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Received: 03 Nov2024 In an era where financial infrastructures are increasingly vulnerable to
Revised: 15 Dec 2024 sophisticated cyberattacks, understanding the dynamics of threat propagation and

the effectiveness of countermeasures is crucial. This study proposes a novel
fractional-order SICS (Susceptible—Infectious—Countermeasures—Susceptible)
epidemic model based on Caputo derivatives to analyze the transmission and
containment of cyber threats in financial systems. The model incorporates
memory-dependent behavior to more accurately represent real-world cyber
phenomena, where the effects of an attack can persist and influence future
vulnerabilities.

Using the Adams—Bashforth—Moulton predictor-corrector method, the system is
numerically simulated under various parameter regimes. Comparative analyses
between fractional (p = 0.9) and integer-order (p = 1.0) dynamics reveal that
fractional models exhibit delayed peaks and prolonged persistence of infection,
underscoring the importance of incorporating long-memory effects in cyberattack
modeling. Sensitivity analysis demonstrates that increased transmission rates ([3)
amplify both peak and total infections, whereas enhancing isolation efficiency (a)
and preventive countermeasures (y) significantly mitigate the spread and duration
of cyber threats.

While the model successfully captures key aspects of cyberattack dynamics, it
assumes homogeneity and static parameters, limiting its representation of
complex, adaptive adversarial behavior. The findings provide a rigorous
mathematical foundation for strategizing effective cyber defense policies in critical
financial sectors and highlight the potential of fractional calculus as a robust tool
for modeling advanced cyber-physical systems.
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1. Introduction

In this digital age, cyberattacks on financial systems are becoming increasingly frequent and represent a serious
risk to the stability and security of international economies. The financial industry is continuously under attack
from malevolent cyber actors, from phishing scams targeting individual investors to ransomware operations
targeting large financial institutions. The financial industry continues to grow rapidly to keep up with
technology and shifting customer preferences. The way we handle and transmit money has completely changed,
from digital wallets and cryptocurrencies to online banking and mobile payment apps. To understand how the
financial system functions in the modern world, it is essential to know how these digital tools and platforms
interact with conventional financial institutions. A financial system makes it easier for cash to move between

lenders, investors, and borrowers who are involved in the financial market. Both national and international
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 1

Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.


mailto:drbimalmishra@gmail.com

Journal of Information Systems Engineering and Management

2024, 9(4)
e-ISSN: 2468-4376

https://www.jisem-journal.com/

financial systems operate [1]. Financial institutions are complex, interconnected markets, services, and
organizations created to provide an effective and reliable relationship between borrowers and investors [2].
The financial system comprises four primary components:

a) Financial markets are the venues where buyers and sellers engage in the trading of bonds, shares, and other
assets.

b) Financial instruments are the products exchanged in financial markets. The securities in the market vary
according to the distinct criteria of loan seekers.

¢) Financial institutions serve as intermediaries between investors and borrowers. They offer financial
services to members and clients. They are also referred to as financial intermediates, as they serve as brokers
between savers and borrowers. The investor's capital is activated either directly or indirectly through the
financial markets. They provide services to organizations seeking to raise capital from markets and manage
financial assets (deposits, securities, loans, etc.).

d) Financial services offerings supplied by asset management and liability management firms. They assist in
acquiring the necessary cash and ensure their optimal investment. (for example, banking services, insurance
services, and investment services).

The financial industry has been proved as a top target for cybercriminals. Financial institutions such as banks,
insurance companies, and investment firms, manage extensive volumes of sensitive data and execute millions
of transactions each day. Any interruption to these services might have profound effects, not only for individual
but even for the entire economies. Malicious actors, including ransomware groups, state-sponsored hackers,
and cybercriminal organizations, are acutely aware of this, persistently endeavoring to exploit weaknesses in
financial networks. Recent high-profile events have illustrated how a single breach can impact global markets
significantly. The Swift bank hacks and the Capital One data breach have compelled financial organizations to
acknowledge that cyber resilience is vital.

