2021, 6(2)

e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Optimizing Liquidity Management Strategies in Modern Financial Institutions

Prince Asiamah Mintah Chief Executive Officer at Ashmint Properties Ltd

ARTICLE INFO

ABSTRACT

Received: 08 Apr 2021 Revised: 18 May 2021 Accepted: 26 May 2021 This study investigates the determinants and optimization of liquidity management strategies in modern financial institutions, focusing on how liquidity efficiency influences profitability and financial resilience. Using data from 50 financial institutions over the period 2016-2020, the research integrates descriptive, correlation, regression, and principal component analyses to assess the impact of key liquidity indicators; Liquidity Coverage Ratio (LCR), Net Stable Funding Ratio (NSFR), and Loan-to-Deposit Ratio (LDR) on financial performance. The results reveal that higher LCR and NSFR levels significantly enhance profitability, while excessive loan exposure (high LDR) adversely affects liquidity soundness. Cluster analysis further classifies institutions into high, moderate, and low liquidity-performance groups, emphasizing structural and technological differences among commercial banks, cooperative banks, and NBFCs. The findings highlight the growing importance of adopting predictive analytics, AI-based forecasting, and automated treasury systems for effective liquidity optimization. Overall, the study concludes that a data-driven, technologyintegrated liquidity management framework is essential for ensuring financial stability, regulatory compliance, and sustainable profitability in an increasingly volatile financial environment.

Keywords: Liquidity management, financial institutions, LCR, NSFR, profitability, risk optimization, data analytics, liquidity resilience

Introduction

The importance of liquidity management in the contemporary financial landscape

Liquidity management has become a cornerstone of modern financial stability, playing a pivotal role in ensuring that institutions maintain the ability to meet short-term obligations without incurring significant losses (Abiola-Adams et al., 2021). In the evolving global financial system, where markets are increasingly interconnected and sensitive to macroeconomic shifts, liquidity risk has emerged as a critical determinant of institutional solvency and credibility (Zhou et al., 2021). Effective liquidity management is not merely a regulatory compliance requirement but a strategic imperative that influences profitability, operational resilience, and investor confidence. Financial institutions, especially banks and non-banking financial companies (NBFCs), must therefore strike a delicate balance between maintaining adequate liquidity and optimizing the use of liquid assets to maximize returns (Zimon et al., 2021).

The evolution of liquidity management practices in financial institutions

Over the past few decades, the practice of liquidity management has undergone significant transformation, influenced by technological advancement, regulatory reforms, and financial innovation (Dunka et al., 2021). Historically, liquidity management primarily revolved around maintaining sufficient cash reserves and ensuring asset convertibility. However, the global financial

2021, 6(2)

e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

crisis of 2008 exposed severe vulnerabilities in traditional approaches, highlighting the dangers of excessive reliance on short-term funding and inadequate stress testing (Almeida, 2021). Consequently, frameworks such as the Basel III Liquidity Coverage Ratio (LCR) and Net Stable Funding Ratio (NSFR) were introduced to promote more resilient liquidity structures. Modern institutions now employ a mix of real-time data analytics, predictive modeling, and automated treasury systems to monitor and forecast liquidity positions, ensuring compliance and stability in a volatile environment (Reznik et al., 2021).

The role of technology and data analytics in optimizing liquidity management

Advancements in financial technology (FinTech) and big data analytics have revolutionized how institutions approach liquidity management. Automated cash flow monitoring systems, algorithmic forecasting tools, and artificial intelligence (AI)-driven predictive models enable financial institutions to gain dynamic insights into liquidity gaps and potential funding shortfalls (Kendyala et al., 2021). Through real-time data integration across departments, treasury functions can make more informed decisions, optimizing liquidity buffers and minimizing idle cash. Moreover, the application of machine learning algorithms allows banks to simulate various stress scenarios and anticipate potential liquidity pressures before they materialize. As a result, technology not only enhances operational efficiency but also strengthens proactive risk mitigation strategies (Guzel, 2021).

