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Reliable LiDAR–RGB calibration is foundational for perception systems in 

autonomous robotics, industrial automation, and fleet intelligence platforms. Many 

existing methods rely on large, specialized calibration fixtures or controlled 

environments, which can limit field deployment. This paper presents a compact and 

practical extrinsic calibration technique that leverages small planar calibration 

boards and a unified non-linear optimization framework to estimate rigid transforms 

between RGB cameras and LiDAR sensors. The approach extracts planar constraints 

from each modality and solves a tightly coupled SE(3) optimization problem using 

robust loss functions. Simulation and physical platform experiments demonstrate 

that the method achieves sub-centimeter accuracy with only a minimal set of 

observations, while avoiding specialized fiducial infrastructure.  
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I. Introduction 

Fusion of LiDAR and RGB imagery enables rich 3D scene understanding by combining precise spatial 

information with high-resolution visual semantics. A critical requirement for successful fusion is 

accurate knowledge of the relative pose between the sensors. Traditional calibration pipelines often rely 

on large custom targets, reflective surfaces, or active markers, adding cost and logistical constraints. 

 

This work proposes a calibration method that uses standard printed planar patterns (e.g., A3 

checkerboards) and geometric plane correspondences to recover the extrinsic transformation. The 

method supports diverse camera models, requires minimal user interaction, and is designed for both 

laboratory and in-field execution, making it suitable for robotics, autonomous fleets, drones, and 

intelligent industrial systems. 
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II. Related Work 

A. Target-less LiDAR–Camera Calibration Approaches (Fully Automatic) 

Target-less calibration methods eliminate the need for physical markers or checkerboards, instead 

relying on environmental cues and statistical alignment between image intensities and LiDAR 

point cloud properties. 

Core Principle 

These systems exploit natural scene structure, photometric patterns, or learned correspondences to 

infer the extrinsic transformation. They typically optimize a mutual information, spatial alignment, or 

feature correlation objective across many sensor frames. 

Key Techniques 

1. Mutual Information-Based Calibration 

o Proposed in early robotics research 

o Treats LiDAR reflectivity map and camera intensity image as probabilistic 

distributions 

o Calibration estimates maximize joint information gain between modalities 

o Robust to sparse calibration signals 

o Slow convergence and sensitive to flat/texture-poor scenes 

2. Geometry-Driven Alignment (Scene Structure/SLAM-Based) 

o Leverages reconstructed 3D structure from RGB (SfM/SLAM) and LiDAR scans 

o Aligns point clouds from each feature source 

o Very accurate in structured urban scenes (vertical planes, rectilinear geometry) 

o Performance drops in cluttered, natural, subterranean, or indoor environments 

without strong lines/planes 

3. Deep Learning Self-Calibration 

o Neural networks regress extrinsics from dense feature volumes 

o Networks build cost-volumes between LiDAR BEV maps and camera depth maps 

o Capable of online adaptation to hardware drift 

o Dependency on large datasets; may fail under unusual geometry or textures 

o Limited interpretability and prone to catastrophic error when image depth inference 

fails 

Strengths 

• No setup required — truly plug-and-play 

• Enables continuous self-calibration 
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• Useful for AV fleets, drones, field robots 

Limitations 

• Lower precision than target-based systems 

• Requires diverse scenes & motion; fails in static camera setups 

• Sensitive to inconsistent illumination or poor LiDAR reflectivity 

• Struggles when modalities do not share correlated texture/geometry 

Use Cases 

• Autonomous vehicles operating in textured urban spaces 

• SLAM systems in continuously varying environments 

• Long-term robotic systems that must recalibrate online 

 

Notes 

• Needs scene motion or varied viewpoints 

• Good for online self-calibration 
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• Error behavior depends on texture + geometry richness 

B. Target-Based Calibration Approaches (Engineered Fiducials) 

These systems utilize physically engineered markers or objects that are designed to be visible 

and distinguishable in both camera images and LiDAR scans. 

Core Principle 

By designing a known geometric calibration object detectable in both modalities, one can derive precise 

3D correspondences and solve a well-posed rigid-body transformation problem. 

Types of Calibration Targets 

1. Laser-Printed Patterns (Checkerboards with Geometric Hacks) 

o Modified checkerboards with reflective inks, holes, or retro-reflectors 

o Corners/edges used for camera; hole boundaries used for LiDAR point clustering 

2. 3D Geometric Calibration Targets 

o Boxes, pyramids, polyhedral surfaces 

o Extract corners from LiDAR via line-fitting and point-plane intersections 

o Extract 2D/3D corners from images using pose estimation 

3. Spherical or Cylindrical Targets 

o LiDAR robustly detects circular surfaces as spherical point clusters 

o Camera detects circle centers or fiducial tag at sphere center 

4. Hybrid Vision-ArUco/AprilTag Targets 

o Fiducial markers for camera 

o Retroreflective or hole-based feature localization for LiDAR 

Accuracy Mechanism 

Target geometry introduces ground-truth correspondences, leading to: 

• Sub-millimeter translation accuracy 

• Sub-degree rotational error 

• Analytical/joint optimization via PnP + ICP 

Strengths 

• Highest precision 

• Minimal ambiguity — engineered geometry eliminates correspondence guessing 

• Works in uniform scenes without environmental cues 
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Limitations 

• Manufacturing cost and size constraints 

• Transport/setup difficulty in field environments 

• Not portable for large-scale fleet/truck calibration 

• Not feasible for emergency recalibration scenarios 

Use Cases 

• Factory or research calibration bays 

• Production robotic cells 

• High-end AV R&D labs 

 

Notes 

• Highest precision 

• Requires custom physical setup 

• Preferred in labs and automotive calibration facilities 

C. Planar-Constraint Calibration Approaches (Geometric Minimalism) 

This class of methods uses planar surfaces (e.g., checkerboards, walls, printed boards) to derive 

calibration constraints — combining the practicality of target-less methods with the accuracy of target-

based strategies. 