Mathematical modeling is essential for comprehending the intricate dynamics of cyber attacks, offering
insights into their patterns and associated risks. Researchers employ mathematical tools to simulate diverse
attack scenarios and design effective prevention strategies to protect against cyber attacks. This method
facilitates a more profound understanding of the fundamental principles of cyber attacks and improves the
capacity to proactively manage risks in the digital realm. By developing and analyzing mathematical models,
we can work towards enhancing cybersecurity measures and minimizing the risks associated with cyber threats
in the financial sector. This research is essential for safeguarding the stability and security of financial systems
in an increasingly digitized world. Also, by simulating different attack scenarios, researchers can identify
vulnerabilities and develop strategies to strengthen cybersecurity defenses. These findings provide valuable
insights for policymakers, financial institutions, and cybersecurity professionals in safeguarding against cyber
threats in the digital age. Instead of using an ordinary derivative for the study of this paper, we use fractional
derivative of Caputo order to get more accurate results. Fractional-time chaotic systems have been shown to
exhibit richer dynamics and feature added degree of freedom, as in most cases the dynamics heavily depend on
the fractional order [3]. Therefore, fractional concepts have been seen as a tool in the fields such as physics,
chemistry, and engineering in terms of representing physical phenomena [4]. In contrast to the ordinary
derivative, which functions as a local operator, the fractional order derivative possesses a principal
characteristic known as the memory effect. Specifically, the subsequent state of the fractional derivative for any
function f is contingent not only on its present state but also on all its prior states [5].

After analyzing the result, we focus on the security of the financial systems/ institutions. Here are some
suggestive measures taken by them.

1.1. Robust Cybersecurity Frameworks and Strategies:

(a) Implement and comply with recognized frameworks such as the NIST Cybersecurity Framework, FFIEC
Information Technology Examination Handbook, and the RBI Cybersecurity Framework in India. These
establish a robust framework for mitigating cyber risks and fulfilling regulatory requirements [6-7].

(b) Risk-Based Supervision and Zero-Trust: Use a risk-based approach to supervision, adopting a "zero-trust"
cybersecurity framework. This means no person or device is considered trusted by default, requiring
authentication for every action in the system.

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 2
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.



Journal of Information Systems Engineering and Management

2024, 9(4)
e-ISSN: 2468-4376

https://www.jisem-journal.com/

(c) AI-Aware Defense Strategies: Use Artificial Intelligence (AI) and Machine Learning (ML) to enhance threat
detection, anomaly identification, fraud prevention, and automated incident response. Al can analyze large
datasets instantly, predict potential threats, and identify weaknesses more effectively. However, it's important
to note that attackers are also using Al, which creates a competitive environment that requires ongoing
adjustments.

(d) Multi-layered Defense: Relying solely on one security solution is not enough. Employ a tiered strategy that
includes a variety of security measures and technologies, such as perimeter defenses (firewalls, antivirus) and
internal protections (encryption, endpoint security, network segmentation).

(e) Holistic Cyber Risk Management: Formulate a proactive and all-encompassing plan that addresses cyber
risks associated with personnel, processes, technology, and external entities, rather than concentrating
exclusively on technology.

1.2. Essential Technical Measures:

(a) Robust Access Controls: Enforce multi-factor authentication (MFA) for all users and devices accessing
critical systems and data [8]. Employ role-based access control (RBAC) to restrict information access according
to an employee's job responsibilities. Perform systematic access evaluations and audits [9].

(b) Data Encryption: Implement effective encryption methods for data both at rest and in transit, including
end-to-end encryption for communications.

(c) Develop a patch management strategy to quickly identify, obtain, test, and deploy software updates for all
operating systems and applications. This protects against known vulnerabilities.

(d) Advanced Threat Detection and Response: Use intrusion detection systems to monitor network data for
unusual behavior. Implement Security Information and Event Management (SIEM) systems to collect and
analyze security data in real-time for quick issue identification and response [10].

(e) Vulnerability Management: Establish comprehensive vulnerability management protocols to proactively
detect security deficiencies, vulnerabilities, and misconfigurations, and prioritize their remedy prior to
potential exploitation by attackers.