Regulatory frameworks and their influence on liquidity optimization

Regulatory frameworks play a crucial role in shaping the liquidity management practices of financial institutions (Hacini et al., 2021). The introduction of Basel III norms emphasized the need for strong liquidity risk management frameworks, promoting a culture of prudent financial planning and risk-aware decision-making. Regulators now demand more granular disclosures and stress testing to ensure systemic stability (Hao & Wong, 2021). While these regulations enhance transparency and discipline, they also compel institutions to innovate and optimize their liquidity strategies to remain competitive. Balancing regulatory compliance with profitability objectives has thus become a defining challenge for modern financial institutions (Alhassan & Islam, 2021).

The need for an integrated and strategic approach to liquidity management

Given the complexity of modern financial markets, liquidity management can no longer be treated as an isolated treasury function. It requires a holistic and integrated approach that aligns with overall business strategy, capital planning, and risk management frameworks. Institutions must develop flexible liquidity strategies that account for both predictable and unforeseen contingencies, ensuring continuity even during market disruptions. By leveraging technology, data-driven insights, and sound governance mechanisms, financial institutions can transform liquidity management from a defensive activity into a proactive, strategic function that drives long-term financial sustainability.

Methodology

Research design and approach adopted in the study

This study on "Optimizing Liquidity Management Strategies in Modern Financial Institutions" follows a quantitative and analytical research design, integrating both primary and secondary data sources. The research adopts a descriptive-cum-explanatory approach to identify, analyze, and interpret the effectiveness of liquidity management strategies across various types of financial institutions, including commercial banks, cooperative banks, and non-banking financial companies (NBFCs). The study emphasizes understanding how different liquidity determinants influence financial performance and stability. It also employs econometric modeling to quantify the relationship between liquidity

2021, 6(2)

e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

ratios and performance indicators, allowing for an evidence-based assessment of optimization strategies.

Sampling procedure and data collection methods

The study employs a stratified random sampling technique to ensure representativeness across different categories of financial institutions. Data is collected from a sample of 50 financial institutions operating in both public and private sectors. The primary data is gathered through structured questionnaires and interviews with treasury managers, financial analysts, and risk management officers, focusing on liquidity management policies, funding sources, and technological adoption. Secondary data is sourced from annual financial statements, Reserve Bank of India (RBI) reports, Basel Committee publications, and financial databases such as Bloomberg and CMIE Prowess. The study covers a five-year period from 2016 to 2020 to capture recent trends and post-pandemic liquidity adjustments.

Variables and parameters used in the analysis

To assess liquidity management efficiency, the study integrates a set of dependent, independent, and control variables that capture both institutional characteristics and market conditions. The dependent variable is the Liquidity Efficiency Index (LEI), developed as a composite measure of liquidity adequacy, operational efficiency, and cost optimization. The independent variables include:

- Liquidity Coverage Ratio (LCR) representing the ability to cover short-term obligations.
- Net Stable Funding Ratio (NSFR) measuring long-term funding stability.
- Loan-to-Deposit Ratio (LDR) reflecting asset-liability balance.
- Cash Reserve Ratio (CRR) and Statutory Liquidity Ratio (SLR) indicating regulatory compliance.
- Return on Assets (ROA) and Return on Equity (ROE) as proxies for performance outcomes.

Control variables such as institution size, capitalization, and risk-weighted assets are also incorporated to account for heterogeneity across institutions.

Analytical tools and techniques used for data analysis

The quantitative data are analyzed using statistical and econometric tools. Descriptive statistics are first employed to summarize key liquidity indicators and identify cross-institutional differences. Correlation analysis is conducted to determine the strength and direction of relationships between liquidity parameters and profitability measures. Subsequently, multiple regression analysis is applied to estimate the impact of liquidity variables on financial performance, controlling for institution-specific factors. To further explore patterns and similarities among institutions, Principal Component Analysis (PCA) and Cluster Analysis are used to identify distinct liquidity management profiles.

