

Cross Functional Leadership Models for Large Scale Engineering Programs in Modern Digital Ecosystems

Kaushik Ponnappally
Engineering Program Manager

ARTICLE INFO

ABSTRACT

Received: 04 May 2021

Revised: 10 Jun 2021

Accepted: 20 Jun 2021

The digital engineering programs, which involve massive work sets, need robust cross-organization management as there is a great degree of interdependence, short delivery durations, and transition among complex technologies. This paper will look at the effect of the type of leadership practices on coordination, the speed of delivery and reliability of digital ecosystems on the national scale. A survey of 268 engineering and product professionals conducted to conduct a quantitative study on how to enhance coordination across teams reveals that clear and established decision making, shared prioritization and joint governance have a strong effect on enhancing the coordination between teams. Findings show that effective coordination enhances stability in deployment, minimal failures and improvement in performance in deliveries. The mediation analysis indicates that leadership has a direct and indirect influence on outcomes in terms of quality of coordination. The paper identifies cross-functional leadership as a primary motivating factor of success in the contemporary digital programs.

Keywords: Digital, Leadership, Cross-functional, Engineering Programs

I. INTRODUCTION

The present-day digital ecosystems require numerous collaboration efforts by engineering, product, architecture, and security teams. The larger the system becomes (in terms of microservices and multi-cloud platforms), the less the system is coordinated, and the more significant leadership becomes. Big programs require common purposes, effective decisions and effective coordination among functions. In the absence of this, there is the occurrence of delays, failure and communication breakdowns. It is research on the role played by leadership that is cross-functional in the process of supporting large engineering programs and enhancing performance. It determines the effects of leadership on coordination, speed of delivery and reliability of a system through a quantitative method. This aims at providing organizations with data in an attempt to come up with superior leadership models to adopt in digital services at the national level.

II. RELATED WORKS

Coordination Challenges in Engineering Programs

The engineering programs are large which implies that there is profound coordination challenges due to large number of engineering teams involved, abundant task unpredictability and constant change. The agile techniques were initially designed to work with small teams that are autonomous, although companies have adopted agile techniques in multi-team programs that can take up to years. This change poses new coordination requirements in technical and product layers, architecture and leadership layers.

A case study of 12 teams over 4 years indicates that mass programs need significantly more coordinating mechanisms than most common directions of agile directions would [1]. The paper points out that coordination of complicated programs is not a static concept. Rather, practices change with time as uncertainty is modified, the team structure is altered and interdependency is increased or reduced. Coordination modes linking feedback would be of particular importance as they will assist the teams in adjusting the decisions swiftly as well as handle risks that occur.

Studies also indicate that scaling agile in an organization has uneven coordination issues throughout the program. The variation in tools, interpersonal communication, role clarity, and level of autonomy is among the factors that lead to inconsistency in coordinating behavior among the teams [2].

When the number of teams goes up, leaders find it harder to synchronize decision making, balance the work schedules, manage dependencies and release schedules. Empirical research indicates that the coordination is one of the core success factors in successful large-scale initiatives and recommends the focus on learning early about cross team interactions, communication patterns and governing frameworks that sustain momentum on hundreds of contributors [2].

Larger engineering ecosystems also cause team competencies to be imbalanced. There are numerous teams who do not have all the expertise to provide mutually supporting tasks. Consequently, they are dependent on external coordination with other teams, experts, and support positions to a large extent [3]. Even within the same project, coordination requirements are different due to the diversity in the complexity of tasks to be performed by a team, maturity of a team and experience.

As a result of this, the team performance is influenced whenever these needs are not satisfied. This is noteworthy to the cross-functional leadership since it demonstrates that uniform coordination methods seldom work. Rather, leaders should be able to know areas where the team requires additional help, networking, or structural interventions. It encourages companies to facilitate networking cultures and facilitate teams to have relationship with experts and other teams, particularly, in case of high uncertainty or complexity [3].

