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1. INTRODUCTION 

1.1. Discrete Wavelet Transform in IoT 

The Internet of Things, sometimes known as IoT, is a rapidly growing network of numerous smart devices with a wide 

range of uses in industries such as manufacturing, transportation, healthcare, and agriculture. IoT networks promise 

unparalleled coverage, flexibility, and quality of service (QoS). Such an ecosystem can only be achieved by combining 

many low size, weight, and power (SWaP) components (such relays, sensors, actuators, etc.) across a range of 

environments. The devices inside the network will use a range of signaling formats to send large amounts of data at the 

same time. Transmitted signals are dispersed, blocked, distorted by intrinsic interference, and contaminated by noise 

on their approach to the IoT gateway or the receiving devices. Interference arises from the superposition of signals 

broadcast simultaneously over many access channels, and noise can be caused by external factors, internal electronics 

of the devices, or frequency-dependent abnormalities [1, 2, 3]. 

Denoising is the process of eliminating noise from a signal while preserving the transmitted signal's originality and 

resolution. Filtering (low or band-pass) is the fundamental denoising technique, although it only removes out-of-band 

noise [4]. Denoising is a very challenging task since noise has a wide range of origins, features, and natures [3]. 

The process of dividing a signal into a group of wavelets is known as wavelet analysis. This is achieved via convolution 

of the signal with an appropriate wavelet function. Wavelet Transform offers high resolution for time-dependent 

features and frequency-dependent characteristics [3]. The two fundamental features of WT are scaling and shifting [3, 

5]. 

The process of Discrete Wavelet Transform (DWT) involves breaking down a signal into frequency components using 

multi-rate filter banks. The signal is passed through a low-pass and a high-pass filter, separating it into two sub-bands. 

The low-frequency sub-band is further decomposed iteratively, resulting in narrower sub-bands. This allows the signal 

to be analyzed at different resolutions. DWT yields large-magnitude coefficients that represent the significant 

components of the signal, while small coefficients correspond to noise [3]. 

The final step in denoising is to reconstruct the signal using the "Inverse DWT (IDWT)" approach [3, 6]. IDWT recovers 

ARTICLE INFO ABSTRACT 

Received: 07 Nov 2024 

Revised: 18 Dec 2024 

Accepted: 26 Dec 2024 

The paper examines novel approaches to improve the security, effectiveness, and fault diagnosis of 

Internet of Things systems, with an emphasis on MQTT protocol security and discrete wavelet 
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hybrid deep learning technique that is suggested to protect MQTT message transport from malicious 

variations and Denial-of-Service (DoS) attacks. It uses Hellinger Distributed Stochastic Neighbor 

Embedding for data preprocessing, Gaussian Mixture Models with Lebesgue measures for feature 

extraction, and Hash Message Double Authentication Rules for secure message transmission over 

Long Short-Term Memory (LSTM) networks. Through simulation, the efficacy of the framework is 

confirmed, demonstrating notable gains over current methods in processing time, traffic overhead 

reduction, message transmission accuracy, and error rate. In order to reduce risks and maintain user 

data security, sophisticated encryption techniques and hierarchical key management are highlighted 

as ways for guaranteeing data integrity in cloud storage systems. This thorough investigation shows 

how deep learning models, IoT security standards, and sophisticated wavelet signal analysis work 

together to create a strong foundation for safe and effective cloud and IoT operations.  
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the signal from the changed detail coefficients by combining the lifting and folding techniques. 

 

1.2. Attacks in IoT Protocol 

MQTT's architecture enables reliable real-time messaging for remote nodes with minimal bandwidth and code. It 

operates on a publish-subscribe model with three primary roles: publisher, subscriber, and broker. MQTT control 

packets consist of a fixed header, with optional variable headers and payload. Communication is established via TCP, 

using message types like PINGREQ and PINGRESP. Quality of Service (QoS) levels define message delivery guarantees: 

● QoS 0: At-most-once delivery (no acknowledgments). 

● QoS 1: At-least-once delivery (acknowledgment required). 

● QoS 2: Exactly-once delivery (highest overhead due to a four-step handshake) 

 

IoT systems face a multifaceted threat landscape 

Physical Attacks: Direct interference with devices (e.g., node tampering, RF interference, jamming, physical damage, 

sleep deprivation attacks, malicious code injection). 

Network Attacks: Targeting communication infrastructure (e.g., RFID spoofing/cloning, traffic analysis, 

unauthorized access, denial-of-service (DoS), man-in-the-middle (MiTM), sinkhole attacks). 

Software Attacks: Exploiting software vulnerabilities (e.g., viruses, worms, Trojan horses, spyware, malicious scripts, 

adware). 

Encryption Attacks: Compromising data security (e.g., cryptanalysis attacks like ciphertext-only, known-plaintext, 

chosen-plaintext/ciphertext, and side-channel attacks). 

 

1.3. Vulnerabilities in Large Scale Cloud Storage 

The dynamic and flexible Service Level Agreement (SLA)-based negotiated services that provide customers access to 

practically infinite computer resources make cloud computing appealing [9, 10]. It follows a pay-per-use approach, 

allowing on-demand, accessible, and adjustable network access to shared resources with less management work and 

service provider involvement [9, 11]. 