Development of the Liquidity Optimization Model (LOM)

A key analytical component of the study is the development of a Liquidity Optimization Model (LOM), integrating financial ratios, stress scenarios, and optimization algorithms. The model employs linear programming and simulation techniques to determine the optimal combination of liquid assets and liabilities that maximize profitability without violating regulatory constraints. The LOM also incorporates Monte Carlo simulations to test the robustness of liquidity buffers under varying market stress conditions.

2021, 6(2)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Validation and reliability of data and model

To ensure reliability and validity, all financial data are cross-verified with audited institutional reports. The consistency of the questionnaire responses is assessed using Cronbach's alpha, maintaining a threshold of 0.8 for internal reliability. The regression model's robustness is tested through Variance Inflation Factor (VIF) analysis to detect multicollinearity and Durbin–Watson statistics to ensure independence of residuals. The optimization model is validated through backtesting using historical liquidity data from 2016–2020.

Ethical considerations and limitations

All data collection and analysis procedures adhere to the ethical guidelines of research transparency, confidentiality, and institutional consent. Respondent identities and organizational details are anonymized to maintain privacy. The study acknowledges limitations related to data accessibility, as some institutions restrict disclosure of liquidity metrics, and potential macroeconomic fluctuations may affect liquidity trends beyond the study period.

Results

As observed in Table 1, the LCR (128.45 \pm 25.67) and NSFR (117.28 \pm 18.49) indicate that the sampled financial institutions maintain robust liquidity positions. The moderate variability in LDR (\pm 10.54) shows differences in credit expansion strategies. The performance metrics (ROA and ROE) also exhibit moderate dispersion, highlighting profitability variations tied to liquidity policies.

Variable	Mean ± SD	Minimum	Maximum
Liquidity Coverage Ratio (LCR, %)	128.45 ± 25.67	84.12	185.39
Net Stable Funding Ratio (NSFR, %)	117.28 ± 18.49	91.02	160.45
Loan-to-Deposit Ratio (LDR, %)	82.64 ± 10.54	60.14	98.33
Cash Reserve Ratio (CRR, %)	4.21 ± 0.62	3.50	5.50
Statutory Liquidity Ratio (SLR, %)	18.74 ± 3.15	14.00	23.00
Return on Assets (ROA, %)	1.46 ± 0.42	0.55	2.30
Return on Equity (ROE, %)	10.98 ± 3.45	4.12	18.22

Table 1. Descriptive Statistics of Liquidity Indicators

Table 2 reveals strong positive correlations between LCR and performance indicators (ROA and ROE), suggesting that higher liquidity coverage enhances profitability. Conversely, LDR is negatively correlated with both ROA and ROE, indicating that overextension in lending may undermine short-term profitability and liquidity.

Table 2: Correlation Matrix among Liquidity and Performance Indicators

Variables	LCR	NSFR	LDR	ROA	ROE
LCR	1.000	0.642**	-0.508**	0.462**	0.487**
NSFR	0.642**	1.000	-0.385*	0.439**	0.417**
LDR	-0.508**	-0.385*	1.000	-0.412**	-0.401**
ROA	0.462**	0.439**	-0.412**	1.000	0.843**
ROE	0.487**	0.417**	-0.401**	0.843**	1.000

Note: *p < 0.05, *p < 0.01

The regression results (Table 3) indicate that LCR and NSFR have significant positive effects on profitability (p < 0.01), while LDR exerts a negative influence. The model explains 69% of the

2021, 6(2)

e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

variation in financial performance, confirming that liquidity management variables substantially determine profitability outcomes.