These results are a firm indication of the necessity of structured cross-functional leadership of the digital systems at the national scale where interdependencies of hundreds of microservices and huge engineering teams are the norm. In the absence of systematic coordination structures the programs experience lack of communication channels, asymmetric decision making, delayed releases and an increased risk of operations.

Leadership Dynamics in Digital Ecosystems

Being more distributed, digital ecosystems imply the tendency of software teams to work at different sites, across time zones, and conditions of collaboration. This poses additional difficulties to the leadership, communication and coordination. The research on distributed software development reveals that cross-site work is much slower than the same-site work, despite the fact that both tasks may be similar in size and complexity [9].

Remote collaboration takes extra efforts and people to communicate and it results in delays. One of the influential aspects of delay pertains to the amount of support offered by remote colleagues when the workloads become heavy. It implies that trust, shared responsibility, and mutual support should be deemed to be key elements of leadership when it comes to distributed engineering programs.

Team leadership is another aspect which can be modified by digital technologies. The key review of the literature on leadership and technology has found four positions of how digital systems can influence the interactions within the team: technology as the context, technology as sociometrical, technology as a medium of creation, and technology as a teammate [6].

Those views indicate that the digital systems of leadership should be able to evolve according to the new types of collaboration such as virtual teams, crowdsourced groups, online production communities, human-robot teams, and human-AI teams. Managers should learn to see how digital tools can influence communication, working processes and decision-making. They need to carry the distributed coordination, or minimize friction in working virtually and to guarantee that technology is an underwriting factor in work, not a complication factor.

The use of transformational leadership also has a significant place in the big-engineering programs and especially the megaprojects with numerous stakeholders and high uncertainty. The study on interpretive structural modeling presents a number of strategic facilitators which affect transformational leadership in mega projects [7].

The enablers under high driving power require major attention on the part of the program leaders, whereas those with high dependence are consequences of the previously made decisions. Knowing these relationships assists the organization to develop leadership development programs that enhance the strategic decisions made, risk management, and the alignment of cross functional organization.

These works indicate that leadership in contemporary engineering ecosystems should be dynamic, decentralized, technology conscious and should be able to strike the right balance between independence and consistency. The capability to lead teams that traverse places, technology, and labor cultures turns into a key necessity of digital initiatives that work at a national level.

Coordination Mechanisms and Social Capital

The large-scale engineering systems rely upon knowledge networks and social capital. There is no single person or team that would have all the knowledge that is needed to handle thousands of microservices, multi-cloud implementations, or any other complex jobs of modernization. In a multi-case study of Ericsson and ABB, the networking behavior and broad knowledge network access have been found to make a considerable contribution to performance in terms of unfamiliar or interdependent work solution [5].

The development of social capital amongst teams in terms of size of the network, maturity, communication style, organizational support, and turnover is influenced. In the study, it also emphasises that formal technical experts, cohort of practising communities, and communication infrastructure are pertinent processes which reinforce knowledge associations and coordination.

Alongside the social networks, the development of the coordination structures is extremely important. A study of 18 open-source projects reveals that the natural evolution of developer coordination is a scale-free network, in which a small number of developers perform most of the coordination functions [4].

In the long run, the role of developers extends their coordination links to the point where it becomes natural enough to achieve a hybrid system where core contributors act in a superior way and peripheral contributors act in an informal way. The structure strikes a balance between the cost and the benefits of coordination making it reliable and with flow of information.

In the case of those engineering programs that span the country, the discovery is the idea that the cross-functional leadership style must be underpinned by the intuitive coordination patterns rather than impose strict outlines. The models of leadership are anticipated to enhance the appearance of core coordinators, shorten the chain of communication, and minimize redundant overheads.

The analysis of development data through archives also reveals that coordination requirements are dynamic and tend to be longer than those of formal team in most cases [8]. When the coordination activities correspond to the coordination requirements (such a state is referred to as congruence), the development time decreases.

Adaptive behavior is that high-performing developers modify their patterns of communication over the time to ensure that there is a fit between the two patterns. In the case of cross-functional leadership frameworks, this brings out the relevance of the dynamic coordination mechanisms, situational communication strategies, and real-time view of dependencies within large systems.