There are several types of cloud computing: community, hybrid, private, and public. Services are divided into three 

categories: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). IaaS 

providers include Windows Azure Virtual Machines, Google Compute Engine, and Amazon Elastic Cloud Compute, 

which offer computational, storage, and network resources to meet client needs while reducing maintenance expenses 

[9, 12, 13].  

Data owners are hesitant to transfer sensitive data to cloud service providers (CSPs) because of the shared nature of 

cloud storage and concerns over CSP integrity [9, 14, 15]. Cloud data privacy is a major security concern, worsened by 

malicious users, leading to issues with data integrity and confidentiality. In Database Management Systems (DBMS), 

data integrity (completeness, correctness, and consistency) is critical. Problems arise when CSPs cannot guarantee that 

the information they provide to clients is accurate and complete [9, 16]. 

 

Key vulnerabilities in cloud storage include: 

● Inability of CSP: Potential data loss due to lack of computational capacity, failure to meet user requirements, and 

absence of a user-friendly data serialization standard. 

● Lack of Physical Scalability: Inability to seamlessly combine hardware resources, potentially benefiting 

unauthorized access and alteration. 

● Absence of Performance Monitoring: Monitoring data stored in a shared public pool may not suit users wanting 

control over workload distribution. 

● Data Threat: Inadequate protection strategies from CSPs can lead to data loss or damage. 

● Malicious Vendor: Lack of transparency and access control can lead to selling user data to third parties. 

● Data Sharing: While a key cloud feature, resource sharing can violate confidentiality and recovery policies. 

 

2. LITERATURE SURVEY 

Encryption cryptography converts messages into an incomprehensible format for unauthorized parties while allowing 

authorized individuals to decode them. This study focuses on two encryption techniques: symmetric Advanced 

Encryption Standard (AES) and asymmetric Rivest-Shamir-Adleman (RSA). AES uses a single key for 

encryption/decryption with key lengths of 128, 192, or 256 bits and a fixed block size of 128 bits. Longer keys enhance 
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security but increase computational time. RSA, a public key encryption method, supports key sizes up to 2048 bits. To 

protect diagnostic text data within medical images in IoT healthcare, this study proposes a hybrid model combining 

AES, RSA, and steganography (2D-DWT-1L or 2D-DWT-2L). The encrypted data is embedded into a cover image to 

securely conceal sensitive information [23]. 

Denoising signals in IoT networks is challenging due to node diversity, noise characteristics, and application 

requirements. A generalized approach combining energy correlation analysis with wavelet packet transform (WPT) is 

proposed. WPT decomposes signals into high/low-frequency components. Noise is identified, filtered, and signals 

reconstructed using inverse WPT. Comparing reconstructed energy with the original signal adjusts properties to 

recreate the signal while eliminating noise. Results show improved error probability by ~3 dB and 7 dB over DWT and 

WPT methods [3]. 

DWT denoising involves three steps: forward transformation, reduction of wavelet coefficients, and inverse 

transformation. Key considerations include wavelet type, thresholding method, and application of thresholds. Among 

22 wavelets (Haar, Daublets, Coiflets, Symmlets), the MDL method proved most effective. Thresholding techniques 

such as TI, level-dependent, and global (hard, soft, garrote, firm) were assessed using white Gaussian noise. Results 

indicated MDL reliably identifies optimal wavelet types and thresholds, and TI produces consistent results. These DWT 

techniques outperformed Savitzky-Golay and Fourier transform denoising on IR and HPLC data [5]. 

MQTT protocol is widely adopted for device-cloud interactions but poses security risks. Few studies offer thorough 

evaluations of MQTT security, and many reviews are cursory or omit key elements [7]. 

Location-based services are crucial in IoT. GPS accuracy drops when signals are weak, so opportunistic signals can 

locate devices. A residual neural network-based approach uses Wi-Fi, geomagnetic, temperature, pressure, humidity, 

and light signals for localization. Tests with three datasets showed noise-resistance and higher accuracy than existing 

techniques [24]. 

DDoS attack detection has mostly targeted traffic from traditional devices. IoT introduces large numbers of unsecured 

devices, now exploited to generate DDoS traffic in smart home and workplace settings [25]. 

Cloud computing is popular for cost, reliability, performance, and scalability. However, concerns about data security 

and accuracy keep some businesses using traditional storage. Data integrity is crucial, and researchers are developing 

new algorithms for integrity verification [9]. 

Cloud computing also enables privacy-preserving computation and ensures data integrity across data centers. However, 

maintaining security and integrity remains challenging. Sensitive information must be processed using privacy-

preserving and integrity-protecting methods. Recent advances include non-intrusive person recognition using face 

recognition for privacy preservation [26]. 

3. PROBLEM STATEMENT 

Key security challenges in MQTT-based IoT systems include: 

● Unauthorized Access: Exploitation of servers to post/subscribe using wildcards (#, +), accessing sensitive system 

information ($SYS/#) and compromising data. 

● Risks to Configuration and Personal Information: Plaintext transmission of identifiers (names, emails) 

enables spear-phishing. Displayed device configurations allow attackers to manipulate functionality. 

● Poor Credentials: Weak passwords enable dictionary attacks, leading to unauthorized access, data modification, 

or exfiltration. 