(f) Network Segmentation: Partition the network into smaller, isolated portions to restrict the lateral movement
of intruders in the event of a breach.

1.3. Addressing Emerging Threats:

(a) AI-Powered Cyberattacks: Be ready for more complicated assaults that use generative Al to create malware,
phishing emails, deepfakes, password cracking, and voice cloning. Smart, AI-powered defenses are needed for
this.

(b) Ransomware and Malware: To reduce the impact of ransomware attacks, put strong endpoint protection,
safe offsite and unchangeable backups, and effective incident response policies into place. Employees should
be trained to identify the social engineering techniques that frequently precede ransomware.

(c) Supply Chain Attacks: Verify and keep an eye on third-party service providers and vendors. Incorporate
cybersecurity obligations and requirements into contracts, and evaluate their security posture and regulatory
compliance on a regular basis.

(d) Social Engineering (Phishing): Employees should get frequent cybersecurity training to inform them of the
most recent risks, including phishing and social engineering techniques. To assess and enhance their capacity
to identify and react to such efforts, conduct phishing simulations.

(e) Mobile Automated Transfer Systems (ATS) Attacks: As mobile banking becomes more prevalent, be vigilant
against malware designed to make fraudulent transactions via banking apps.

1.4. Organizational and Human Factors:

(a) Strong Cybersecurity Culture: Foster a cybersecurity culture throughout the organization, starting from the
top. Ensure executive buy-in and emphasize that security is a shared responsibility, not just an IT prerogative.
Encourage employees to report suspicious activities.

(b) Employee Awareness and Training: Provide continuous and regular training sessions to educate employees
about evolving cyber threats and best practices.
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(c) Incident Response Planning: Develop and regularly update comprehensive incident response plans. These
plans should outline clear steps for responding quickly and effectively to security breaches, minimizing impact,
and ensuring swift recovery.

(d) Regulatory Compliance: Ensure adherence to relevant financial cybersecurity regulations. Establish
governance frameworks that include regular audits and compliance checks.

(e) Collaboration and Information Sharing: Engage in industry-wide collaboration and information sharing
with other financial institutions, regulators, and cybersecurity agencies to stay informed about emerging
threats and best practices.

(f) By implementing these strategies and continuously adapting to the evolving threat landscape, financial
systems can significantly enhance their resilience against cyberattacks and protect sensitive data and critical
operations.

Besides these attacks, politically driven cyberwarfare that is a large-scale attack on financial institutions, has
become an important chapter for discussion now-a-days. We will not discuss these politically driven aspects in
this paper, which have become an integral component of traditional combat. During these assaults, hackers
target an adversarial state to incapacitate its essential computer systems. For example, a conflict between
Ukraine and Russia has persisted for over years [11].

Financial institutions are fundamental to a nation's economy, and safeguarding them against cyberattacks is
imperative. This necessity is driven by various factors that impact a nation's economic, national security, and
public trust.

We here, therefore, establish a fractional order epidemic model, namely SICS ( Susceptible- Infectious-
Countermeasures- Susceptible) in which reproduction number, equilibrium points, stability, etc are discussed
in this paper. Several paper mainly concerning fractional order model are given in the references. A
mathematical model of SIR epidemic system for COVID-19 with the help of fractional order derivative is
discussed in detail by Algahtani [12]. Paul, Mahata, Mukherjee, and Roy [13] analysed the dynamics of COVID-
19 with the help of the epidemic SIQR model. Additionally, in the analysis of COVID-19, Chatterjee and Ahmad
[14] make another attempt to discuss the infection of epithelial cells using fractional order differential
equations. An approach to solving the differential equation of fractional order for an epidemic model with a
Mittag-Leffler fractional derivative is presented by Sene [15]. SEIR epidemic model of fractional order for
COVID-19 with Caputo derivative has been analysed by Rezapour, Mohammadi, and Samei [16]. Also, in order
to investigate the COVID-19 epidemic model, a way to non-singular fractional derivatives, a case study has been
done by Batool, Khan, Li, Junaid, Zhang, Nawaz and Tian [17]. Qazza and Saadeh [18] do an analytical solution
of fractional SIR model.