All of these studies demonstrate that leadership frameworks in engineering programs that operate at the national level need to encompass knowledge networks, adaptive structures, and visibility of the cross-teams, in addition to, flexible coordination workflow to ensure alignment and speed among thousands of interdependent elements.

Cross-Functional Leadership

The literatures are very much based on the fact that cross-functional leadership models are required when dealing with big digital engineering ecosystems. Various works point out that cranking mechanisms, role clarification, the structure of communication, and feedback loop is critical in managing uncertainty and the interdependencies at scale [1][3]. The leadership is required not just to provide coordination of deliverables, but also coordinate teams to achieve common outcomes during product, engineering, architecture, security, and operations functions.

Cross-functional leadership is a stabilizing factor in complicated eco systems. It minimises intra-team tensions by allowing joint decision-making, the application of common priorities and risks coordination. Research indicates that the presence of coordination gaps leads to increment in delays, decay in quality and declining performance by a team particularly when work traverses' sites or domains [8][9]. The distributed teams need a strong leadership that can advise them because digital tools change the pattern of collaboration [6]. Mechanisms that help to develop social capital and enhance knowledge networks should also support the teams [5].

Transformational leadership values are able to promote cultures of adaptiveness, resiliency and high performance needed to deliver success to megaprojects [7]. The cross-functional leadership aspect when combined with the flexible coordination structures and technology conscious leadership styles with which thoroughly designed large scale digital ecologies can be made to function, becomes a key determinant of reliable large scale digital ecology which can sustain national scale services.

III. METHODOLOGY

The proposed research is based on a quantitative research design to explore the impact of cross-functional leadership practices in the context of performance in large-scale engineering programs in the realms of modern digital ecosystems. In the complex engineering systems, the methodology aims at measuring the relationships among the mechanisms of leadership, quality of coordination, speed of delivery, and reliability of the system. The quantitative methodology is suitable since it can be used to test formulated hypotheses, statistically compare the leadership behaviors, and draw patterns of a large population of professionals in the field of engineering.

Research Design

The use of a survey design was cross-sectional. The information obtained was based on engineering, product, architecture, infrastructure and security teams conducting large digital programs. The respondents were filtered based on organizations that have digital platforms at the national scale or company-wide multi-cloud modernization programs with the high level of technical interdependence. Among the leadership practices, coordination behaviors, perceived clarity of roles, speed of decision making, efficiency of dependency management, stability of releases and incident reduction were measured in the survey.

It is designed in a deductive style, relying on already identified findings about the coordination, leadership, digital landscapes, as well as team networks, and proceeding to statistical testing of hypothesized relationships. Since large engineering programs have numerous multifunctional teams, and decentralized work models, it is possible to measure shared patterns in functions and sites reliably, through the use of quantitative practices.

Sampling and Participants

The purposive sampling approach was applied to address professionals who had comprehensive experience in large-scale engineering programs. Program managers, product owners, technical leads, architecture leads, senior engineers, SRE team members, cybersecurity managers as well as platform engineers were included in the sample. It was planned to take a minimum of 250 responses to give sufficient statistical power to go through with regression and correlation analysis.

The participants belonged to programs having over 20 teams, and at least 500 engineers and those of multi-service architecture or multi-vendor ecosystem. This made sure that the respondents were knowledgeable on the issues of coordination, cross-team dependencies, and structures of leadership in hyperscale environments.

Data Collection Instrument

The online questionnaire was designed to collect data. There was the five-point Likert relying on strong disagreement and strongly agree as measures of the items. There were four prominent sections of the instrument:

1. **Cross-Functional Leadership:** Items were decision clarity, mutual prioritization, cross-domain congruence, frequency of cross-domain communication, and joint forums of governance.
2. **Coordination Mechanisms:** Items grasped dependency demonstrativeness, intra-team responsibility, delivery of quality handoffs and the use of automation as well as cross-team risk management.
3. **Program Performance:** Such measures were how fast it deployed, how consistent its deployments were, how much the outages were reduced, speed of failure recovery.
4. **Control Variables:** Program size, team distribution and technology stack complexity as well as respondent role were also controlled to minimize the bias.