● Unsecured Transmission: Unencrypted data is vulnerable to sniffing and MiTM attacks, compromising 

confidentiality, integrity, and authenticity. 

● Denial-of-Service Attacks: Susceptible to TCP-based attacks (SYN flooding), protocol-specific attacks (SlowITe, 

SlowTT), QoS exploitation (especially level 2), and resource exhaustion via large payloads or Will messages. 

 

4. METHODOLOGY 

To protect MQTT messages against DoS attacks in DWT-based IoT transactions, we propose the Lebesgue Hash 

Message Double Authentication fused Deep Learning (LHMDA-DL) hybrid technique. It preprocesses data 

to discard extraneous instances, extracts features using a Lebesgue measure Gaussian Mixture, and secures 
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transmission via a hybrid LSTM and Hash Message Double Authentication Rules network. 

4.1 Dataset Description 

The MQTTset dataset simulates a real industrial IoT network using the MQTT protocol. An Eclipse Mosquitto broker 

connects eight sensors with different IPs, monitoring parameters like Temperature (T), Light Intensity (LI), Humidity 

(H), CO-Gas (CO), Motion (Room 1 & 2), Smoke (S), Door Lock (DL), Fan Speed (FS), and Fan  

Speed Controller (FSC), each with unique message frequencies. 

● PCAP files: raw, authentic, and attack traffic (DoS, Flooding, Bruteforce, SlowlTe, distorted). 

● CSV files: authentic and attack data (Bruteforce, SlowlTe, Flooding, DoS, corrupted). 

● Final datasets: Train70, Test30, and their reduced/augmented versions. 

 

Data is captured via the broker, processed with tshark into CSV files, and formatted into integrated, reduced, or 

augmented sets for training and testing. 

4.2  Hellinger Distributed Stochastic Neighbor Embedding – Based Preprocessing 

Acceptable data in various patterns must be processed before use to protect MQTT messages from DoS attack variants. 

The behavior of 25,000 samples is examined using the MQTT protocol. Superfluous instances are removed using 

Hellinger Distributed Stochastic Neighbor Embedding (H-DSNE) to minimize dataset dimensions. H-DSNE 

embeds high-dimensional data in low-dimensional spasce so that dissimilar objects are modeled by distant locations, 

and similar objects (e.g., sensors) by adjacent locations. The raw data is first prepared as a network sample vector 

matrix: 

 

𝑁𝑆 = [𝐹1𝐷1 𝐹1𝐷2 … 𝐹1𝐷𝑛 𝐹2𝐷1 𝐹2𝐷2 … 𝐹2𝐷𝑛 … … … … 𝐹𝑚𝐷1 𝐹𝑚𝐷2 … 𝐹𝑚 ] (1) 

 

Where feature set F and data subset D build the network sample vector matrix NS. H-DSNE assesses probabilities 

proportional to object similarity (e.g., temperature and humidity sensors). Because both subscribe to the humidity topic, 

they receive the same data and operate in tandem for humidity control. 

 
According to equation above, the conditional probability "Prob(j|i)" that "Sj" would choose "Si" as its neighbor if 

neighbors were chosen according to their probability density under Gaussian is the similarity between data points or 

sensors "Si" (i.e., humidity sensor) and "Sj" (i.e., temperature sensor). 

 

 
 

The Hellinger distance, which quantifies the similarity between two probability distributions and is expressed 

mathematically as follows, is then minimized to find the locations of data points or sensors. 

 
 

The probability distribution of two sensors (temperature and humidity) being positioned is represented by the symbols 

"Si (F)" and "Sj (F)" in equation above. When tracking and location data are supplied, the frequency of data transmission 

would be significantly higher. A map that takes into account the similarities between high dimensional inputs is 

produced by using Hellinger distance in relation to the neighboring points, which further reduces the dimensionality. 

The Hellinger Distributed Stochastic Neighbor Embedding-based Preprocessing pseudo code representation is shown 

below. 
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Input: Dataset ‘𝐷𝑆’, Features ‘𝐹 = {𝐹1, 𝐹2, … , 𝐹𝑚}’, Data ‘𝐷 = {𝐷1, 𝐷2, … , 𝐷𝑛}’, Sensor ‘𝑆 = 

{𝑆1, 𝑆2, … , 𝑆𝑠}’ 

Output: dimensionality reduced network samples ‘𝑥 ∈ 𝐷𝑅𝑁𝑆’ 

1: Initialize ‘𝑚’, ‘𝑛’, Network Samples ‘𝑁𝑆’, ‘𝑠’ 2: Begin 

4: Formulate sample vector matrix as given in (1) 

5: Measure probability of object similarity positioned in a room as given in (2) 6: Evaluate similarity of data point or 

sensors as given in (3) 

7: Measure Hellinger distance with which similarity between two probability distributions is quantified as given in (4) 

8: Return dimensionality reduced network samples ‘𝐷𝑅𝑁𝑆’ 9: End for 

10: End 

3: For each Dataset ‘𝐷𝑆’ with Features ‘𝐹’, Data ‘𝐷’, Sensor ‘𝑆’ and Network Samples ‘𝑁𝑆’ 

 

Algorithm - Hellinger Distributed Stochastic Neighbor Embedding-based Preprocessing 

As stated in the technique above, two different functions are used in order to reduce the dataset's dimensions for safe 

data exchange in DWT signal based IoT and eliminate superfluous instances from the MQTTset dataset. The first step 

is to perform dimension reduction using the raw data that was collected as input. The Distributed Stochastic Neighbor 

Embedding function is used in situations where distant points have a high possibility of modeling distinct things, but 

adjacent points process comparable items or sensors, eliminating duplicate instances. The similarity between two 

objects or sensors is then further assessed by using Hellinger distance, which further reduces the dimensionality. This 

in turn protects the MATT messages from identified DoS attack variations in IoT even at an early stage, hence reducing 

the training time significantly (temperature and humidity sensors, for instance, have a strong correlation with one 

another). 

