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In an era where financial infrastructures are increasingly vulnerable to 

sophisticated cyberattacks, understanding the dynamics of threat propagation and 

the effectiveness of countermeasures is crucial. This study proposes a novel 

fractional-order SICS (Susceptible–Infectious–Countermeasures–Susceptible) 

epidemic model based on Caputo derivatives to analyze the transmission and 

containment of cyber threats in financial systems. The model incorporates 

memory-dependent behavior to more accurately represent real-world cyber 

phenomena, where the effects of an attack can persist and influence future 

vulnerabilities. 

Using the Adams–Bashforth–Moulton predictor-corrector method, the system is 

numerically simulated under various parameter regimes. Comparative analyses 

between fractional (ρ = 0.9) and integer-order (ρ = 1.0) dynamics reveal that 

fractional models exhibit delayed peaks and prolonged persistence of infection, 

underscoring the importance of incorporating long-memory effects in cyberattack 

modeling. Sensitivity analysis demonstrates that increased transmission rates (β) 

amplify both peak and total infections, whereas enhancing isolation efficiency (α) 

and preventive countermeasures (γ) significantly mitigate the spread and duration 

of cyber threats. 

While the model successfully captures key aspects of cyberattack dynamics, it 

assumes homogeneity and static parameters, limiting its representation of 

complex, adaptive adversarial behavior. The findings provide a rigorous 

mathematical foundation for strategizing effective cyber defense policies in critical 

financial sectors and highlight the potential of fractional calculus as a robust tool 

for modeling advanced cyber-physical systems. 

 

Keywords: Fractional derivative; Caputo order; Reproduction number; Global 

stability; Lyapunov function; Sensitivity analysis; Adams–Bashforth–Moulton 

approach. 
 

1. Introduction 

 

In this digital age, cyberattacks on financial systems are becoming increasingly frequent and represent a serious 

risk to the stability and security of international economies. The financial industry is continuously under attack 

from malevolent cyber actors, from phishing scams targeting individual investors to ransomware operations 

targeting large financial institutions. The financial industry continues to grow rapidly to keep up with 

technology and shifting customer preferences. The way we handle and transmit money has completely changed, 

from digital wallets and cryptocurrencies to online banking and mobile payment apps. To understand how the 

financial system functions in the modern world, it is essential to know how these digital tools and platforms 

interact with conventional financial institutions. A financial system makes it easier for cash to move between 

lenders, investors, and borrowers who are involved in the financial market. Both national and international 
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financial systems operate [1]. Financial institutions are complex, interconnected markets, services, and 

organizations created to provide an effective and reliable relationship between borrowers and investors [2]. 

The financial system comprises four primary components: 

a) Financial markets are the venues where buyers and sellers engage in the trading of bonds, shares, and other 

assets. 

b)  Financial instruments are the products exchanged in financial markets.  The securities in the market vary 

according to the distinct criteria of loan seekers. 

c) Financial institutions serve as intermediaries between investors and borrowers.  They offer financial 

services to members and clients.  They are also referred to as financial intermediates, as they serve as brokers 

between savers and borrowers.  The investor's capital is activated either directly or indirectly through the 

financial markets.  They provide services to organizations seeking to raise capital from markets and manage 

financial assets (deposits, securities, loans, etc.). 

d)  Financial services offerings supplied by asset management and liability management firms.  They assist in 

acquiring the necessary cash and ensure their optimal investment.  (for example, banking services, insurance 

services, and investment services). 

The financial industry has been proved as a top target for cybercriminals. Financial institutions such as banks, 

insurance companies, and investment firms, manage extensive volumes of sensitive data and execute millions 

of transactions each day.  Any interruption to these services might have profound effects, not only for individual 

but even for the entire economies. Malicious actors, including ransomware groups, state-sponsored hackers, 

and cybercriminal organizations, are acutely aware of this, persistently endeavoring to exploit weaknesses in 

financial networks.  Recent high-profile events have illustrated how a single breach can impact global markets 

significantly.  The Swift bank hacks and the Capital One data breach have compelled financial organizations to 

acknowledge that cyber resilience is vital. 