2. Mathematical formulation

2.1. Preliminaries:
2.1.1. Definition [19]: “The Caputo’s fractional derivative of order p can be defined as

epp _ 1 ft FM@adr

= (m-1)<p<n.
07t T r(p-nya (t-oprion

Here, I is the Gamma function.
Under natural conditions on the function f(t), for p — n the Caputo derivative becomes a conventional nth
derivative of the function f(t)”.

2.1.2.Generalized mean value theorem [20]: Suppose that f(x) € C[a,b] and D% f(x) € C[a,b], for 0 <
p < 1, then we have,
1

FO)=f@ + fes

(DEf)E)- (x = a)?
Witha <& < x,Vx € (a, b].

2.1.3. Lemma 1[21] : Consider the following fractional-order system,
DE(Y(®) = ¢(Y), Yoy = (Vi VB, coe v cee e e e, VI, Vi JZ12,3 s n
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with0 < p < 1,Y(E) = (YD), Y2 (), e cvr cve e oo, Y1) and (V)1 [to, 0) > R™>™.For ¢(Y) = 0, we get all the
equilibrium points are locally asymptotically stable iff each eigenvalue A; of the jacobian matrix J(Y) =
OYLY2 e 0)

2.1.4. Lemma 2[22] : Let h(t) € R be a differential function. Then, for any t > o,
B

cpf [n(&) = b = b’ ln%] <(1- ﬁ)CD;’(h(t)), h* € R*,Vp € (0,1).

calculated at the equilibrium points satisfies |arg (A;)| > pz—” .

We, here, discuss the useful framework of SICS (Susceptible- Infectious- Countermeasures- Susceptible) to
understand the dynamics of cyberattacks and the effectiveness of security measures within a system of
interconnected entities, such as financial institutions. The main components of the model are described here-
e S (Susceptible): These are financial institutions or their systems that are now robust yet susceptible to a
cyberattack. They remain uncompromised; nonetheless, they exhibit vulnerabilities that a threat could exploit.
¢ I (Infectious): These refer to financial institutions or their systems that have been effectively breached by a
cyberattack. They are now undergoing the attack and may be facilitating its propagation.

e C (Countermeasures): This is a critical state distinctive to the SICS model in this situation. Institutions in
this state are those that have enacted or are currently enacting specific countermeasures against cyberattacks.
This may entail rectifying vulnerabilities, implementing new security software, isolating affected systems, or
initiating incident response protocols. The crucial aspect is their proactive mitigation of the threat.

e S (Susceptible): This facet underscores the cyclic characteristics of cyber threats. Despite the
implementation of safeguards, institutions may ultimately regress to a vulnerable condition. This may occur
as a result of: Emerging vulnerabilities: Zero-day exploits and software updates that introduce new defects;
Advancing assault techniques: Perpetrators continually discover novel tactics to circumvent established
protections; Human error: Employees committing errors that re-expose systems; Degradation of
countermeasures: Security software is becoming obsolete, and policies are not being implemented.

Now, the model is described by Figure 1 below:

gI(t)

Al(Y)

AS(t)

Figure 1: Propagation of malware due to cyberattack in financial systems.
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The system of linear fractional differential equations of Caputo order is given below in accordance with the
above figure 1,

§D{S() = = BSOI(E) — (A +YISE) +nC (L) + el (t)

SDEI(t) = BS(OI(t) — (A + a + &)I(t)

§DLC(t) = al(t) +yS(t) — (A +n)C(t) €))

With initial conditions S(0) =S, > 0,1(0) =1, = 0,C(0) = C, = 0.§Dfis the Caputo fractional operator of
order0 <p < 1.

