625 + 613634)(1 (2)) + Q13Q(2)[Q34Q46Q + Q34Qus + Q34Q49 + Q12Q25Q Q78 (5)Q79]
and D, (s) is same as given by (1.6.12).

In steady—state per-unit of time expected number of repairs by expert repairman is given by

L VE® e NE(O)
= lim == = lim sVg (s) =57 )

(1.8.12a)
Ng(0) = (p12p2s + p13p34)(1 - p&(;?) + p13pg? [p34p46p§? + P34Psg + p34p¢(;zg) + p12p25pg57)p78 + p§57)p79]

(1.8.13a)

and D5 (0) is same as given by (1.6.17).

Here we have used Q;(0) = p;

Thus using (1.8.13a) and (1.6.17) in (1.8.12a), we get the expression for V§

1
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 4

Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.



Journal of Information Systems Engineering and Management
2024, 9(4)
e-ISSN: 2468-4376

https://www .jisem-journal.com/ Research Article

b) EXPECTED NUMBER OF REPAIRS BY ORDINARY REPAIRMAN
Let V?(t)be the expected number of repairs by the ordinary repairman in (0,t] given that the system starts
from the regenerative state S; at t=0. The recursive relation for VP(t) are given by

Vo () = Q1 (D® VP (1)

Vlo(t) = Q12 (t)®V2°(t) + le(t) ® V??(t)

V2 () = Q) ® (1 + Vf(t)) + Qa5 (H) ® VE (1)

V2(D) = Qa3 (D® V(D) + Q5 (D® V9 (1)

V2 (D) = Qao(O® VE(®) + Que(D® VE® + QR () ® V() + Q5 (1) ® VS (1)
V2 (1) = Q57 (D®VP (1)

V(D) = Qeo(t) ®VE(® + QX () ® V(D)

V2 (D) = Qrs(D®VE (D) + Qro(D®VS(Y)

Vg (1) = Qgo(H®VS(D)

VS () = Qop(M® (1 + V(1)) + QXM ® (1 + VP (®) + QP ® Ve (®)

(1.8.1b-1.8.10b)
Taking the Laplace Stieltjes Transform of relations (1.8.1b-1.8.10b),we get

HOR OL{C N

T2(s) = Qua )V (s) + Qus ()L ()

V2(5) = U (5) (14 7)) + Qs ()T (5)

V2(s) = Qaa($VL(s) + Q5 ) V2 (5)

V2(s) = Quo()VS(S) + Qs V() + Qs ()T (5) + QR ()T (s)
V2(s) = Q57 (5)V2(s)

T2(s) = Qoo ()VE(s) + QL ()W (s)

Y70(5) = 978(S)Y8 (s) + Q79(S)\7'§(5)

Vé’(s) = QSQ(S)V9O (s)

V() = Qoo(®) (1+ V() + Q) (1+72()) + TR ()T (s)
The solution for V9(s) can be written in the following form:

N9(s)
Vo () =57

(1.8.11b)

where,

N7(s) = (1 (2))[Q12 + Q13Q37 + Q13Q34(Q46Q(8) Qm (7)) + Q90 + Q(Z)

and D, (s) is same as given by (1.6.12).

In steady-state per-unit of time expected number of repairs by ordinary repairman is given by

ve® N9(0)
Ve = }gg — = 11m sV (s) = D70)

(1.8.12b)
(@] (@]

N7(0) = (1 - pézs))[plz + p13p§57) + p13p34(p4—6pé9 + Psg t+ Pag
(1.8.13b)

) + Poo + p'(azl)]

and D5 (0) is same as given by (1.6.17).
Here we have used Q;(0) = p;
Thus using (1.8.13b) and (1.6.17) in (1.8.12b), we get the expression for V§.
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1.9 PROFIT FUNCTION ANALYSIS
Two profit functions P, (t) and P,(t) can be easily obtained for the system model under study with
the help of characteristics obtained earlier.
The expected total profits incurred during (o,t] are:
P, (t) = Expected total revenue in (0, t] — Expected total expenditure in (0, t]

= Kokyp (0 — Kypp () — Kypp ()

) Similarly,

P, (1) = Kohyp () = K3 VP (1) = K, V5 (1) — K5 Vg ()
(2)

where,

K, is revenue per unit up time of the system.

K; isrepair cost per unit of time by expert repairman.

K, is repair cost per unit of time by ordinary repairman.

K;is per unit repalcement cost of the failed unit.

K, is per unit repair cost by expert repairman.

K5 is per unit repair cost by ordinary repairman.

Now the expected total profits per unit time, in steady state, is given by

t
P, = lim —= = lims2P; (s)

tooo t =0
and
P, (t
P, = lim 2(© =lims?P; (s)
tooo s—0
so that
P, = KoAy — K1BS - Kng
(3)
and
Pz = KOAO - K3V(§e - K4V0€ - KSV(?
@

1.10 CONCLUSION

To study the behavior of MTSF, Availability and Profit function through graphs w.r.t various parameters, we
plot curves for these three characteristics w.r.t failure parameter «; in Fig.1.2 and 1.3 respectively for three
different values of repair rate a; = (0.60,0.70,0.80) whereas other parameters are kept fixed as a, =
0.75,v, = 0.30,y, = 0.20,, = 0.20,B, = 0.45,p = 0.5,q = 0.5,K, = 900,K, = 750,K, = 600,K; = 500,K, =
350,K; = 200,

Fig 1.2 indicates that the graph for MTSF decreases steeply with the increase in the failure rate a; and
increases with the increase in repair rate a; .

Fig 1.3 clearly shows that the graph for availability decreases almost exponentially with the increase in the
failure rate a; and increases with the increase in repair rate a5 .

A similar pattern is exhibited for the profit functions shown in fig 1.4 and shows that the graph decreases with
the increase in failure rate a; and increases with the increase in repair rate a;. It can also be observed from
fig 1.4 that Profit function P, is always better than Profit function P, for some values of failure parameter and
for fixed values of repair parameter.
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