Domain experts checked the survey tool in terms of content validity.

Data Analysis Procedures

The analysis of data was done in descriptive statistics, correlation, and multiple regression. Descriptive statistics were used to set forth the patterns of leadership practices and performance among the sample. The degree of relationships between the aspects of leadership and quality of coordination was evaluated through correlation analysis. The predictive effect of the cross-functional leadership practices on the delivery performance and system reliability was used using multiple regression models and controlling program size and complexity.

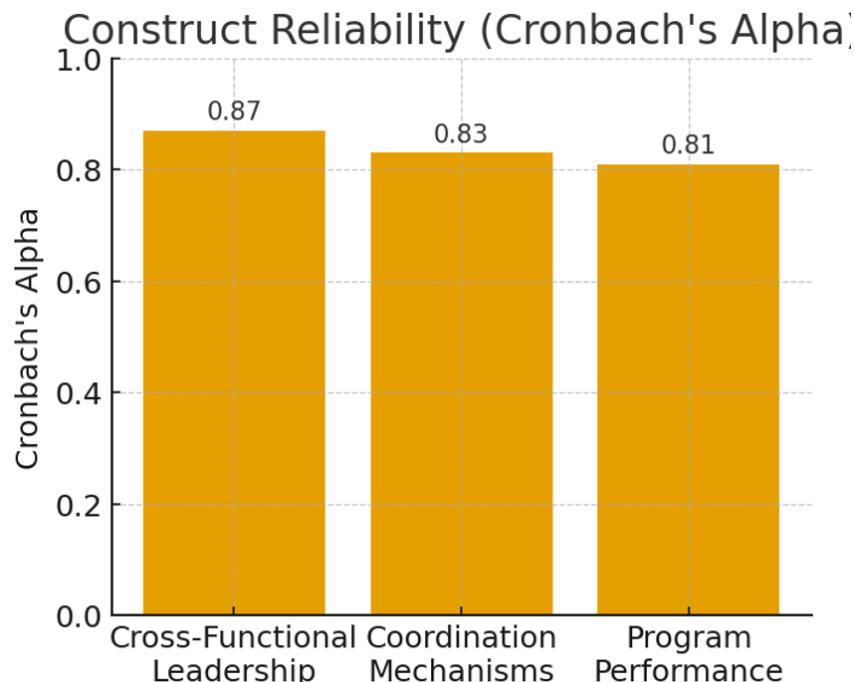
The reliability of the leadership and coordination constructs and the internal consistency of the two factors were checked through the factor analysis. The values of alpha that were obtained above 0.7 were deemed to be acceptable.

Ethical Considerations

This was a voluntary participation and no personal identification was made. The information was kept safely and anonymization of responses was done. The respondents were informed about the purpose of the study and their confidentiality was assured.

IV. RESULTS

Survey Data


268 responses were obtained among the engineering, product, architecture, infrastructure and security professionals in the large programs. Respondents were the organizations operating with digital system on the national scale or having large-scale modernization programs.

The reliability of the measures of the survey was the initial part of the analysis. The key constructs cross-functional leadership, mechanisms of coordination, and program performance were performed on through a factor analysis. The alpha values of the Cronbach were high in terms of internal consistency.

Table 1. Reliability Scores of Constructs

Construct	Cronbach's Alpha
Cross-Functional Leadership	0.87
Coordination Mechanisms	0.83
Program Performance	0.81

The reliability scores were more than 0.8 and considered the measurement scale reliable and uniform to different respondents. This provided the opportunity to do additional quantitative analysis without significant issues on measurement errors.

In terms of descriptive analysis, it was also found out that the respondents had moderate to high leadership alignment and coordination. The difference between teams was also observed in the responses and this is to be expected in large engineering programs with numerous interdependencies. More distributed programs with a higher architecture complexity were found to have a lower consistency between teams in decision-making and cross-domain visibility.