Parameters of the model:

e u =Constant rate of recruitment rate of susceptibles

e j =Coefficient of transmission between susceptible S(t) and infectious class I(t)

e ) =Natural mortality rate

e ¢ =Rate at which Infectious population goes to the susceptible class.

e « = Rate at which Infectious population goes to the countermeasure class

e y =Rate at which susceptible class goes to the countermeasure class

e 1 =Rate at which countermeasure class of population goes to the susceptible class
Total population is given by

N(t) = S(t) + I(t) + C(t) (2)
Then, EDAN(t) = u— AN(t)
or, SDIN(t) =u—AN(t) 3)

Which implies  N(t) - % ast — oo,
We study the dynamics of the fractional order SICS model in the biologically feasible set
2={(51,0eRN@) <L}, (4)
Considering (3) as Initial Value Problem(IVP) with initial condition N(t)|i-o =N(0). Applying Laplace
transform[19] to (3), we get,

L [§DAN()] = L[u— AN(D)]

or,  SPLIN(D)] - sP~IN(0) = g _ALIN(D)]

Sp—l Hs_l
or, L[N(t)] _Sp+/1N(O)+m
Applying inverse Laplace transform[19] to the above equation, we get,
N(t) = N(0).Ep 1 (=AtP) + utPEp 11 (—AtP) (5)

According to the properties of Mittag-Leffler function,

1
Ep‘a(z) =Z. Ep,p+a(z) + m

We get from (4),
u u
N(©) = (N(0) = %) By (-2t7) +5
Thus, tlim Sup N(t) < %

Hence, the model is bounded above and S(t),I(t), C(t) are all non-negative and the model is non-negative
invariant.

3. Reproduction Number
The threshold parameter for the system (1) is obtained by using second generation matrix and given by

__ BSo ©
T A4+a+e)
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4. Equilibrium

4.1.  Disease-free equilibrium: The disease-free equilibrium(DFE) is found by equating all equations of
system (1) to zero and S(0) =S,, 1(0) =0, C(0) =0, We get,

DFE: (S,,0,0) = (%,0,0)

Showing no infection in the environment, nodes are susceptibles only.

4.2. Endemic equilibrium: Endemic equilibrium (EE) is given by equating all equations of system (1) to
zero and
S(t)=S*, I(t)=I", C(t)=C*, where S*,T*, C'e R".
EE: S*_(A+a+£).
: =5
I = (A+n)s* =) A+m)—yns* |
na-(Bs*—e)A+n) ’
cr = (A+V)a—yBS* +ye)S*—ua,
na-(Bs*—e)(A+n) ’

4.3. Theorem: The disease free equilibrium (DFE) is locally asymptotically stable if R;<1, otherwise not
stable.

Proof: For the disease free equilibrium(DFE), (% 0, 0), the Jacobian matrix for the system (1) is given as-

—A—-v —fSy + € n
Jore = 0 BSo—A+a+e) 0
14 a —(A+n)

Since, Ry < 1, hence, S, — (A + a + ) < 1, using (6).
The eigenvalues are here: g; = —(1+y); g, = —(A+n);and q; = BS, — (A + a + €), are all negative. Hence, by
Fractional Routh-Hurwitz criteria [22], all the roots follow-

s
larg (q;)] > 'D?;i =123 and 0<p<1.

4.4. Theorem: If R, > 1, then the endemic equilibrium is locally asymptotically stable.
Proof: For the endemic equilibrium, the Jacobian for the system (1) is given as

—BI'— (A +vy) —BS* +¢ n
Jeg = BI* BS*—(A+a+e) 0
14 a —(A+n)

Which gives rise to the characteristic equation as
x3+A;x2+Ax+A;=0
Where,
Ay =3l+a+e—=BS"+pI"+y +;
Ay, =QA4+a+e—BSYA+BI"+yY)+ QA+ LI +y+a+ec—LSHA+n) +B2S T —yn;
A=A +a+e—=BSHYA+BI"+Y)A+n) + " —Bel* (A +1n) —ny(A +a + & — SP);
Let us denote its discriminant
A= 184A,4,A; + (A;4,)% — 4A,% — 443 A5 — 27457
The following lemma will complete our proof of the theorem.
4.4.1. Lemma 3: Assume that R, > 1 and one of the following conditions are satisfied
(). A> 0,4, > 0,4, > 0,and A, A, — A; > 0.