Mathematical modeling is essential for comprehending the intricate dynamics of cyber attacks, offering 

insights into their patterns and associated risks.  Researchers employ mathematical tools to simulate diverse 

attack scenarios and design effective prevention strategies to protect against cyber attacks.  This method 

facilitates a more profound understanding of the fundamental principles of cyber attacks and improves the 

capacity to proactively manage risks in the digital realm. By developing and analyzing mathematical models, 

we can work towards enhancing cybersecurity measures and minimizing the risks associated with cyber threats 

in the financial sector. This research is essential for safeguarding the stability and security of financial systems 

in an increasingly digitized world. Also, by simulating different attack scenarios, researchers can identify 

vulnerabilities and develop strategies to strengthen cybersecurity defenses. These findings provide valuable 

insights for policymakers, financial institutions, and cybersecurity professionals in safeguarding against cyber 

threats in the digital age. Instead of using an ordinary derivative for the study of this paper, we use fractional 

derivative of Caputo order to get more accurate results. Fractional-time chaotic systems have been shown to 

exhibit richer dynamics and feature added degree of freedom, as in most cases the dynamics heavily depend on 

the fractional order [3]. Therefore, fractional concepts have been seen as a tool in the fields such as physics, 

chemistry, and engineering in terms of representing physical phenomena [4]. In contrast to the ordinary 

derivative, which functions as a local operator, the fractional order derivative possesses a principal 

characteristic known as the memory effect. Specifically, the subsequent state of the fractional derivative for any 

function f is contingent not only on its present state but also on all its prior states [5]. 

After analyzing the result, we focus on the security of the financial systems/ institutions. Here are some 

suggestive measures taken by them. 

 

1.1. Robust Cybersecurity Frameworks and Strategies: 

(a) Implement and comply with recognized frameworks such as the NIST Cybersecurity Framework, FFIEC 

Information Technology Examination Handbook, and the RBI Cybersecurity Framework in India. These 

establish a robust framework for mitigating cyber risks and fulfilling regulatory requirements [6-7]. 

(b) Risk-Based Supervision and Zero-Trust: Use a risk-based approach to supervision, adopting a "zero-trust" 

cybersecurity framework. This means no person or device is considered trusted by default, requiring 

authentication for every action in the system.  
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(c) AI-Aware Defense Strategies: Use Artificial Intelligence (AI) and Machine Learning (ML) to enhance threat 

detection, anomaly identification, fraud prevention, and automated incident response. AI can analyze large 

datasets instantly, predict potential threats, and identify weaknesses more effectively. However, it's important 

to note that attackers are also using AI, which creates a competitive environment that requires ongoing 

adjustments.  

(d) Multi-layered Defense: Relying solely on one security solution is not enough. Employ a tiered strategy that 

includes a variety of security measures and technologies, such as perimeter defenses (firewalls, antivirus) and 

internal protections (encryption, endpoint security, network segmentation). 

(e) Holistic Cyber Risk Management: Formulate a proactive and all-encompassing plan that addresses cyber 

risks associated with personnel, processes, technology, and external entities, rather than concentrating 

exclusively on technology. 

 

1.2. Essential Technical Measures: 

(a) Robust Access Controls: Enforce multi-factor authentication (MFA) for all users and devices accessing 

critical systems and data [8].  Employ role-based access control (RBAC) to restrict information access according 

to an employee's job responsibilities.  Perform systematic access evaluations and audits [9]. 

(b) Data Encryption: Implement effective encryption methods for data both at rest and in transit, including 

end-to-end encryption for communications. 

(c) Develop a patch management strategy to quickly identify, obtain, test, and deploy software updates for all 

operating systems and applications. This protects against known vulnerabilities. 

(d) Advanced Threat Detection and Response: Use intrusion detection systems to monitor network data for 

unusual behavior. Implement Security Information and Event Management (SIEM) systems to collect and 

analyze security data in real-time for quick issue identification and response [10]. 

(e) Vulnerability Management: Establish comprehensive vulnerability management protocols to proactively 

detect security deficiencies, vulnerabilities, and misconfigurations, and prioritize their remedy prior to 

potential exploitation by attackers. 

(f) Network Segmentation: Partition the network into smaller, isolated portions to restrict the lateral movement 

of intruders in the event of a breach. 

 

1.3. Addressing Emerging Threats: 

(a) AI-Powered Cyberattacks: Be ready for more complicated assaults that use generative AI to create malware, 

phishing emails, deepfakes, password cracking, and voice cloning. Smart, AI-powered defenses are needed for 

this. 

(b) Ransomware and Malware: To reduce the impact of ransomware attacks, put strong endpoint protection, 

safe offsite and unchangeable backups, and effective incident response policies into place. Employees should 

be trained to identify the social engineering techniques that frequently precede ransomware. 

(c) Supply Chain Attacks: Verify and keep an eye on third-party service providers and vendors. Incorporate 

cybersecurity obligations and requirements into contracts, and evaluate their security posture and regulatory 

compliance on a regular basis. 