 

4.3 Lebegue measure Gaussian Mixture based Feature Extraction 

Local neighborhood histograms are measured for each target feature from the DRNS. These histograms capture 

quantitative neighborhood features. Gaussian Mixture Models (GMMs) represent these histograms efficiently for 

similarity assessment. The probability density Prob(F) of a random feature is modeled by the GMM. The Lebesgue 

measure identifies the fittest GMM, determining the likelihood Likelihood(F) of extracting the most relevant feature 

(closer to 1 indicates higher likelihood). This process extracts 18 relevant features from the MQTTset (e.g., TCP flags, 

time_delta, MQTT msgtype, QoS, retain). 

 

 
Figure - Structure of Lebesgue measure Gaussian Mixture based Feature Extraction 

 

The purpose of using GMMs is to represent local neighborhood histograms, as they are faster and easier for similarity 

assessment to extract relevant characteristics. 

𝑃𝑟(𝐹)=Σ𝑤𝑖∗𝑁(𝐹|𝜇𝑖,𝜎𝑖) (5) 

 

The probability density Prob(F) is calculated by considering random feature F, number of Gaussian components m, 

weight wi, mean μi, and standard deviation σi. The Lebesgue measure determines the fittest GMM: 

𝐷=𝐶𝑀2log(0.5) (6) 
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𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 (𝐹)=exp(Δ2𝐷) (7) 

 

The Lebesgue correlative measure "𝐶𝑀2" is used to determine the likelihood of deriving the most relevant feature 

"𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 (𝐹)" from the a fore mentioned equations. This makes it evident that the likelihood has a range of "[0,1]" 

for any "Δ." The feature being retrieved is more likely the higher the likelihood, and vice versa. The table lists the 18 

features that were retrieved from the MQTTset dataset using the Gaussian Mixture and Lebesgue measure. 

 

4.4 Selecting Features using HMDAR-LSTM hybrid network for secure MQTT message transmission 

from detected DoS variants 

The most difficult jobs for secure MQTT message transmission from detection DoS variations are obtaining 

dimensionality reduced network samples with relevant features, then extracting the most valuable network features. To 

address this, a number of unique network flow characteristics were used. HMDAR-LSTM (Hash Message Double 

Authentication Rules and Long Short-Term Memory), a deep learning-driven hybrid model, is suggested to choose 

selective features and secure MQTT message delivery from identified DWT signal based IoT variants. Features used to 

generate the Hash Message Authentication Code are chosen from the network trace dataset after relevant features have 

been retrieved. First, a feature selection model based on Hash Message Double Authentication Rules is used. Devices 

get necessary features (Connect, ConnectAck, ConnectRate, PublishMessage, ConnAct, DisconnectReq) from network 

traffic during this process, in addition to the extracted characteristics listed in Table. 

The proposed work also considers network traffic features Connect and ConnectAck of CONNECT and CONNACK 

messages for training. Two variables, Connection Message Ratio (CMR) and Connection Acknowledgement Message 

Ratio (CAMR), are obtained. 

𝐶𝑀𝑅 =  
𝑁𝑐𝑜𝑛𝑛𝑒𝑐𝑡

𝑁
                                                                                        (8) 

 

The Connection Message Ratio (CMR) is the ratio of the count of connect feature (Nconnect) to total MQTT messages 

(N). 

 

𝐶𝐴𝑀𝑅 =  
𝑁𝑐𝑜𝑛𝐴𝑐𝑘

𝑁
                                                                                        (9) 

The Connection Acknowledgment Message Ratio (CAMR) is the ratio of connection acknowledgement messages from 

the MQTT broker (NConnAck) to total MQTT messages (N). 

HMDAR is then used by the HMAC inference engine to assess each MQTT client's anomaly measurement. The output 

variable anomaly assesses the message's authenticity using CMR and CAMR. The MQTT broker executes HMDAR if 

anomalies are found; otherwise, the subscriber receives standard data packets. The HMAC inference engine creates 

authentication rules as IF-THEN statements: 

● IF CMR = LOW and CAMR = LOW → anomaly = Normal 

● IF CMR = LOW and CAMR = MEDIUM → anomaly = Abnormal 

● IF CMR = HIGH and CAMR = MEDIUM → anomaly = Attack 

 

Hash Message Authentication Code Double Authentication rules are developed based on the above triplet: 

𝐻𝑀(𝑆𝐾, 𝑁𝑆) = 𝐻𝑎𝑠ℎ((𝑆𝐾′ ⊕ 𝑂𝑃𝐴𝐷)||𝐻𝑎𝑠ℎ((𝑆𝐾′ ⊕ 𝐼𝑃𝐴𝐷)||𝑁𝑆)) (10) 