(ii). A< 0,p € (oﬂ A, > 0,4, > 0,and Ay > 0.

Then, endemic equilibrium of the fractional order model with Caputo derivative is locally asymptotically stable.
Proof: The detailed proof of this lemma is similar to that of [22].
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4.5. Global stability of endemic equilibrium
Let us construct a Lyapunov function as

L) =I(t) = I" = I'In "2 @)
Taking derivative both sides of equation (7), and using lemma (2), we get,

.
§D7L(e) < (1~ 155) 6D21(0),

Using endemic conditions in above equation, we have

or, ngL(t) < [(t[)(it_)[ [BSOI®) =S T)— A+ a+e)U) —I)]
or, EDFL(t) < — (I(tl)(;)l*)z [(/1 +a+e)— (1(tf—1*) SIE) - S*I*)] (8)

If Ry > 1,then, $DFL(t) <0, from (8). Therefore, EE(S*,I*, C*) is globally asymptotically stable, according to
LaSalle’s invariance principle[23-26].

5. Sensitivity Analysis and Discussion

Sensitivity analysis is a way to determine the importance of each parameter for the disease transmission. The
sensitivity index of R, with respect to x is defined as
Ry, _ ORo x
x = WR_O
The sign of each index makes it possible to know whether the parameter increases ( positive sign) or decreases
( negative sign) the value of R, [3]. The parameters here for this model are-
B, A g a,y,n. We have,

=1
L =1
Ro _ 1 [ 2 _ .
L™= a+te [/1+a+s @+a+ E)]’
Ro __€ .
€ Ata+e’
Ro _ _ a .
a A+a+e)’
Lo =0;
’]/ b
[ = 0;
Note that R, does not depend upon 7, y, so,
I;IR" =0, I}RO = 0. We have found here that ,I’aRO, QRO,QRO < 0, which means that an increment in «, 2, &, will

R R .
cause R, to decrease. Also, I, °,I,"° > 0, cause R, to increases

Example 1: The fractional-order simulation of the epidemic model using the Adams—Bashforth—Moulton
method for the Caputo derivative with order p=0.9 is performed.
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— I(t) - Infected
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®
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Time (t)

Figure 2: Fractional-order using the Adams—Bashforth—Moulton method for the Caputo derivative
with order p=0.9

From figure 2, susceptible S (t) declines gradually over time due to infection and transition into control;
infected I (t) initially rises due to the transmission, peaks, and then decreases as more individuals move to the
controlled class or die; controlled C(t) increases steadily, representing individuals either isolated from the
susceptible class or recovered and moved to control.

Example 2: Comparison the fractional-order model p=0.9 with the integer-order model p=1.0

0.18F

0.90} 7~ — |(t), p=0.9
/ == 1(t), p=1.0
0851 0.16}
0.80}
0.14+
c 0.75F c
S k]
& ®
=} = L
goro a0
0.65F
0.10+
0.60}
0.08} L
055} T
0 10 20 30 40 50 0 10 20 30 40 50
Time (t) Time (t)

Figure 3: Comparison the fractional-order model p=0.9 with the integer-order model p=1.0 for S(t) and I(t)
compartment

From figure 3, it is evident that the fractional model shows slower decay in infection and more persistent
memory effects in the population dynamics, whereas, the integer model responds faster, reaching equilibrium
more quickly.
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Example 3: Sensitivity of the infected population I(t) with respect to variations in the transmission rate 3, under
fractional-order dynamics p = 0.9

From figure 4, it is evident that higher [ values (0.5, 0.6) cause a faster and more intense rise in infections,
lower B values (0.2, 0.3) slow down the outbreak and reduce the peak infection.

— B=0.2
— B=0.3
0.225} — B=04
— B=05
B=06
0.200}
=)
c 0.175}
IS
®
3
5 0.150+
a
el
g
& 0.125f
=
0.100}
0.075}
0 10 20 30 40 50

Time (t)

Figure 4: Sensitivity of the infected population I(t) with respect to variations in the transmission rate 3,
under fractional-order dynamics p=0.9

Example 4: When peak infected population I(t) varies with different values of the transmission rate 3

From figure 5 it is evident that as P increases, the peak infection level increases sharply. This confirms that
even small increases in the transmission rate can significantly intensify the epidemic's severity. Fractional-
order systems capture these dynamics with more realism due to memory effects.