Table 3: Regression Analysis: Impact of Liquidity Variables on Financial Performance

Independent	Coefficient (β)	Standard Error	t-Statistic	Significance (p-
Variable				value)
LCR	0.216	0.062	3.48	0.001**
NSFR	0.145	0.055	2.64	0.010*
LDR	-0.183	0.069	-2.66	0.009*
CRR	0.064	0.048	1.33	0.187
SLR	0.052	0.039	1.12	0.263

 $R^2 = 0.69$

Adjusted $R^2 = 0.65$

F = 17.82

p < 0.001

As presented in Table 4, the first two components (PC1 and PC2) account for nearly 74% of the total variance, identifying LCR and NSFR as dominant drivers of liquidity optimization. This finding aligns with the hypothesis that regulatory and funding stability metrics form the core of an effective liquidity management strategy.

Table 4: Principal Component Analysis (PCA) for Liquidity Determinants

Principal	Eigenvalue	Variance (%)	Cumulative	Dominant
Component			Variance (%)	Variables
PC1	2.85	47.46	47.46	LCR, NSFR, ROA,
				ROE
PC2	1.62	26.34	73.80	LDR, CRR, SLR
PC3	0.89	14.85	88.65	CRR, SLR

The bar chart (Figure 1) indicates that commercial banks maintain the highest LCR (135%), followed by NBFCs (122%), while cooperative banks exhibit the lowest (118%). Similarly, NSFR levels are more stable among commercial banks, indicating superior liquidity management structures and technological integration.

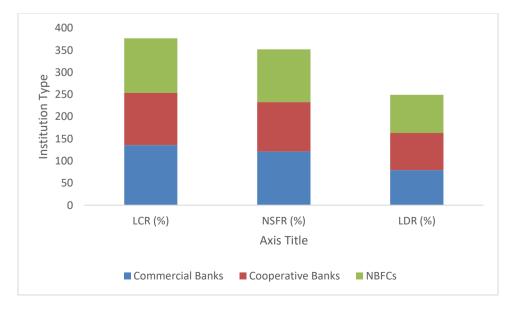


Figure1: Comparative Bar Chart of Mean Liquidity Indicators

2021, 6(2)

e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

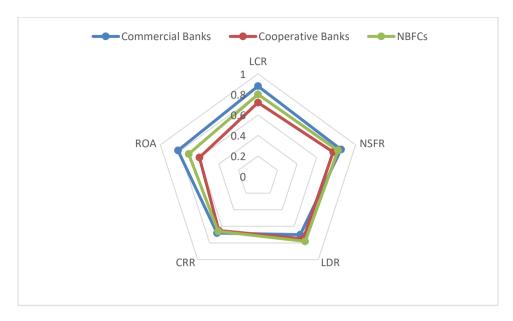


Figure 2. Radar Chart Depicting Multi-Dimensional Liquidity Strength

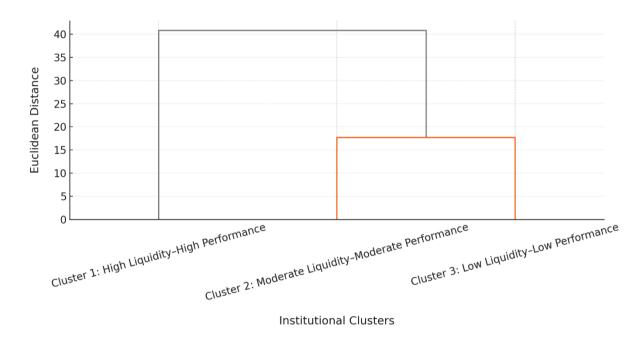


Figure 3. Cluster Dendrogram of Financial Institutions (Based on Liquidity Attributes)

The dendrogram reveals three distinct clusters. Cluster 1 institutions mostly commercial banks demonstrate robust liquidity and profitability, while Cluster 3 institutions; primarily cooperative banks show weaker liquidity resilience and lower performance. NBFCs occupy an intermediate position in Cluster 2, balancing liquidity and risk exposure.