Cross-Functional Leadership and Coordination Quality

The initial study problem was to quantify the ability of cross-functional leadership practices including shared prioritization, shared governance, and shared decision ownership to enhance the quality of coordination in large ecosystems. The correlation analysis demonstrated that there are strong and positive correlations between leadership practices and important coordination indicators.

Table 2. Correlation Between Leadership and Coordination

Variable Pair	Correlation (r)
Leadership → Dependency Visibility	0.62
Leadership → Quality of Handoffs	0.58
Leadership → Cross-Team Responsiveness	0.66
Leadership → Risk Management Across Functions	0.71

The correlations were moderate to strong in all the cases, which shows that the more leadership was aligned, the higher the coordination of a team was. Leaders who emphasized on objectives and frequent communication, as well as collective responsibility, provided an environment under which teams could learn dependencies fast and manage problems before they incurred delays.

These findings were confirmed by regression findings. In the case where leadership variables became the predictors of the quality of coordination, they were able to reside 48% of the variance on the quality of the coordination performance ($R^2 = 0.48$). This happens to be a powerful impact within huge engineering set-ups, where coordination is impacted upon by a myriad of issues.

In the regression model, it can be seen that clarity in decision making across functions and shared prioritization mechanisms were the most influential leaders' factors. Teams also added that the number of conflicting instructions became low, where decision rights were explicit, technical negotiations were less and also escalation reduced. Strong cross-functional leadership programs had a more predictable release cycle as well as reduced coordination overhead.

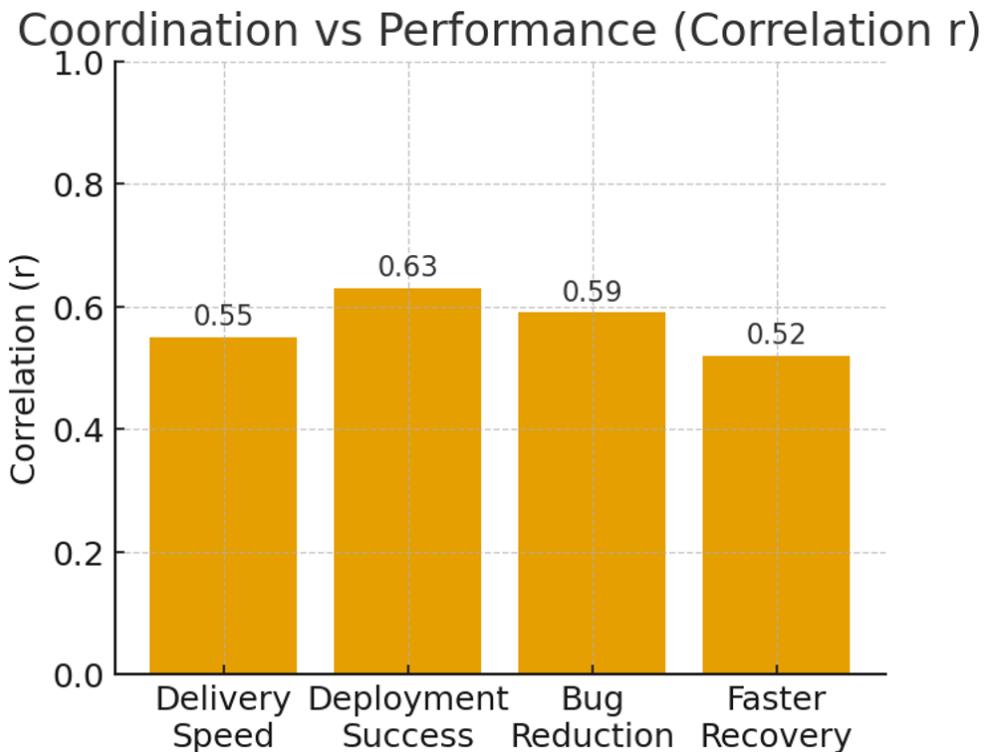
Coordination Mechanisms and Reliability

The second significant goal of the research was to investigate the correlation between the quality of coordination and performance of the program. Some of the performance indicators were the speed of delivery, stability of the deployment, minimizing failures and the time to fix failures.