 

 
 

The cryptographic hash function "Hash" is applied to network samples "NS" using secret key "SK" with outer (OPAD) 

and inner padding (IPAD) for double authentication. The HMDAR-LSTM structure is depicted in Figure. 
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Figure - Structure of Hash Message Double Authentication Rules via Long Short 

 

Term Memory model 

Determining which features the model will keep in the cell state and which will be discarded is the first stage in the 

HMDAR-LSTM process for protecting MQTT messages against identified DoS variants in DWT signal-based IoT data, 

as seen in the image. The forgetting gate formula below helps make this decision. The "UFor" function receives as input 

the features retrieved and selected using the Lebesgue measure and Gaussian Mixture with Hash Message Double 

Authentication criteria. Through weight "WMFor" and bias "BFor," the forget gate reads "UFor" and "H(t-1)"  and 

outputs a value between 0 and 1 in cell state "C(t-1)" (i.e., 1 denotes retain and 0 denotes discard). 

𝐹𝑜𝑟𝑡 = tanh 𝑥 (𝑊𝑀𝐹𝑜𝑟𝐷𝑅𝑁𝑆𝑡 + 𝑈𝐹𝑜𝑟𝐻𝑡−1 + 𝐵𝐹𝑜𝑟) (12) 

 

The second stage is to use the forget gate results to determine how much new information should be added to the cell 

state. The information that has to be updated is determined by the hyperbolic tangent function, which is expressed 

mathematically as follows. 

𝐼𝑛𝑡 = tanh 𝑥 (𝑊𝑀𝐼𝑛𝐷𝑅𝑁𝑆𝑡 + 𝑈𝐼𝑛𝐻𝑡−1 + 𝐵𝐼𝑛)   (13)  

 

The hyperbolic tangent function then produces the update vector shown below. 

𝑂𝑢𝑡𝑡 = tanh 𝑥 (𝑊𝑀𝑂𝑢𝑡𝐷𝑅𝑁𝑆𝑡 + 𝑈𝑂𝑢𝑡𝐻𝑡−1 + 𝐵𝑂𝑢𝑡)              (14) 

𝐶𝑒𝑙𝑙𝑡 = tanh 𝐶𝑒𝑙𝑙 (𝑊𝑀𝐶𝑒𝑙𝑙𝐷𝑅𝑁𝑆𝑡 + 𝑈𝐶𝑒𝑙𝑙𝐻𝑡−1 + 𝐵𝐶𝑒𝑙𝑙)              (15) 

 

The two components are then merged to create the cell state update shown below using the two resultant values 

mentioned above. 

𝑐𝑡 = 𝐹𝑜𝑟𝑡 ⨀ 𝑐𝑡−1 + 𝐼𝑛𝑡 ⨀ 𝐶𝑒𝑙𝑙𝑡              (16) 

 

Lastly, the output of the cell is represented by the output gate in equation. The cell state is processed using a hyperbolic 

tangent function to produce a value between "-1" and "1," as shown below, after first evaluating the cell portion that 

needs to be exported. 

𝐻𝑡 = 𝑂𝑢𝑡𝑡⨀ tanh 𝐻 (𝐶𝑡) (17) 

 

The input vector is obtained from the dimensionality reduced network samples (DRNS) using the equations above. 

Activation vectors for the forget gate, input gate, output gate, and cell input gate are denoted as "Fort," "Int," "Outt," 

and "Cellt," respectively. The hyperbolic tangent function "tanh" activates these vectors according to the gates' 

operation. The weight matrix (WM) and bias vector (B) are learned during training. Double authentication ensures 

message transmission protection, securing MQTT messages (DRNS) from identified DoS variants in DWT signal-based 

IoT data. The following pseudo code represents HMDAR-LSTM for protecting MQTT messages using double 



Journal of Information Systems Engineering and Management 
2024, 9(4) 
e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  
 

 8 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

authentication. 

 

Input: Dataset ‘𝐷𝑆’, Features ‘𝐹 = {𝐹1, 𝐹2, … , 𝐹𝑚}’, Data ‘𝐷 = {𝐷1, 𝐷2, … , 𝐷𝑛}’, Sensor ‘𝑆 = 

{𝑆1, 𝑆2, … , 𝑆𝑠}’ 

Output: Computationally efficient secure message transmission with detected DoS variants 

Step 1: Initialize dimensionality reduced network samples ‘𝐷𝑅𝑁𝑆’, 𝑚’, ‘𝑛’, ‘𝑠’, count of the connect feature ‘𝑁𝑐𝑜𝑛𝑛𝑒𝑐𝑡’, 

total number of MQTT messages ‘𝑁’, connection acknowledgement messages from the MQTT broker 

Step 2: Begin 

Step 3: For each Dataset ‘𝐷𝑆’ with Features ‘𝐹’, Data ‘𝐷’, Sensor ‘𝑆’ and dimensionality reduced network samples 

‘𝐷𝑅𝑁𝑆’ 

//Feature extraction 

Step 4: Formulate Gaussian mixture model to extract the dimensionality reduced features as given in equation (5) 

Step 5: Obtain the fittest GMM using the Lebesgue measure as given in equations (6) and (7) 

Step 6: If ‘𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 (𝐹) > 0.5’ 