(d) Social Engineering (Phishing): Employees should get frequent cybersecurity training to inform them of the 

most recent risks, including phishing and social engineering techniques. To assess and enhance their capacity 

to identify and react to such efforts, conduct phishing simulations. 

(e) Mobile Automated Transfer Systems (ATS) Attacks: As mobile banking becomes more prevalent, be vigilant 

against malware designed to make fraudulent transactions via banking apps. 

 

1.4. Organizational and Human Factors: 

(a) Strong Cybersecurity Culture: Foster a cybersecurity culture throughout the organization, starting from the 

top. Ensure executive buy-in and emphasize that security is a shared responsibility, not just an IT prerogative. 

Encourage employees to report suspicious activities. 

(b) Employee Awareness and Training: Provide continuous and regular training sessions to educate employees 

about evolving cyber threats and best practices. 
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(c) Incident Response Planning: Develop and regularly update comprehensive incident response plans. These 

plans should outline clear steps for responding quickly and effectively to security breaches, minimizing impact, 

and ensuring swift recovery. 

(d) Regulatory Compliance: Ensure adherence to relevant financial cybersecurity regulations. Establish 

governance frameworks that include regular audits and compliance checks. 

(e) Collaboration and Information Sharing: Engage in industry-wide collaboration and information sharing 

with other financial institutions, regulators, and cybersecurity agencies to stay informed about emerging 

threats and best practices. 

(f) By implementing these strategies and continuously adapting to the evolving threat landscape, financial 

systems can significantly enhance their resilience against cyberattacks and protect sensitive data and critical 

operations. 

Besides these attacks, politically driven cyberwarfare that is a large-scale attack on financial institutions, has 

become an important chapter for discussion now-a-days. We will not discuss these politically driven aspects in 

this paper, which have become an integral component of traditional combat. During these assaults, hackers 

target an adversarial state to incapacitate its essential computer systems. For example, a conflict between 

Ukraine and Russia has persisted for over years [11]. 

Financial institutions are fundamental to a nation's economy, and safeguarding them against cyberattacks is 

imperative.  This necessity is driven by various factors that impact a nation's economic, national security, and 

public trust. 

We here, therefore, establish a fractional order epidemic model, namely SICS ( Susceptible- Infectious- 

Countermeasures- Susceptible) in which reproduction number, equilibrium points, stability, etc are discussed 

in this paper. Several paper mainly concerning fractional order model are given in the references. A 

mathematical model of SIR epidemic system for COVID-19 with the help of fractional order derivative is 

discussed in detail by Alqahtani [12]. Paul, Mahata, Mukherjee, and Roy [13] analysed the dynamics of COVID-

19 with the help of the epidemic SIQR model. Additionally, in the analysis of COVID-19, Chatterjee and Ahmad 

[14] make another attempt to discuss the infection of epithelial cells using fractional order differential 

equations. An approach to solving the differential equation of fractional order for an epidemic model with a 

Mittag-Leffler fractional derivative is presented by Sene [15]. SEIR epidemic model of fractional order for 

COVID-19 with Caputo derivative has been analysed by Rezapour, Mohammadi, and Samei [16]. Also, in order 

to investigate the COVID-19 epidemic model, a way to non-singular fractional derivatives, a case study has been 

done by Batool, Khan, Li, Junaid, Zhang, Nawaz and Tian [17]. Qazza and Saadeh [18] do an analytical solution 

of fractional SIR model. 

 

2. Mathematical formulation 

 

2.1. Preliminaries: 

2.1.1. Definition [19]: “The Caputo’s fractional derivative of order ρ can be defined as 

𝐷𝑡
𝜌

0
𝑐 =

1

𝛤(𝜌−𝑛)
∫

𝑓(𝑛)(𝜏)𝑑𝜏

(𝑡−𝜏)𝜌+1−𝑛

𝑡

𝑎
,        (n-1) < ρ < n. 

𝐻𝑒𝑟𝑒, 𝛤 𝑖𝑠 𝑡ℎ𝑒 𝐺𝑎𝑚𝑚𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 

Under natural conditions on the function f(t), for ρ → n the Caputo derivative becomes a conventional nth 

derivative of the function f(t)”. 