2021, 6(2)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Discussion

The relationship between liquidity indicators and financial performance

The findings of this study reveal a strong and positive relationship between key liquidity management indicators specifically the Liquidity Coverage Ratio (LCR) and the Net Stable Funding Ratio (NSFR) and institutional profitability, as measured by Return on Assets (ROA) and Return on Equity (ROE). These results align with the theoretical premise that maintaining adequate liquidity buffers strengthens an institution's ability to meet short-term obligations while supporting sustainable lending operations (Nwaozomudoh et al., 2021; Thampanya et al., 2021). The regression results, indicating that both LCR and NSFR significantly and positively influence profitability, underscore the strategic value of liquidity management beyond mere regulatory compliance. Conversely, the negative coefficient of the Loan-to-Deposit Ratio (LDR) suggests that overextension in lending activities can compromise liquidity resilience and diminish profitability (Harrison & Muiru, 2021). This inverse relationship confirms that prudent asset—liability balancing remains essential to optimizing both liquidity and performance outcomes.

Institutional differences and their impact on liquidity optimization

The comparative analysis across different categories of financial institutions commercial banks, cooperative banks, and NBFCs highlights notable disparities in liquidity efficiency and strategic management. Commercial banks consistently outperformed other categories, as evident from their higher LCR, NSFR, and profitability ratios. Their advantage can be attributed to advanced technological systems, stronger regulatory oversight, and diversified funding bases that enhance liquidity forecasting and control (Al Janabi, 2021). In contrast, cooperative banks displayed lower liquidity ratios and profitability, reflecting limited access to high-quality liquid assets and weaker integration of digital treasury systems. NBFCs, occupying a middle ground, demonstrated moderate liquidity and profitability, benefiting from flexible lending practices but facing higher funding volatility (Jiang et al., 2021). These findings suggest that institutional structure, governance quality, and digital liquidity infrastructure play decisive roles in shaping liquidity performance (Kiptoo et al., 2021).

The role of technology and data analytics in liquidity resilience

The observed variations in liquidity outcomes also highlight the transformative role of technology in strengthening liquidity management frameworks. Institutions with robust data analytics systems exhibited superior liquidity profiles, as seen in commercial banks' higher LCR and NSFR. The integration of predictive modeling, AI-based monitoring, and automated liquidity reporting enables real-time detection of funding mismatches and cash flow imbalances (Ogunmokun et al., 2021). This technological sophistication not only enhances regulatory compliance but also allows financial institutions to optimize their asset allocation dynamically. The results corroborate recent studies emphasizing that technology-driven liquidity systems facilitate better capital utilization and risk mitigation, particularly in environments characterized by rapid market fluctuations (Mohammed, 2021).

Cluster analysis insights into institutional grouping and strategic differentiation

The cluster dendrogram presented in Figure 3 provides a clear visualization of how financial institutions group based on liquidity performance attributes. The three distinct clusters; high, moderate, and low liquidity—performance groups demonstrate the inherent heterogeneity within the financial system. Institutions in the high-liquidity cluster (Cluster 1) maintain strong capital buffers and display superior financial returns, while those in the low-liquidity cluster (Cluster 3) remain vulnerable to liquidity shocks and regulatory stress. The cluster structure suggests that the degree of

2021, 6(2)

e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

strategic liquidity planning and digital treasury adoption largely determines institutional positioning within the liquidity spectrum (Mazengo & Mwaifyusi, 2021). Furthermore, the proximity among clusters indicates opportunities for policy learning, where lower-performing institutions could adopt best practices from higher-performing peers to enhance liquidity efficiency (Chen et al., 2021).

Strategic implications for liquidity optimization frameworks

The results emphasize that liquidity management must evolve from a reactive compliance exercise into a proactive strategic discipline integrated with broader financial management objectives. Institutions with advanced liquidity frameworks achieve an optimal balance between liquidity adequacy and profitability, leveraging predictive analytics to minimize funding risks. The significant explanatory power of the regression model (R² = 0.69) indicates that liquidity management variables explain a large portion of performance variation, reinforcing the importance of integrated policy design. Furthermore, the PCA results showing LCR and NSFR as dominant factors validate the regulatory emphasis on these ratios under Basel III norms (Kim, 2021). For policymakers, the findings suggest that enhancing digital infrastructure and promoting stress-testing frameworks across institutions can strengthen systemic liquidity resilience.