Step 7: Return features extracted ‘𝐹𝐸’ 

Step 8: End if 

Step 9: If ‘𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 (𝐹) ≤ 0.5’ 

Step 10: Non trivial features 

Step 11: Go to step 27 

Step 12: End if 

//Feature selection 

Step 13: Evaluate Connection Message Ratio as given in equation (8) 

Step 14: Evaluate Connection Acknowledgement Message Ratio as given in equation (9) 

Step 15: If ‘𝐶𝑀𝑅 = 𝐿𝑂𝑊 𝑎𝑛𝑑 𝐶𝐴𝑀𝑅 = 𝐿𝑂𝑊’ 

Step 16: Go to step 18 

Step 17: End if 

Step 18: Formulate Hash Message Authentication Code Double Authentication rules as given in equations (10) and 

(11) 

Step 19: If ‘𝐶𝑀𝑅 = 𝐿𝑂𝑊 𝑎𝑛𝑑 𝐶𝐴𝑀𝑅 = 𝑀𝐸𝐷𝐼𝑈𝑀’ 

Step 20: Go to step 18 

Step 21: End if 

Step 22: If ‘𝐶𝑀𝑅 = 𝐻𝐼𝐺𝐻 𝑎𝑛𝑑 𝐶𝐴𝑀𝑅 = 𝑀𝐸𝐷𝐼𝑈𝑀’ 

Step 23: Go to step 18 

Step 24: End if 

//Secure message transmission 

Step 25: Formulate forgetting gate as given in equation (12) 

Step 26: Update the information according to the resultant forgetting gate activation vector as given in equation (13) 

Step 27: Obtain output gate’s activation vector and cell input gate’s activation vector as given in equations (14) and 

(15) 

Step 28: Update cell state as given in equations (16) and (17) 

Step 29: End for Step 30: End 
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Algorithm - Hash Message Double Authentication Rules and Long Short-Term Memory 

According to the algorithm, relevant characteristics are first retrieved using the Gaussian Mixture Model with 

dimensionality reduced network samples and associated MQTT client or sensor data packets. High-likelihood features 

are then extracted using the Lebesgue measure and the fittest GMM. Based on the Connection Message Ratio and 

Connection Acknowledgment Message Ratio, the most selective features are chosen. MQTT messages from DoS 

variations are then subjected to Hash Message Authentication Code Double Authentication rules. Finally, message 

transmission protection is ensured using the hyperbolic tangent function. 

 

Figure – Fault Diagnosis using DWT-LSTM model 

 
This Figure outlines a workflow for fault diagnosis using a DWT-LSTM model. Raw data from multiple sensors 

(vibration, temperature, pressure) is processed using wavelet decomposition, selecting a suitable wavelet basis and 

decomposition levels. DWT decomposes the data into frequency bands, capturing both time and frequency information. 

Data fusion combines information from different sensors into a unified format, then split into training and validation 

datasets. 

The fused data is fed into an LSTM network, initialized with specified units and parameters. During training, the 

network processes input data, calculates loss by comparing predictions with actual outcomes, and adjusts parameters 

iteratively until convergence. The trained model is then saved. 

Finally, the trained DWT-LSTM model is tested on a separate dataset to detect anomalies and provide fault diagnosis. 

This approach combines DWT’s frequency-domain analysis with LSTM’s time-series learning, making it effective for 
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diagnosing faults in dynamic systems. 

 

4.5 Key management strategies concerning cloud storage level 

To enhance cloud data security, a technique combining encryption and data distribution is proposed. Key management 

strategies include: 

● Hierarchical Key Technique: Uses secret sharing and key hierarchy derivation for improved key security. 

● Private Key Update Technique: Identity-based encryption updates keys for non-revoked users, simplifying PKI. 

● Key Separation Technique: Preserves privacy for shared sensitive data. 

● Attribute-based Encryption (ABE) Key Technique: Achieves semantic security for confidentiality without 

revealing decryption keys. 

● Multiple Key Technique: Uses k-NN query-based methods where Data Owner (DO) and users hold distinct keys. 

The data integrity methodology involves three actors: Data Owner (DO), Cloud Service Provider (CSP), and optional 

Third-Party Auditor (TPA). It consists of three phases: 

● Data Processing Phase: Files are split into blocks, encrypted, digests are created, keys are generated, and blocks 

are signed before being sent to CSP. 

● Acknowledgment Phase (Optional): CSP acknowledges receipt, though often omitted to reduce overhead. 

● Integrity Verification Phase: DO/TPA sends a challenge to CSP, which responds with proof metadata. TPA/DO 

verifies integrity, and the result is sent to DO. 

 

4.6 Stages of the data integrity methodology 

In cloud storage, data integrity ensures accuracy and consistency, giving customers confidence in outsourcing data. This 

design involves three actors: the Data Owner (DO), Cloud Storage/Service Provider (CSP), and an optional Third-Party 

Auditor (TPA) [9, 34]. The DO creates data and uploads it to cloud storage. The CSP provides Infrastructure as a Service 

(IaaS). The TPA verifies the accuracy and integrity of outsourced data, reducing the DO’s computational and 

transmission overhead [9, 35, 36]. Sometimes, the DO verifies data integrity without TPA. The following describes the 

three stages of a data integrity approach. 