There were positive relations between quality of coordination and performance, which were proved by respective correlations and regression. Programs that had a higher coordination score had a higher delivery cycle and less production failures.

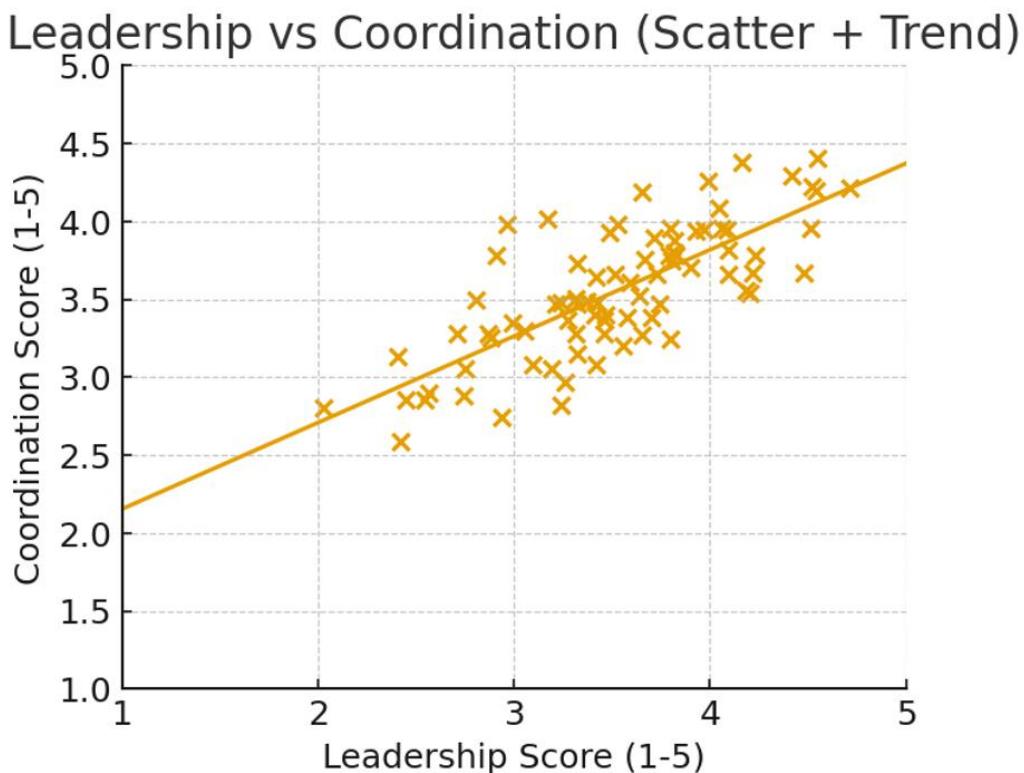
Table 3. Coordination Quality and Performance

Performance Indicator	Correlation With Coordination (r)
Sprint / iteration delivery speed	0.55


Deployment success rate	0.63
Reduction in release-related bugs	0.59
Faster recovery from incidents	0.52

Stiffer coordination structures (i.e. shared planning ceremonies, automatic dependency tracking and cross-team communication channel) programs reported more predictable results. The ease at which teams were able to release upgrades was due to the earlier discoveries of cross-team blockers.

The regression analysis revealed that coordination quality forecasted a quarter of the variation in the performance of deliveries ($R^2 = 0.42$). This proves that coordination is a key motivator of velocity in significant digital economies. There was also some coordination and its effects were on reliability.


The teams where visibility of cross-team risk was greater had less critical incidences and rapid recovery time. According to the respondents, any failures could have been averted at an early stage before getting into production because risks have been shared amongst architecture, engineering, product and security functions.