0.24

0.22

0.20

0.18

0.16

Peak Infected Population

0.14

0.12

0.10

020 025 030 0.35 040 045 050 055 0.60
Transmission Rate B

Figure 5: Peak infected population I(t) verses transmission rate with p=0.9
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The parameter sensitivity analysis has been successfully performed which is given in Table 1 and its simulation
is depicted in figure 5(a) and 5(b)

|Parameter |Value ||Peak I(t)  |[Total Infected |
IB 0.2 l0.1057 l4.26 |
B loa  Joares  J655 |
IB 0.6 l0.2382 [7.91 |
la lo.-o5  Jo2339  Jlo.as |
la o2 Jlo.1162 |l4.05 |
ly lo.o1  lo.2118 |l7.99 |
ly o2 Jlo.1243 |l4.27 |

From the parametric values (Table 1) and simulation (figures 5a, and 5b) we observe that:

a. Transmission rate f3: Higher 3 leads to significantly higher peak and total infections.

b. Isolation rate a: Higher a (better isolation) sharply reduces infections.

c. Precautionary control y: Higher y (more proactive control) also reduces spread effectively.

0.24r
0.22r
0.20
T o.a8f
v
[1v]
o
Q- 0.16
0.14
0.12 —e— beta
—e— alpha
—e— gamma
0.10 k= . . . . L .
0.0 0.1 0.2 0.3 0.4 0.5 0.6
Parameter Value
Figure 5(a): Peak Infected I(t) verses Parameter value
9 .
R
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g
[=4
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]
b
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0.0 0.1 0.2 0.3 0.4 0.5 0.6
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Figure 5(b): Total Infected I(t) verses Parameter value
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—— Best Case: alpha=0.2 (Total Infected=4.05)
—— Worst Case: alpha=0.05 (Total Infected=9.45)
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Figure 6: Comparison of the infected population I(t) over time

Figure 6 depicts the best-case and worst-case of the infected population I(t) over time t. When the isolation
rate is high a = 0.2, it leads to a low and short-lived infection peak with total infected ~4.05. When the isolation
rate is low a = 0.05, it leads to a high and prolonged infection curve with total infected ~9.45. This clearly
highlights the critical role of increasing isolation efforts (a) in controlling epidemics.

6. Conclusion

This study presents a novel fractional-order SICS epidemic model to explore the dynamics of cyberattacks on
financial systems, incorporating memory effects and long-range dependencies inherent in real-world cyber-
physical networks. By employing Caputo fractional derivatives, the model captures the non-Markovian nature
of cyber incidents, where the future system state depends not only on its current condition but also on its entire
attack-response history.

Numerical simulations using the Adams—Bashforth—Moulton scheme reveal critical insights into the system’s
sensitivity to parameters such as the transmission rate of cyberattacks (), the detection/isolation rate (a), and
the implementation strength of countermeasures (y). Comparative analysis between fractional (p = 0.9) and
classical integer-order (p = 1) models demonstrates that the fractional model more accurately reflects the
persistence and delayed response characteristics typical of cyber threats in financial systems.

Sensitivity analysis highlights that increasing a (early detection and containment) and y (preventive
countermeasures) significantly reduce both the peak infection load and the total system compromise.
Conversely, higher § (rapid malware propagation or phishing vulnerability) leads to extensive breaches and
delayed recovery, underscoring the need for proactive defense strategies.

The proposed fractional SICS model provides a powerful analytical framework for understanding the
propagation, impact, and control of cyberattacks within financial ecosystems. The integration of fractional
calculus not only enhances modeling accuracy but also enables strategic planning for cyber resilience. This
work lays the foundation for future explorations that may include AI/ML-driven adaptive control, real-time
anomaly detection, and blockchain-enhanced security protocols within the same modeling paradigm.
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