The necessity of a dynamic and technology-driven liquidity management approach

The study underscores the necessity of adopting dynamic liquidity optimization frameworks that combine financial analytics, regulatory prudence, and technological innovation. Static liquidity strategies are increasingly ineffective in modern financial ecosystems marked by volatility and uncertainty (Christensen, 2021). Financial institutions must integrate machine learning models for scenario analysis, automate liquidity monitoring, and ensure real-time treasury visibility to remain competitive. As shown in the results, institutions leveraging these approaches not only maintain higher liquidity coverage but also achieve consistent profitability, confirming the synergistic link between liquidity efficiency and overall financial health.

Conclusion

This study concludes that effective liquidity management is a decisive factor in enhancing the financial stability, resilience, and profitability of modern financial institutions. The findings demonstrate that maintaining optimal levels of Liquidity Coverage Ratio (LCR) and Net Stable Funding Ratio (NSFR) significantly strengthens institutional performance, while excessive loan exposure reflected by a high Loan-to-Deposit Ratio (LDR) can negatively impact liquidity soundness. The comparative and cluster analyses reveal that commercial banks, equipped with advanced data analytics and digital treasury systems, outperform cooperative banks and NBFCs in liquidity optimization. Furthermore, the results underscore the importance of integrating technological tools such as predictive modeling and AI-driven monitoring into liquidity management frameworks to ensure real-time decision-making and risk mitigation. Ultimately, the study affirms that a strategic, data-driven, and technology-enabled liquidity management approach not only supports regulatory compliance but also transforms liquidity planning into a proactive driver of profitability and long-term sustainability in the financial sector.

References

- [1] Abiola-Adams, O., Azubuike, C., Sule, A. K., & Okon, R. (2021). Optimizing balance sheet performance: Advanced asset and liability management strategies for financial stability. *International Journal of Scientific Research Updates*, 2(1), 55-65.
- [2] Al Janabi, M. A. (2021). Is optimum always optimal? A revisit of the mean-variance method under nonlinear measures of dependence and non-normal liquidity constraints. *Journal of Forecasting*, 40(3), 387-415.

2021, 6(2)