 

4.6.1 Data processing phase: Data files are divided into blocks [37], encrypted [38], hashed, masked [39], keys 

are generated [40], and encrypted blocks signed [41]. Encrypted or obfuscated data is then sent to cloud storage. 

4.6.2 Phase of Acknowledgment: Optional but important if CSP unintentionally deletes data or hides data loss 

[39]. Most research omits this phase to reduce computational overhead. 

4.6.3 Phase of integrity verification: DO/TPA sends a challenge to CSP, which replies with metadata for 

verification. If verification is completed, the audit result is sent to DO. 

 

 

 
Figure – Cycle of Data Integrity Method 
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5 RESULTS AND DISCUSSION 

5.2 Security performance evaluation in relation to processing time and traffic overhead 

This section measures the security measure in terms of overhead and processing time. The following is a mathematical 

expression for the processing time. 

𝑃𝑇 = ∑ 𝑁𝑆𝑖

𝑁

𝑖=1

∙ 𝑇𝑖𝑚𝑒[𝑃𝑢𝑏 + 𝑆𝑢𝑏]                                   (18) 

 

The processing time (PT) is calculated using equation (18) above, accounting for the network samples (NSi) used for 

simulation and the time spent on publishing (Pub) and subscribing (Sub), respectively. Using the suggested LHMDA-

DL approach and the current approaches [42] and [43], Table shows the processing time results by changing the values 

in equation (18). 

 

Table - Processing time using DWT signal based IoT Monitoring Systems, SEC-RMC, LHMDA-DL, and Deep Learning 

Network samples 

Processing time (ms) 

LHMDA- 

DL 
SEC-RMC 

Deep Learning and DWT signal based 

IoT Monitoring System 

2500 875 1075 1375 

5000 995 1135 1425 

7500 1035 1235 1565 

10000 1123 1345 1735 

12500 1235 1515 1825 

15000 1115 1435 1715 

17500 1035 1315 1635 

20000 1000 1225 1525 

22500 985 1145 1415 

25000 1035 1215 1535 

 

The total processing time is recorded on both the Publisher and Subscriber sides of MQTT nodes, measured from 

message publication by the MQTT client to receipt by the subscriber. Processing occurs in two stages: the publication 

stage (client to broker) and the subscription stage (broker to recipient client). Experiments [42, 43] show the LHMDA-

DL technique is faster than traditional methods because relevant features are first extracted using the Lebesgue measure 

Gaussian Mixture, then the most selective features are obtained based on Connection Message Ratio and Connection 

Acknowledgment Message Ratio. This increases overhead to achieve security but provides protection against DoS 

attacks. The figure shows total processing times for traditional approaches [42, 43] and the proposed LHMDA-DL 

method. 
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Figure – Graphical Representation of Processing time 

 

MQTT requires less processing time as it lacks default security options, though both publishing and subscribing times 

are measured. Message size varies with the MQTT payload. Processing time per message is set for both publisher and 

subscriber, as the publisher uses the Lebesgue measure to select the appropriate GMM for secure transmission. 

Publishing messages takes longer than subscribing since the publisher ensures security. The LHMDA-DL approach 

reduced processing times by 17% compared to [42] and 34% compared to [43]. 

 

5.3 Traffic Overhead 

This section discusses the traffic overhead, which is related to the recommended techniques for enhancing MQTT 

interaction security. The following is a mathematical formulation of the traffic overhead. 

 
The traffic overhead (TO) is calculated using equation (19) above, accounting for the network samples used in the 

simulation process (NSi) and the memory used by the respective MQTT clients for publishing (Pub) and subscribing to 

the messages (Sub). Kilo Bytes (KB) are used as the unit of measurement. By replacing the values in equation (19) with 

the suggested LHMDA-DL approach and the current methods [42] and [43], Table shows the traffic overhead results. 

 

Table - Utilizing LHMDA-DL, SEC-RMC, and Deep Learning and DWT signal based IoT Monitoring Systems to 

monitor traffic overhead 

Network samples Traffic overhead (KB) 

LHMDA- 

DL 

SEC-RMC Deep Learning and DWT signal based 

IoT Monitoring System 

2500 125 175 225 

5000 155 215 255 

7500 175 235 285 

10000 200 255 315 

12500 225 285 335 

15000 185 250 300 

17500 155 225 275 

20000 195 245 260 

22500 225 295 315 

25000 250 300 335 
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As previously mentioned, an excessive MQTT data packet density results in little control overhead. The traffic overhead 

of the suggested approach was calculated using the full size of the data packet. The number of interacting data packets 

in the MQTT network is determined by the features that are chosen; the features that are chosen will increase both the 

number of data packets and the size of the data. This is due to the fact that obtaining the most relevant and selected 

characteristics will also significantly lower the traffic overhead. 

 
Figure - Graphical Representation of Traffic Overload 

 

The suggested solution increases total data packet size linearly with network samples, but traffic overhead decreases as 

samples grow, demonstrating higher security. Using 2500 samples, the method caused 125KB traffic overhead per 

communication, compared to 175KB and 225KB for [42] and [43]. The approach adds some overhead but reduces 

overall MQTT traffic, confirmed on both publisher and subscriber sides. HMDAR uses Connection Message Ratio and 

Connection Acknowledgment Message Ratio to prevent DoS attacks. Traditional methods [42, 43] have higher overhead 

due to lack of security. LHMDA-DL reduces traffic overhead by 24% and 35% compared to [42] and [43], respectively. 