 

2.1.2.Generalized mean value theorem [20]: Suppose that 𝑓(𝑥) 𝜖 𝐶[𝑎, 𝑏] and   𝐷𝑎
𝜌

𝑓(𝑥) ∈  𝐶[𝑎, 𝑏], for 0 <

 𝜌 ≤ 1, then we have, 

𝑓(𝑥) = 𝑓(𝑎) + 
1

𝛤(𝜌)
(𝐷𝑎

𝜌
𝑓)(𝜉). (𝑥 − 𝑎)𝜌 

With 𝑎 ≤ 𝜉 ≤ 𝑥, ∀𝑥 ∈ (𝑎, 𝑏]. 

2.1.3. Lemma 1[21] : Consider the following fractional-order system, 

C𝐷𝑡
𝜌

(𝑌(𝑡)) = 𝜙(𝑌), 𝑌𝑡0
= (𝑦𝑡0

1 , 𝑦𝑡0
2 , … … … … … … , 𝑦𝑡0

𝑛 ),  𝑦𝑡0

𝑗
, j=1,2,3,……….,n 
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with 0 < 𝜌 < 1, 𝑌(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡), … … … … … , 𝑦𝑛(𝑡)) 𝑎𝑛𝑑 𝜙(𝑌): [𝑡0, ∞) → ℝ𝑛×𝑛.For 𝜙(𝑌) = 0, we get all the 

equilibrium points are locally asymptotically stable iff each eigenvalue 𝜆𝑗 of the jacobian matrix    𝐽(𝑌) =
𝜕(𝜙1,𝜙2,…………,𝜙𝑛)

𝜕(𝑦1,𝑦2,………..𝑦𝑛)
 calculated at the equilibrium points satisfies |𝑎𝑟𝑔 (𝜆𝑗)| >

𝜌𝜋

2
 . 

2.1.4. Lemma 2[22] : Let ℎ(𝑡) ∈ ℝ+ be a differential function. Then, for any t > 0, 

C𝐷𝑡
𝜌

[ℎ(𝑡) − ℎ∗ − ℎ∗ 𝑙𝑛
ℎ(𝑡)

ℎ∗ ] ≤ (1 −
ℎ∗

ℎ(𝑡)
)C𝐷𝑡

𝜌
(ℎ(𝑡)),    ℎ∗ ∈ ℝ+, ∀𝜌 ∈ (0,1). 

 

We, here, discuss the useful framework of SICS (Susceptible- Infectious- Countermeasures- Susceptible) to 

understand the dynamics of cyberattacks and the effectiveness of security measures within a system of 

interconnected entities, such as financial institutions. The main components of the model are described here-  

• S (Susceptible): These are financial institutions or their systems that are now robust yet susceptible to a 

cyberattack.  They remain uncompromised; nonetheless, they exhibit vulnerabilities that a threat could exploit. 

• I (Infectious): These refer to financial institutions or their systems that have been effectively breached by a 

cyberattack.  They are now undergoing the attack and may be facilitating its propagation. 

• C (Countermeasures): This is a critical state distinctive to the SICS model in this situation.  Institutions in 

this state are those that have enacted or are currently enacting specific countermeasures against cyberattacks.  

This may entail rectifying vulnerabilities, implementing new security software, isolating affected systems, or 

initiating incident response protocols.  The crucial aspect is their proactive mitigation of the threat. 

• S (Susceptible): This facet underscores the cyclic characteristics of cyber threats.  Despite the 

implementation of safeguards, institutions may ultimately regress to a vulnerable condition.  This may occur 

as a result of: Emerging vulnerabilities: Zero-day exploits and software updates that introduce new defects; 

Advancing assault techniques: Perpetrators continually discover novel tactics to circumvent established 

protections; Human error: Employees committing errors that re-expose systems; Degradation of 

countermeasures: Security software is becoming obsolete, and policies are not being implemented. 

Now, the model is described by Figure 1 below:  

 
Figure 1: Propagation of malware due to cyberattack in financial systems. 
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The system of linear fractional differential equations of Caputo order is given below in accordance with the 

above figure 1,  

𝐷𝑡
𝜌

0
𝑐 𝑆(𝑡) = 𝜇 − 𝛽𝑆(𝑡)𝐼(𝑡) − (𝜆 + 𝛾)𝑆(𝑡) + 𝜂𝐶(𝑡) + 𝜀𝐼(𝑡) 

𝐷𝑡
𝜌

0
𝑐 𝐼(𝑡) = 𝛽𝑆(𝑡)𝐼(𝑡) − (𝜆 + 𝛼 + 𝜀)𝐼(𝑡) 

𝐷𝑡
𝜌

0
𝑐 𝐶(𝑡) = 𝛼𝐼(𝑡) + 𝛾𝑆(𝑡) − (𝜆 + 𝜂)𝐶(𝑡)                                                                                                     (1) 

With initial conditions 𝑆(0) = 𝑆0 > 0, 𝐼(0) = 𝐼0 ≥ 0, 𝐶(0) = 𝐶0 ≥ 0. 𝐷𝑡
𝜌

0
𝑐 is the Caputo fractional operator of 

order 0 < 𝜌 ≤ 1. 