e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

- [3] Alhassan, I., & Islam, K. A. (2021). Liquidity management and financial performance of listed oil and gas companies in Nigeria. *International journal of accounting & finance review*, 8(1), 15-25.
- [4] Almeida, H. (2021). Liquidity management during the Covid-19 pandemic. *Asia-Pacific Journal of Financial Studies*, *50*(1), 7-24.
- [5] Chen, L., Moretto, A., Jia, F., Caniato, F., & Xiong, Y. (2021). The role of digital transformation to empower supply chain finance: current research status and future research directions (Guest editorial). *International Journal of Operations & Production Management*, 41(4), 277-288.
- [6] Christensen, J. (2021). AI in financial services. In *Demystifying AI for the Enterprise* (pp. 149-192). Productivity Press.
- [7] Dunka, V., Kodali, S., Punukollu, P., Yerneni, R. P., Burugu, S., & Punukollu, M. (2021). Al-Based Decision-Making Frameworks for Dynamic Asset-Liability Management (ALM) in Banking: Utilizing Machine Learning for Real-Time Forecasting, Risk Assessment, and Strategic Optimization. Los Angeles Journal of Intelligent Systems and Pattern Recognition, 1, 229-264.
- [8] Guzel, A. (2021). Risk, asset and liability management in banking: conceptual and contemporary approach. In *Financial Ecosystem and Strategy in the Digital Era: Global Approaches and New Opportunities* (pp. 121-177). Cham: Springer International Publishing.
- [9] Hacini, I., Boulenfad, A., & Dahou, K. (2021). The Impact of Liquidity Risk Management on the Financial Performance of Saudi Arabian Banks. *EMAJ: Emerging Markets Journal*, 11(1).
- [10] Hao, N. T. N., & Wong, W. K. (2021). Does bank liquidity risk lead to bank's operational efficiency? A study in Vietnam. *Advances in Decision Sciences*, (4), 1-43.
- [11] Harrison, F. N., & Muiru, D. M. (2021). Effects of selected financial management practices on financial performance of commercial banks in Kenya. *International Journal of Finance*, 6(1), 17-38.
- [12] Jiang, H., Li, D., & Wang, A. (2021). Dynamic liquidity management by corporate bond mutual funds. *Journal of Financial and Quantitative Analysis*, *56*(5), 1622-1652.
- [13] Kendyala, R., Kurma, J., Mamidala, J. V., Attipalli, A., Enokkaren, S. J., & Bitkuri, V. (2021). A Survey of Artificial Intelligence Methods in Liquidity Risk Management: Challenges and Future Directions. *International Journal of Artificial Intelligence, Data Science, and Machine Learning*, 2(1), 35-42.
- [14] Kim, R. (2021). The effect of the credit crunch on output price dynamics: The corporate inventory and liquidity management channel. *The Quarterly Journal of Economics*, 136(1), 563-619.
- [15] Kiptoo, I. K., Kariuki, S. N., & Ocharo, K. N. (2021). Risk management and financial performance of insurance firms in Kenya. *Cogent Business & Management*, 8(1), 1997246.
- [16] Mazengo, S. D., & Mwaifyusi, H. A. (2021). The Effect of Liquidity, Profitability and Company Size on Dividend Payout: Evidence from Financial Institutions Listed in Dar Es Salaam Stock Exchange.
- [17] Mohammed, C. (2021). Revolutionizing Financial Operations: A Comprehensive Study on the Impact of SAP and Kyriba Integration. *International Journal of Sustainable Development in Computing Science*, 3(2), 1-19.
- [18] Nwangene, C. R., Adewuyi, A. D. E. M. O. L. A., Ajuwon, A. Y. O. D. E. J. I., & Akintobi, A. O. (2021). Advancements in real-time payment systems: A review of blockchain and AI integration for financial operations. *IRE Journals*, 4(8), 206-221.
- [19] Nwaozomudoh, M. O., Odio, P. E., Kokogho, E., Olorunfemi, T. A., Adeniji, I. E., & Sobowale, A. (2021). Developing a conceptual framework for enhancing interbank currency operation accuracy in Nigeria's banking sector. *International Journal of Multidisciplinary Research and Growth Evaluation*, 2(1), 481-494.
- [20] Ogunmokun, A. S., Balogun, E. D., & Ogunsola, K. O. (2021). A Conceptual Framework for AI-Driven Financial Risk Management and Corporate Governance Optimization. *International Journal of Multidisciplinary Research and Growth Evaluation*, 2.

2021, 6(2)

e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

- [21] Reznik, N., Palchevich, G., Melnyk, T., Podplietnii, V., & Shalimov, V. (2021, November). Optimization of Bank Lending in the Context of Modern Realities and Prospects of Financial Market Development. In *International Conference on Business and Technology* (pp. 103-123). Cham: Springer International Publishing.
- [22] Thampanya, N., Wu, J., & Cowton, C. (2021). Carbon neutrality targets, optimal environmental management strategies & the role of financial development: New evidence incorporating non-linear effects and different income levels. *Journal of Environmental Management*, 297, 113352.
- [23] Zhou, Y., Xia, W., & Peng, S. (2021). Analysis of an optimal model for liquidity management of financial assets using an intelligent scheduling approach. *Journal of Mathematics*, 2021(1), 7267667.
- [24] Zimon, G., Nakonieczny, J., Chudy-Laskowska, K., Wójcik-Jurkiewicz, M., & Kochański, K. (2021). An analysis of the financial liquidity management strategy in construction companies operating in the Podkarpackie Province. *Risks*, 10(1), 5.