 

5.4 Performance evaluation of the method's effectiveness in terms of message transmission error rate 

and accuracy 

This section presents the message transmission accuracy for evaluating the method's efficacy and efficiency. The 

correctness of the message transmission is assessed as follows. 

 
 

The message transmission accuracy (MTA) is calculated using equation (20) above, accounting for the network samples 

delivered (NSsent) and received (NSrecvd). The percentage (%) is used to measure it. By replacing the values in equation 

(20) with the suggested LHMDA-DL approach and current methods [42] and [43], Table shows the message 

transmission accuracy. 
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Table - Accuracy of message transmission with LHMDA-DL, SEC-RMC, and DWT signal based IoT Monitoring 

System and Deep Learning 

Network samples 

Message transmission accuracy (%) 

LHMDA- 

DL 
SEC-RMC 

Deep Learning and DWT signal based 

IoT Monitoring System 

2500 93 91.4 88.6 

5000 92.15 90 86.35 

7500 92 89 85 

10000 91.35 88.25 84.25 

12500 91 88 83 

15000 90 86 82 

17500 90 86 82 

20000 91.35 87.35 83.15 

22500 93 88 84 

25000 93.35 90 85 

 

 
 

Figure 6 shows message transmission accuracy for 2,500–25,000 network samples over ten simulation iterations. 

Sample size did not affect outcomes. With 2,500 samples, LHMDA-DL achieved 93% accuracy, compared to 91.4% [42] 

and 88.6% [43]. The improvement comes from extracting relevant features using Gaussian Mixture and Lebesgue 

measure, then selecting the most relevant features via HMDAR-LSTM using Connection Message Ratio and Connection 

Acknowledgment Message Ratio. This distinguishes DoS from non-DoS variants, protecting MQTT messages and 

increasing accuracy by 4% over [42] and 9% over [43]. 

 

5.5 Message Transmission Error Rate 

The message transmission error rate is finally determined in this part. This part assesses the message transmission error 

rate to confirm the method's effectiveness. 

 
According to equation (21) above, the message transmission error rate (MTE) is calculated by securely calculating the 

network samples that were transmitted by the publisher (called "NSsent") and received by the subscriber (called 

"NSmissed"). The percentage (%) is used to measure it. Using the suggested LHMDA-DL approach and current 

techniques [42] and [43], Table shows the message transmission error rate by changing the values in equation (21). 
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Table - Error rate of message transmission utilizing SEC-RMC, LHMDA-DL, and Deep Learning and DWT signal 

based IoT Monitoring System 

Network samples 

Message transmission error rate (%) 

LHMDA- 

DL 
SEC-RMC 

Deep Learning and DWT signal based 

IoT Monitoring System 

2500 7 8.6 11.4 

5000 7.35 9.35 12 

7500 7.85 10.15 12.35 

10000 8 11 13 

12500 8.25 11.35 13.55 

15000 7.25 11 13 

17500 7 10.35 12.15 

20000 6.35 10 11.65 

22500 7 10.25 11.85 

25000 7.35 10.85 12.15 

 

 

 
Figure – Graphical Representation of message transmission error rate 

 

Figure shows the message transmission error rate for LHMDA-DL, SEC-RMC [42], and Deep Learning and IoT-Based 

Monitoring System [43]. The LHMDA-DL method (blue line) has a significantly lower error rate. With 2,500 network 

samples, LHMDA-DL missed 175 packets (7% error), compared to 215 packets (8.6%) [42] and 285 packets (11.4%) 

[43]. Using Connection Message Ratio and Connection Acknowledgment Message Ratio with HMDAR-LSTM, MQTT 

messages are protected from DoS variants. LHMDA-DL reduces the error rate by 28% compared to [42] and 40% 

compared to [43]. 

6 CONCLUSION 

The important developments in tackling issues of security, effectiveness, and dependability in cloud computing and IoT 

systems. The paper offers a strong defense against risks like Denial-of- Service (DoS) attacks for MQTT-based IoT 

transactions by presenting the Lebesgue Hash Message Double Authentication integrated Deep Learning (LHMDA-DL) 

framework. High message transmission accuracy and low error rates are ensured by the use of Long Short-Term 

Memory (LSTM) networks for authentication, Gaussian Mixture Models for feature extraction, and Discrete Wavelet 

Transform (DWT) for noise reduction. By reducing processing times and traffic overhead while retaining superior 

performance in protecting IoT connections, the research shows how effective the suggested method is. This 

demonstrates how well-suited the method is for real-time industrial applications where scalability and dependability 
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are essential. The study also examines thorough approaches to guaranteeing cloud data integrity, with a focus on 

encryption and cutting- edge key management technologies. By addressing flaws in cloud storage systems, these 

strategies improve data security and uphold user and service provider confidence. To sum up, combining cutting-edge 

signal processing, machine learning, and cryptography methods provides a scalable and effective means to address 

issues with the Internet of Things and the cloud. The results highlight how these techniques may enhance system 

security and operational effectiveness, which makes them extremely applicable to a variety of cloud computing and IoT 

applications. 
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