 

Parameters of the model: 

• 𝜇 =Constant rate of recruitment rate of susceptibles 

• 𝛽 =Coefficient of transmission between susceptible S(t) and infectious class I(t) 

• 𝜆 =Natural mortality rate 

• 𝜀 =Rate at which Infectious population goes to the susceptible class. 

• 𝛼 = Rate at which Infectious population goes to the countermeasure class 

• 𝛾 =Rate at which susceptible class goes to the countermeasure class 

• 𝜂 =Rate at which countermeasure class of  population goes to the susceptible class 

Total population is given by 

  𝑁(𝑡)  =  𝑆(𝑡)  +  𝐼(𝑡)  +  𝐶(𝑡)                                                                                                            (2) 

Then,         𝐷0
𝐶 𝑁(𝑡) = 𝜇 − 𝜆𝑁(𝑡)𝑡

𝜌
 

𝑜𝑟,       𝐷0
𝐶 𝑁(𝑡) = 𝜇 − 𝜆𝑁(𝑡)𝑡

𝜌
                                                                                                               (3) 

Which implies      𝑁(𝑡) →
𝜇

𝜆
 𝑎𝑠 𝑡 → ∞. 

We study the dynamics of the fractional order SICS model in the biologically feasible set  

𝛺 = {(𝑆, 𝐼, 𝐶) ∈ ℝ3|𝑁(𝑡) ≤
𝜇

𝜆
}.                                                                                                            (4) 

Considering (3) as Initial Value Problem(IVP) with initial condition 𝑁(𝑡)|t=0 =N(0). Applying Laplace 

transform[19] to (3), we get, 

                           L  [ 𝐷0
𝐶 𝑁(𝑡)] = 𝐿[𝜇 − 𝜆𝑁(𝑡)𝑡

𝜌
] 

𝑜𝑟,       𝑠𝜌𝐿[𝑁(𝑡)] − 𝑠𝜌−1𝑁(0) =
𝜇

𝑠
− 𝜆𝐿[𝑁(𝑡)] 

𝑜𝑟,        𝐿[𝑁(𝑡)] =
𝑠𝜌−1

𝑠𝜌 + 𝜆
𝑁(0) +

𝜇𝑠−1

𝑠𝜌 + 𝜆
 

Applying inverse Laplace transform[19] to the above equation, we get, 

𝑁(𝑡) = 𝑁(0). 𝐸𝜌,1(−𝜆𝑡𝜌) + 𝜇𝑡𝜌𝐸𝜌,𝜌+1(−𝜆𝑡𝜌)                                                                                   (5)  

According to the properties of Mittag-Leffler function,  

𝐸𝜌,𝛼(𝑧) = 𝑧. 𝐸𝜌,𝜌+𝛼(𝑧) +
1

𝛤(𝛼)
 

We get from (4), 

𝑁(𝑡) = (𝑁(0) −
𝜇

𝜆
) 𝐸𝜌,1(−𝜆𝑡𝜌) +

𝜇

𝜆
 

Thus,         lim
𝑡→∞

 𝑆𝑢𝑝 𝑁(𝑡) ≤
𝜇

𝜆
 

Hence, the model is bounded above and 𝑆(𝑡), 𝐼(𝑡), 𝐶(𝑡) are all non-negative and the model is non-negative 

invariant. 

 

3. Reproduction Number 

The threshold parameter for the system (1) is obtained by using second generation matrix and given by 

𝑅0 =
𝛽𝑆0

(𝜆 + 𝛼 + 𝜀)
                                                                                                        (6) 
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4. Equilibrium 

 

4.1. Disease-free equilibrium: The disease-free equilibrium(DFE) is found by equating all equations of 

system (1) to zero and 𝑆(0) = 𝑆0,    𝐼(0) = 0,    𝐶(0) = 0, We get, 

DFE:    (𝑆0, 0, 0) = (
𝜇

𝜆
, 0, 0) 

Showing no infection in the environment, nodes are susceptibles only. 