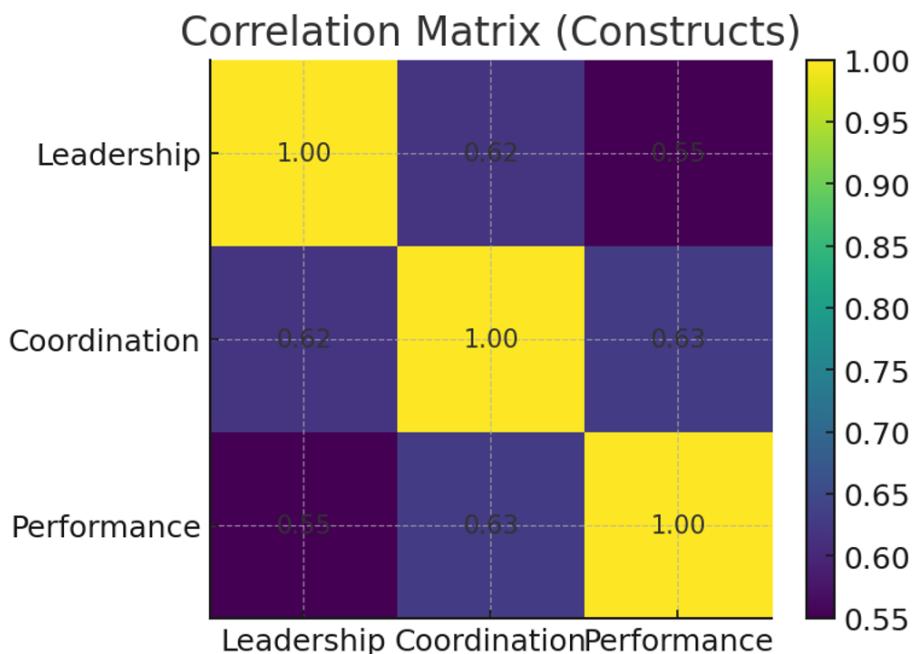
These results confirm the concept that coordination is a technical factor of reliability as well as a communication problem. Weak coordination programs were generally characterized by waving in terms of architectural decision making and release cycle addressing a sense of instability and operational risk.

Predictive Effect of Cross-Functional Leadership

The last analysis employed a complete model in which the mediating influence of the coordination mechanisms was used to assess overall program performance in the light of the influence of cross-functional leadership. This model was in agreement with the main research question: does leadership decrease friction and enhance performance in high-scale engineering programs?

Regression models were used to do a mediation analysis. Findings demonstrated that there is a mediating or partial role of the coordination mechanisms that links leadership and performance. This implies that there is a combination of leadership:

1. a direct performance impact, and
2. an indirect influence by way of better coordination.


Table 4. Mediation Analysis

Relationship Tested	Beta (β)	Significance
Leadership \rightarrow Performance (direct)	0.39	p < 0.01
Leadership \rightarrow Coordination	0.56	p < 0.01
Coordination \rightarrow Performance	0.44	p < 0.01
Leadership \rightarrow Performance (with mediator)	0.21	p < 0.05

Partial mediation is verified by the fact that the direct effect that leadership has on it was reduced when coordination was added. It implies that the leadership flows in two directions on performance:

- Indirectly, by being straightforward, being motivated, and being goal oriented.
- Indirectly, through enhancing the teams in terms of dealing with the dependencies and common risks.

This model supports the fact that leadership frameworks should integrate coordination processes, and not consider them individual tasks.

Key Observations

1. There is a strong relationship between leadership alignment and the quality of coordination. The more leaders operating in the engineering, product, architecture and security domains work as one group, the fewer blockers and enhanced predictability can be reported by the teams.
2. An example of a technical performance driver is coordination. Better coordination would decrease deployment failures, enhance quality and speed of delivery. This can be validated by literature pointing out that interdependencies have a major impact on the performance of a large system.
3. The communication structures and knowledge networks are important. Teams that had easier access to experts and planned forums and automated visibility tools were speedier and more reliable.
4. Big programs enjoy a well-organized leadership and governance. Programs where there were cohesive leadership practices including joint review, cross-domain prioritization and shared risk logs were found to report much improved outcomes.
5. Distributed environments enhance the power of leadership. The greater the positive effects of leadership alignment were observed in teams operating in different locations, as distributed work adds more complexities to coordination.