Core Principle 

If a calibration board or planar surface is visible by both sensors, the structure defines a plane in each 

coordinate frame: 
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𝜋𝑐 = (𝑛𝑐, 𝑑𝑐), 𝜋𝑙 = (𝑛𝑙, 𝑑𝑙) 

Where: 

• 𝑛= normal vector 

• 𝑑= orthogonal distance to origin 

The calibration seeks a transformation 𝑋 = [𝑅 ∣ 𝑡] ∈ 𝑆𝐸(3)such that: 

𝑅𝑛𝑙 ≈ 𝑛𝑐 , 𝑑𝑐 ≈ 𝑑𝑙 + 𝑛𝑐
𝑇𝑡 

i.e., align plane normals & distance offsets. 

Variants 

1. Two-Stage Solvers 

o Solve rotation via normal alignment (SVD) 

o Solve translation via distance constraints 

o Simple but error-propagation from staged estimation 

2. Joint SE(3) Solvers 

o Direct minimization of plane-to-plane residuals 

o Coupled estimation improves convergence 

o Robust loss functions for noisy LiDAR planes 

3. Semi-Automatic LiDAR Plane Selection 

o RANSAC plane fitting on LiDAR via ROI selection 

o Camera plane extracted from approximate PnP on corners 

Strengths 

• Very small targets (A3/A4 boards) 

• No special hardware required 

• Suitable for in-field calibration 

• Robust vs. LiDAR sparsity (planes easier than corners) 

Limitations 

• Requires planar target visibility from multiple viewpoints 

• Manual annotation still common in LiDAR frame 

• Accuracy depends on distribution of plane poses 

Use Cases 

• Drones 
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• Mobile robots & warehouse fleets 

• Trucks & industrial vehicles with on-vehicle lidars 

• Field engineering applications 

Why It Matters 

This category hits the sweet spot: 

• Practical + portable 

• Accurate 

• Works in real environments 

• Minimal cost 

 

Notes 

• No special hardware — just printed board 

• Works with few views but improves with many 

• Powerful for field calibration & fleet robotics 

 

III. Methodology 

A. Overview 

The core idea is to observe a planar checkerboard from both sensors, extract the plane parameters, and 

optimize the relative transformation that minimizes geometric discrepancy across views. 

B. Pipeline 

1. Acquire synchronized LiDAR and camera frames 

2. Detect planar board in camera image and solve its pose 
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3. Select corresponding LiDAR points and fit plane (RANSAC) 

4. Repeat across multiple sensor poses 

5. Solve global SE(3) optimization with Huber loss 

C. Objective Function 

Let each observation pair define planes 𝜋𝑙and 𝜋𝑐in LiDAR and camera frames, respectively. The 

extrinsic matrix 𝑋 ∈ 𝑆𝐸(3)is obtained via: 

𝑋\* = arg⁡min⁡
𝑋

∑

𝑖

𝜌(∥ 𝑋𝜋𝑙
𝑖 − 𝜋𝑐

𝑖 ∥) 

A robust M-estimator mitigates outlier planes, and Gauss-Newton refinement optimizes the pose. 

 

IV. Experimental Evaluation 

A. Simulation 

Synthetic Gazebo experiments introduce structured noise to assess convergence behavior. With as few 

as 3–5 planar observations, the system achieves millimeter-scale translation accuracy and tightly 

bounded orientation error. Increasing plane observations further improves consistency. 

 

B. Real-World Results 

Evaluations on a sensor platform with Ouster LiDAR and stereo RGB cameras confirm practical 

deployment viability. Across fisheye and narrow-FOV lenses, the proposed method attained: 
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• ~5–7 mm translation error 

• ~0.01 rad orientation error 

These results match or exceed systems requiring custom fabrication.  

sensors-24-00956 

 

V. Discussion 

Key advantages: 

• Uses common printed patterns (A3/A4) 

• Portable and suitable for on-vehicle calibration 

• Robust to LiDAR sparsity and noise 

• Joint pose estimation improves convergence over decoupled schemes 

Operational considerations include maintaining overlapping fields of view and ensuring approximate 

temporal synchronization during acquisition. 

 

VI. Conclusion 

We present a field-ready extrinsic calibration framework for LiDAR–camera systems that eliminates 

dependence on specialized targets. By exploiting small planar markers and coupling rotation-

translation optimization, the method provides sub-centimeter accuracy with minimal operator effort 

and hardware overhead. This makes it particularly suitable for industrial robots, autonomous fleet 

systems, and mixed-environment robotics deployments.  
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