 

4.2. Endemic equilibrium: Endemic equilibrium (EE) is given by equating all equations of system (1) to 

zero and  

S(t)=S*,     I(t)=I*,    C(t)=C*, where S*, I*, C*∈ ℝ+. 

EE:     𝑆∗=
(𝜆+𝛼+𝜀)

𝛽
; 

𝐼∗ =
((𝜆+𝛾)𝑆∗−𝜇)(𝜆+𝜂)−𝛾𝜂𝑆∗

𝜂𝛼−(𝛽𝑆∗−𝜀)(𝜆+𝜂)
;   

𝐶∗ =
((𝜆+𝛾)𝛼−𝛾𝛽𝑆∗+𝛾𝜀)𝑆∗−𝜇𝛼

𝜂𝛼−(𝛽𝑆∗−𝜀)(𝜆+𝜂)
; 

 

4.3. Theorem: The disease free equilibrium (DFE) is locally asymptotically stable if 𝑅0<1, otherwise not 

stable. 

Proof:    For the disease free equilibrium(DFE), (
𝜇

𝜆
, 0, 0), the Jacobian matrix for the system (1) is given as- 

 

𝐽𝐷𝐹𝐸 = (

−𝜆 − 𝛾 −𝛽𝑆0 + 𝜀 𝜂

0 𝛽𝑆0 − (𝜆 + 𝛼 + 𝜀) 0

𝛾 𝛼 −(𝜆 + 𝜂)
)  

Since, 𝑅0 < 1, ℎ𝑒𝑛𝑐𝑒, 𝛽𝑆0 − (𝜆 + 𝛼 + 𝜀) < 1, using (6).  

The eigenvalues are here: 𝑞1 = −(𝜆 + 𝛾); 𝑞2 = −(𝜆 + 𝜂); 𝑎𝑛𝑑 𝑞3 = 𝛽𝑆0 − (𝜆 + 𝛼 + 𝜀) , are all negative. Hence, by 

Fractional Routh-Hurwitz criteria [22], all the roots follow-  

|arg (𝑞𝑖)| >
𝜌𝜋

2
; 𝑖 = 1,2,3   𝑎𝑛𝑑  0 < 𝜌 < 1. 

 

4.4. Theorem: If 𝑅0 > 1, then the endemic equilibrium is locally asymptotically stable. 

Proof: For the endemic equilibrium, the Jacobian for the system (1) is given as 

𝐽𝐸𝐸 = (

−𝛽𝐼∗ − (𝜆 + 𝛾) −𝛽𝑆∗ + 𝜀 𝜂

𝛽𝐼∗ 𝛽𝑆∗ − (𝜆 + 𝛼 + 𝜀) 0

𝛾 𝛼 −(𝜆 + 𝜂)
) 

Which gives rise to the characteristic equation as 

𝑥3 + 𝐴1𝑥2 + 𝐴2𝑥 + 𝐴3 = 0                                                       

Where, 

𝐴1 = 3𝜆 + 𝛼 + 𝜀 − 𝛽𝑆∗ + 𝛽𝐼∗ + 𝛾 + 𝜂; 

𝐴2 = (𝜆 + 𝛼 + 𝜀 − 𝛽𝑆∗)(𝜆 + 𝛽𝐼∗ + 𝛾) + (2𝜆 + 𝛽𝐼∗ + 𝛾 + 𝛼 + 𝜀 − 𝛽𝑆∗)(𝜆 + 𝜂) + 𝛽2𝑆∗𝐼∗ − 𝛾𝜂; 

𝐴3 = (𝜆 + 𝛼 + 𝜀 − 𝛽𝑆∗)(𝜆 + 𝛽𝐼∗ + 𝛾)(𝜆 + 𝜂) + 𝛽𝜂2𝐼∗ − 𝛽𝜀𝐼∗(𝜆 + 𝜂) − 𝜂𝛾(𝜆 + 𝛼 + 𝜀 − 𝛽𝑆∗); 

Let us denote its discriminant   

∆= 18𝐴1𝐴2𝐴3 + (𝐴1𝐴2)2 − 4𝐴2
3 − 4𝐴1

3𝐴3 − 27𝐴3
2 

The following lemma will complete our proof of the theorem. 

4.4.1.  Lemma 3: Assume that 𝑅0 > 1 and one of the following conditions are satisfied  

(i). ∆> 0, 𝐴1 > 0, 𝐴2 > 0, 𝑎𝑛𝑑 𝐴1𝐴2 − 𝐴3 > 0. 