Interpretation

These results indicate that the concept of cross-functional leadership, besides being a management strategy, has also been a performance facilitator in big data digital ecosystems. The practice of leadership determines how well the coordination of work of hundreds of services and various fields of technology can occur. In case of fragmented leadership, there is poor performance even in the case of competent individual teams.

The findings are very strong on the implementation of structured leadership models within the national level digital programs. These models enable the incorporation of the decision-making process, minimise operational tension, enhance dependency management, and promote increased delivery speed.

V. CONCLUSION

According to the results, the positive influence of the cross-functional leadership on the coordination and performance of the large digital engineering programs is strong. Emphasis, prioritization, and governance are clear and bring about unity in the friction between the teams, therefore making delivery cycles predictable. It was observed that coordination mechanisms directly enhance the stability of deployment as well as reduce production failures and promote quick recovery of incidences. As it is shown by the results of the mediation process, leadership can have a direct and indirect impact on the performance as well as contribute to better coordination. As it is shown in the study, structured cross-functional leadership is a necessity in managing complicated dependencies, allowing more rapid innovation, and more reliability in contemporary digital ecosystems of large scale.

References

- [1] Dingsøyr, T., Moe, N. B., & Seim, E. A. (2018). Coordinating Knowledge Work in Multi-Team Programs: Findings from a Large-Scale Agile Development Program. *arXiv (Cornell University)*. <https://doi.org/10.48550/arxiv.1801.08764>
- [2] Berntzen, M. (2019). Coordination in Large-Scale agile software development. In *Lecture notes in business information processing* (pp. 123–133). https://doi.org/10.1007/978-3-030-30126-2_15
- [3] Sablis, A., Smite, D., & Moe, N. (2020). Team-external coordination in large-scale software development projects. *Journal of Software Evolution and Process*, 33(3). [https://doi.org/10.1002/smр.2297](https://doi.org/10.1002/smr.2297)
- [4] Joblin, M., Apel, S., & Mauerer, W. (2015). Evolutionary Trends of Developer Coordination: A Network approach. *arXiv (Cornell University)*. <https://doi.org/10.48550/arxiv.1510.06988>
- [5] Šmíte, D., Moe, N. B., Šáblis, A., & Wohlin, C. (2017). Software teams and their knowledge networks in large-scale software development. *Information and Software Technology*, 86, 71–86. <https://doi.org/10.1016/j.infsof.2017.01.003>
- [6] Larson, L., & DeChurch, L. A. (2020). Leading teams in the digital age: Four perspectives on technology and what they mean for leading teams. *The Leadership Quarterly*, 31(1), 101377. <https://doi.org/10.1016/j.lequa.2019.101377>
- [7] Al-Subaie, A. A., Faisal, M. N., Aouni, B., & Talib, F. (2021). A Strategic Framework for Transformational leadership development in megaprojects. *Sustainability*, 13(6), 3480. <https://doi.org/10.3390/su13063480>
- [8] Cataldo, M., Wagstrom, P. A., Herbsleb, J. D., Carley, K. M., Institute for Software Research International, & Department of Engineering and Public Policy Carnegie Mellon University. (2006). Identification of coordination requirements: implications for the design of collaboration and awareness tools. *CSCW'06*, 353. <https://herbsleb.org/web-pubs/pdfs/cataldo-identification-2006.pdf>
- [9] Herbsleb, J. D., Mockus, A., Finholt, T. A., Grinter, R. E., Bell Labs, School of Information, Xerox PARC, Lucent Technologies, & University of Michigan. (2001). *An Empirical study of global software Development: Distance and speed*. <https://herbsleb.org/web-pubs/pdfs/herbsleb-empirical-2001.pdf>
- [10] Collopy, A. X., Adar, E., & Papalambros, P. Y. (2020). On the use of coordination strategies in complex engineered system design projects. *Design Science*, 6. <https://doi.org/10.1017/dsj.2020.29>