(ii). ∆< 0, 𝜌 ∈ (0,
2

3
] , 𝐴1 ≥ 0, 𝐴2 ≥ 0, 𝑎𝑛𝑑 𝐴3 > 0. 

Then, endemic equilibrium of the fractional order model with Caputo derivative is locally asymptotically stable. 

Proof: The detailed proof of this lemma is similar to that of [22]. 
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4.5. Global stability of endemic equilibrium 

Let us construct a Lyapunov function as 

𝐿(𝑡) = 𝐼(𝑡) − 𝐼∗ − 𝐼∗ ln
𝐼(𝑡)

𝐼∗                                                                                                                    (7) 

Taking derivative both sides of equation (7), and using lemma (2), we get,  

𝐷𝑡
𝜌

0
𝑐 𝐿(𝑡) ≤ (1 −

𝐼∗

𝐼(𝑡)
) 𝐷𝑡

𝜌
0
𝑐 𝐼(𝑡), 

 

Using endemic conditions in above equation, we  have 

𝑜𝑟, 𝐷𝑡
𝜌

0
𝑐 𝐿(𝑡) ≤   

𝐼(𝑡) − 𝐼∗

𝐼(𝑡)
[𝛽(𝑆(𝑡)𝐼(𝑡) − 𝑆∗𝐼∗) − (𝜆 + 𝛼 + 𝜀)(𝐼(𝑡) − 𝐼∗)] 

𝑜𝑟, 𝐷𝑡
𝜌

0
𝑐 𝐿(𝑡) ≤  − 

(𝐼(𝑡)−𝐼∗)2

𝐼(𝑡)
[(𝜆 + 𝛼 + 𝜀) −

𝛽

(𝐼(𝑡)−𝐼∗)
(𝑆(𝑡)𝐼(𝑡) − 𝑆∗𝐼∗)]                                               (8) 

𝐼𝑓 𝑅0 > 1, 𝑡ℎ𝑒𝑛,   𝐷𝑡
𝜌

0
𝑐 𝐿(𝑡) < 0, 𝑓𝑟𝑜𝑚 (8). Therefore, EE(𝑆∗, 𝐼∗, 𝐶∗) is globally asymptotically stable, according to 

LaSalle’s invariance principle[23-26]. 

 

5. Sensitivity Analysis and Discussion 

 

Sensitivity analysis is a way to determine the importance of each parameter for the disease transmission. The 

sensitivity index of 𝑅0 with respect to x is defined as 

𝛤𝑥
𝑅0 =

𝜕𝑅0

𝜕𝑥

𝑥

𝑅0

 

The sign of each index makes it possible to know whether the parameter increases ( positive sign) or decreases 

( negative sign) the value of 𝑅0 [3]. The parameters here for this model are- 

𝛽, 𝜇, 𝜆, 𝜀, 𝛼, 𝛾, 𝜂. We have,  

𝛤𝛽
𝑅0 = 1; 

𝛤𝜇
𝑅0 = 1; 

𝛤𝜆
𝑅0 =

1

𝛼+𝜀
[

𝜆2

𝜆+𝛼+𝜀
− (𝜆 + 𝛼 + 𝜀)]; 

𝛤𝜀
𝑅0 = −

𝜀

𝜆+𝛼+𝜀
; 

𝛤𝛼
𝑅0 = −

𝛼

(𝜆+𝛼+𝜀)
; 

𝛤𝛾
𝑅0 = 0; 

𝛤𝜂
𝑅0 = 0; 

Note that R0 does not depend upon 𝜂, 𝛾, so,  

𝛤𝜂
𝑅0 = 0, 𝛤𝛾

𝑅0 = 0. We have found here that , 𝛤𝛼
𝑅0 , 𝛤𝜆

𝑅0 , 𝛤𝜀
𝑅0 < 0, which means that an increment in 𝛼, 𝜆, 𝜀, will 

cause 𝑅0 to decrease. Also, 𝛤𝜇
𝑅0 , 𝛤𝛽

𝑅0 > 0, cause 𝑅0 to increases 

Example 1: The fractional-order simulation of the epidemic model using the Adams–Bashforth–Moulton 

method for the Caputo derivative with order ρ=0.9 is performed. 
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Figure 2: Fractional-order using the Adams–Bashforth–Moulton method for the Caputo derivative 

with order ρ=0.9 

 

From figure 2, susceptible S (t) declines gradually over time due to infection and transition into control; 

infected I (t) initially rises due to the transmission, peaks, and then decreases as more individuals move to the 

controlled class or die; controlled C(t) increases steadily, representing individuals either isolated from the 

susceptible class or recovered and moved to control. 

Example 2: Comparison the fractional-order model ρ=0.9 with the integer-order model ρ=1.0 

 

 
Figure 3: Comparison the fractional-order model ρ=0.9 with the integer-order model ρ=1.0 for S(t) and I(t) 

compartment 

 

From figure 3, it is evident that the fractional model shows slower decay in infection and more persistent 

memory effects in the population dynamics, whereas, the integer model responds faster, reaching equilibrium 

more quickly. 
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Example 3: Sensitivity of the infected population I(t) with respect to variations in the transmission rate β, under 

fractional-order dynamics ρ = 0.9 

From figure 4, it is evident that higher β values (0.5, 0.6) cause a faster and more intense rise in infections, 

lower β values (0.2, 0.3) slow down the outbreak and reduce the peak infection.  

 

 
Figure 4: Sensitivity of the infected population I(t) with respect to variations in the transmission rate β, 

under fractional-order dynamics ρ=0.9 

 

Example 4: When peak infected population I(t) varies with different values of the transmission rate β 

From figure 5 it is evident that as β increases, the peak infection level increases sharply. This confirms that 

even small increases in the transmission rate can significantly intensify the epidemic's severity. Fractional-

order systems capture these dynamics with more realism due to memory effects. 

 

 
Figure 5: Peak infected population I(t) verses transmission rate with ρ=0.9 
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The parameter sensitivity analysis has been successfully performed which is given in Table 1 and its simulation 

is depicted in figure 5(a) and 5(b) 

.  

Parameter Value Peak I(t) Total Infected 

β 0.2 0.1057 4.26 

β 0.4 0.1725 6.55 

β 0.6 0.2382 7.91 

α 0.05 0.2339 9.45 

α 0.2 0.1162 4.05 

γ 0.01 0.2118 7.99 

γ 0.2 0.1243 4.27 

 

From the parametric values (Table 1) and simulation (figures 5a, and 5b) we observe that: 

a. Transmission rate β: Higher β leads to significantly higher peak and total infections. 

b. Isolation rate α: Higher α (better isolation) sharply reduces infections. 

c. Precautionary control γ: Higher γ (more proactive control) also reduces spread effectively. 

 

 
Figure 5(a): Peak Infected I(t) verses Parameter value 

 

 
Figure 5(b): Total Infected I(t) verses Parameter value 



Journal of Information Systems Engineering and Management 
2024, 9(4) 
e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/   
 

 12 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

 

 
Figure 6: Comparison of the infected population I(t) over time 

 

Figure 6 depicts the best-case and worst-case of the infected population I(t) over time t. When the isolation 

rate is high α = 0.2, it leads to a low and short-lived infection peak with total infected ~4.05. When the isolation 

rate is low α = 0.05, it leads to a high and prolonged infection curve with total infected ~9.45. This clearly 

highlights the critical role of increasing isolation efforts (α) in controlling epidemics. 

 

6. Conclusion 

 

This study presents a novel fractional-order SICS epidemic model to explore the dynamics of cyberattacks on 

financial systems, incorporating memory effects and long-range dependencies inherent in real-world cyber-

physical networks. By employing Caputo fractional derivatives, the model captures the non-Markovian nature 

of cyber incidents, where the future system state depends not only on its current condition but also on its entire 

attack-response history. 

Numerical simulations using the Adams–Bashforth–Moulton scheme reveal critical insights into the system’s 

sensitivity to parameters such as the transmission rate of cyberattacks (β), the detection/isolation rate (α), and 

the implementation strength of countermeasures (γ). Comparative analysis between fractional (ρ = 0.9) and 

classical integer-order (ρ = 1) models demonstrates that the fractional model more accurately reflects the 

persistence and delayed response characteristics typical of cyber threats in financial systems. 

Sensitivity analysis highlights that increasing α (early detection and containment) and γ (preventive 

countermeasures) significantly reduce both the peak infection load and the total system compromise. 

Conversely, higher β (rapid malware propagation or phishing vulnerability) leads to extensive breaches and 

delayed recovery, underscoring the need for proactive defense strategies. 

The proposed fractional SICS model provides a powerful analytical framework for understanding the 

propagation, impact, and control of cyberattacks within financial ecosystems. The integration of fractional 

calculus not only enhances modeling accuracy but also enables strategic planning for cyber resilience. This 

work lays the foundation for future explorations that may include AI/ML-driven adaptive control, real-time 

anomaly detection, and blockchain-enhanced security protocols within the same modeling paradigm. 
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